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Abstract 
Definite descriptions are in the focus of philosophical discussion at least since 
Russell’s famous paper “On Denoting”. In this paper, we present a logic with 
descriptions in Russell’s spirit. The formulation, however, is closely related to 
Schütte’s development of predicate logic, i.e. the formulation of the calculus 
uses positive- and negative-parts. With respect to this slightly more sophisticat-
ed formulation it is possible to formalize Russell’s convention which is origi-
nally stated in the meta-language of his theory of descriptions within our calcu-
lus. In this paper we prove an elimination theorem for this calculus.  

 
 
1  INTRODUCTION 
 
Russell’s theory of definite descriptions is an intellectual offspring of find-
ing (adequate) solutions to puzzling philosophical oddities, e.g. for Mei-
nong’s ontological jungle. In this article we focus on a calculus with de-
scriptions that is very much in the spirit of Bertrand Russell's treatment of 
descriptions in the Principia Mathematica *14 (P.M.*14). However, it is 
not the same. This is due to several reasons: 
 

(a) Russell’s theory of descriptions is not focussed on the whole class 
of descriptions but just on descriptions of a very simple kind. 

(b) Russell does not develop his theory in a purely formal way. Es-
sential parts of it are found in the context that explains some im-
portant facts, e.g. the use of the scope-operator. 

(c) The language and logic (developed below) is void of intensional 
functors. 
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According to Russell a description has the following form: 
 
the so-and-so 

 
where ‘the’ is in the singular and ‘so-and-so’ is a (possibly) complex ex-
pression. (Definite) descriptions occur in two contexts – as Russell says, 
e.g. 
 

• The present King of France is wise. 
• The present King of France exists. 

 
Following Russell, the above statements can be formally represented as 
follows: 
 

(*14.01) [ιxA(x)]B(ιxA(x)) ↔ ∃x∀y((A(y) ↔ x = y) ∧ B(x)) 
(*14.02) E!ιxA(x) ↔ ∃x∀y(A(y) ↔ x = y) 

 
Kurt Gödel remarks (1944, p.126) in his contribution to the Schilpp-
volume that honours Russell: 
 

 It is to be regretted that this first comprehensive and thorough going representa-
tion of a mathematical logic and the derivation of Mathematics from it is so 
greatly lacking in formal precision in the foundations (contained in *1–*21 of 
Principia), that it represents in this respect a considerable step backward as 
compared with Frege. What is missing, above all, is a precise statement of the 
syntax of the formalism. Syntactical considerations are omitted even in cases 
where they are necessary for the cogency of the proofs, in particular in connec-
tion with “incomplete symbols”.1 

 
Russell licenses the inference from (*14.01) to 
 

(*14.101) B(ιxA(x)) ↔ ∃x∀y((A(y) ↔ x = y) ∧ B(x)) 
 
with the following convention: 
 

 It will be found that, in most cases in which descriptions occur, their scope is, 
in practice, the smallest proposition enclosed in dots or brackets in which they 
are contained. […] For this reason it is convenient that, when the scope of an 
occurrence of (ιx)(φx) is the smallest proposition enclosed in dots or other 

                                                 
1 Interestingly, B. Russell did not respond to Gödel in the Schilpp-volume. 
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brackets, in which the occurrence in question is contained, the scope need not 
be indicated by “[(ιx)(φx)].” […] This convention enables us in the vast major-
ity of cases that actually occur, to dispense with the explicit indication of the 
scope of a descriptive symbol; […] 

 
In the light of the quite critical remarks of Gödel, we develop in this paper 
a thorough going treatment of descriptions. 

At several occasions Russell points out that definite descriptions 
have no meaning in isolation and that definite descriptions are incomplete 
symbols. In our view the phrase “no meaning in isolation” is a semantical 
thesis and is treated elsewhere (e.g. Gratzl (submitted)). In this paper I 
shall focus on the phrase “incomplete symbol”, that means – according to 
our understanding – that there is to each formula A containing a definite 
description a formula B without any definite descriptions and the formulas 
A and B are provable equivalent relative to a certain translation. The details 
of this formal interpretation of “incomplete symbols” will be stated be-
low – in section 4. 
 
