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Abstract

Definite descriptions are in the focus of philosophical discussion at least since
Russell’s famous paper “On Denoting”. In this paper, we present a logic with
descriptions in Russell’s spirit. The formulation, however, is closely related to
Schiitte’s development of