 
2  LANGUAGE 
 
The alphabet of L consists of a denumerable set of free individual vari-
ables, a denumerable set of bound individual variables, a denumerable set 
of n-ary predicates variables, the logical symbols: ∧, ∨, ¬, ∀, ∃, ι, […], =, 
E! and the auxiliary signs ( and ). We use as syntactical variables a, b, c for 
free individual variables; x, y, z for bound variables; u, v for any term and 
Pn, Qn, Rn, Sn for any n-ary predicate variable. 
 
2.1 Definition (Formulas and Terms of L) 
 

1. Free individual variables are terms. 
2. If a1,…, an are terms and Pn is an n-ary predicate variable, then 

Pn(a1,…, an) is a formula. 
3. If a, b are terms, then (a = b) is a formula. 
4. If A is a formula, then ¬A is a formula. 
5. If A, B are formulas, then (A ∧ B), (A ∨ B) are formulas. 
6. If A(a) is a formula, such that the bound individual variable x 

does not occur in it, then ∀xA(x) and ∃xA(x) are formulas. 
7. If A(a) and B(b) (a and b are not necessarily distinct) are for-

mulas such that the bound individual variable x does not occur 
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in them, then ιxA(x) is a term and [ιxA(x)]B(ιxA(x)) and 
B(ιxA(x)) are formulas. 

8. If ιxA(x) is a term, then E!ιxA(x) is a formula. 
9. If [ιxA(x)]B(ιxA(x)) and [ιxC(x)]D(ιxC(x)) are formulas, then: 

 [ιxA(x), ιxC(x)](B(ιxA(x)) ∧ D(ιxC(x))) and   
 [ιxA(x), ιxC(x)](B(ιxA(x)) ∨ D(ιxC(x))) are formulas.2 

10. If ιxA(x, a) is a term and B(a) is a formula, then 
∀y([ιxA(x, y]B(ιxA(x, y))) and ∃y([ιxA(x, y]B(ιxA(x, y))) are 
formulas. 

11. Nothing else is a formula or a term. 
 
The remaining connectives are defined as usual. 
 
2.2 A brief note on E! 
 
Russell writes in the PM on p.174 (Russell/Whitehead 1970): 
 

 When in ordinary language or in philosophy, something is said to “exist,” it is 
always something described, i.e. it is not something immediately presented, like 
a taste or a patch of colour, but something like “matter” or “mind” or “Homer 
(meaning “the author of the Homeric poems”), which is known by description 
as “the so-and-so,” and is thus of the form (ιx)(φx). Thus in all such cases, the 
existence of the (grammatical) subject (ιx)(φx) can be analytically inferred from 
any true proposition having this grammatical subject. It would seem that the 
word “existence” cannot be significantly applied to subjects immediately given; 
i.e. not only does our definition give no meaning to “E!x,” but there is no rea-
son, in philosophy, to suppose that a meaning of existence could be found 
which would be applicable to immediately given subjects. 

 
Without entering the epistemological distinction between knowledge by 
acquaintance and knowledge by description we take it from this quote for 
granted, that for Russell the E!-predicate can only sensibly be applied to ι-
terms. This is reflected in the definition of terms and formulas – condi-
tion 8. 
 

                                                 
2 This clause simply allows multiple occurrences of ι–terms in the scope. Although we  
shall not deal explicitly with such formulas in this article. 
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2.3 Examples  
 
The following two examples should indicate that even quite simple exam-
ples taken from natural language show that the logical structure might al-
ready have a certain complexity, e.g. ι-terms can overlap in such a way 
that the bound variable of a ι-term occurs in the basis of another one. The 
first example is: 
 

• The first born child of its father inherits the farm. 
 
I use the following symbols: 
 

P(x, y) stands for: y is father of x 
Q(x, y) stands for: x is a firstborn child of z 
R(x) stands for: x inherits the farm 

 
So the the sentence ist formalized as: 
 

R(ιxQ(x, ιyP(x, y))) 
 
The second example is: 
 

•• The first born child of its father inherits the fatherly farm. 
 
This quite easily understandable sentence will be expressed in the language 
developed above, by using the following symbols: 
  

P(x, y) stands for: y is father of x 
Q(x, z) stands for x is a firstborn child of z 
R(x, z) stands for: x inherits z 
S(z, y) stands for: z is farm of y 

 
‘The first born child of its father inherits the fatherly farm.’ then is formal-
ized as: 
 

R(ιxQ(x, ιyP(x, y)), ιzS(z, ιyP(z, y))) 
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2.4 Definition (Positive and negative parts of formulas) 
 
In section 3 we shall state an extended form of a Schütte-style calculus for 
predicate logic including rules dealing with definite descriptions. Schütte’s 
formulation of the predicate calculus makes use of positive and negative 
parts; those should be thought of generalized notions of antecendent (i.e. 
negative parts) and and consequent (i.e. positive parts) of Gentzen’s se-
quents. 

The following definition of positive and negative parts of formulas is 
due to Schütte (1960, p.11). 
 

1. F is a positive part of F. 
2. If ¬A is a positive part of F, then A is a negative part of F. 
3. If ¬A is a negative part of F, then A is a positive part of F. 
4. If (A ∨ B) is a positive part of F, then both A and B are positive 

parts of F. 
5. If (A ∧ B) is a negative part of F, then both A and B are nega-

tive parts of F. 
 
In the following presentation of (ιC) we make use of subscript plus und 
subscript minus: these are devices to mark positve- and negative-parts 
within formulas. 
 
 
3  ι-CALCULUS (ιC) 
 
Axioms 
 

(ι1) F[A+, A–] 
(ι2) F[(a = a)+] 
(ι3) F[(a = b)–, A(a)–, A(b)+] 

 
Rules of inference 
 

(ιR1) F[A+], F[B+] ⇒ F[(A ∧ B)+] 
(ιR2) F[A–], F[B–] ⇒ F[(A ∨ B)–] 
(ιR3) F[A(a)+] ⇒ F[(∀xA(x)+] 



 361

(ιR4) F[A(a)–] ⇒ F[(∃xA(x)–]3 
(ιR5) F[(∀xA(x))–] ∨ ¬A(a) ⇒ F[(∀xA(x))–] 
(ιR6) F[(∃xA(x))+] ∨ A(a) ⇒ F[(∃xA(x))+] 
(ιR7) F[(a = b)+], G[(a = b)–] ⇒ F[…] ∨ G[…] 
(ιR8) F[([ιxA(x)]B(ιxA(x)))+] ⇒ F[(B(ιxA(x)))+] 
(ιR9) F[(B(ιxA(x)))+] ⇒ F[(∃x∀y((A(y) ↔ x = y) ∧ B(x)))+] 
(ιR10) F[(B(ιxA(x)))–] ⇒ F[([ιxA(x)]B(ιxA(x)))–] 
(ιR11) F[([ιxA(x)]B(ιxA(x)))–] ⇒ F[(∃x∀y((A(y) ↔ x = y) ∧ B(x)))–] 
(ιR12) F[(E!ιxA(x))+] ⇒ F[(∃x∀y(A(y) ↔ x = y))+] 
(ιR13) F[(E!ιxA(x))–] ⇒ F[(∃x∀y(A(y) ↔ x = y))–] 

 
(ι1)–(ι3) and (ιR1)–(ιR8) are the usual axioms and rules of inference of 
predicate logic with equality. The rules (ιR8)–(ιR13) deal with definite de-
scriptions and are formulated in such a way that Russell’s “contextual defi-
nitions” are provable.  

Provability is defined as follows: (i) Every axiom is provable, and 
(ii) if the premises of a rule of inference are provable, then the conclusion 
of this rule of inference is provable. It is easily seen that Russell’s so-called 
contextual definitions are provable in (ιC),. i.e. (*14.01, *14.02, and 
*14.101). 
 
 
4  ELIMINATION OF ι-TERMS 
 
4.1 Definition (ι-rank, rank)  
 
The number of occurrences of the ι-symbol in a given formula is called the 
ι-rank (ιrk) of this formula. The number of logical signs in a formula is the 
rank (rk) of this formula. 
 
4.2 Inductive definition of F* relative to F 
 

(i)  If ιrk(F) = 0, then F* is F. 
(ii) If ιrk(F) > 0, then: 

(a)  If F is B(ιxA(x)) where ιxA(x) is the leftmost ι-term, and 
B is not of the form ¬C, [ιxA(x)]C, [ιxA(x)]¬C, then F* 
is (∃x∀y((A*(y) ↔ x = y) ∧ B*(x))). 

                                                 
3 Both (ιR3) and (ιR4) are subject to the conditon on variables, i.e. the free individual 
variable a must not occur in the conclusion. 
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(b) If F is E!ιxA(x), then F* is ∃x∀y(A(y) ↔ x = y). 
(c) If F is ¬B(ιxA(x)), where ιxA(x)) is the leftmost ι-term, 

then F* is ∃x∀y((A*(y) ↔ x = y) ∧ ¬B*(x)). 
(d) If F is ¬[ιxA(x)]B(ιxA(x)), where ιxA(x) is the leftmost ι-

term, then F* is ¬(∃x∀y((A*(y) ↔ x = y) ∧ B*(x))). 
(e) If F is [ιxA(x)]¬B(ιxA(x)), where ιxA(x) is the leftmost ι-

term, then F* is ∃x∀y((A*(y) ↔ x = y) ∧ ¬B*(x)) 
(f) If F is [ιxA(x)]B(ιxA(x)), where ιxA(x) is the leftmost ι-

term, then F* is ∃x∀y((A*(y) ↔ x = y) ∧ B*(x))  
 
4.3 Elimination Theorem 
 

If (ιC) ⊢ F with ιrk(F) ≥ 0, then there is a formula F* relative (to the 
inductive definition stated above), such that (ιC) ⊢ F ↔ F*. 

 
In effect this theorem expresses that everything that can be said with the 
aid of ι-terms can be stated in predicate logic with equality (lets call it (C) 
without any loss, i.e. (ιC) is a conversartive extension of (C). However, the 
reduced formula, i.e. the formula obtained by elimination of ι-terms, may 
be quite cumbersome to read. 
 
Proof sketch: The proof is an induction on the number of ι-terms, i.e. ι-
rank, of a formula F. If ιrk(F) = 0, then there is nothing to prove. If ιrk(F) 
> 0, then several cases (according to the translation *) have to be consider-
ed. This proof-step – although every step is quite easy to prove – will be 
illustrated with an example: 
 

(ιC) ⊢ [ιxA(x)]B(ιxA(x) ↔ ∃x∀y((A(y) ↔ x = y) ∧ B(x)) such that 
ιxA(x) is the left-most ι-term. 
 
1. [ιxA(x)]B(ιxA(x) → [ιxA(x)]B(ιxA(x)    (ι1) 
2. [ιxA(x)]B(ιxA(x) → B(ιxA(x)     (1., (ιR8)) 
3. [ιxA(x)]B(ιxA(x) → ∃x∀y((A (y) ↔ x = y) ∧ B(x)) (2., (ιR9)) 
4. [ιxA(x)]B(ιxA(x) → [ιxA(x)]B(ιxA(x)   (ι1) 
5. ∃x∀y((A(y) ↔ x = y) ∧ B(x)) → [ιxA(x)]B(ιxA(x) (4., (ιR11)) 
6. [ιxA(x)]B(ιxA(x) ↔ ∃x∀y((A (y) ↔ x = y) ∧ B(x)) (3., 5., Def. ↔) 

 
By eliminating each ι-term from the left to the right in a given formula F 
the procedure eventually terminates. 
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5  CONCLUDING REMARKS 
 
The elimination theorem for the ι-Calculus (ιC) is intended to state a for-
mal interpretation of the phrase that definite descriptions are “incomplete 
symbols” – as Russell put it. Despite the constructive features of (ιC) it 
still needs proving – as Kripke (2005, p.1033) notes: 

“In these cases, however, I recall proving – though it really takes 
proving! – that there are no real hydras. Every path eventually terminates, 
and all are equivalent.” 
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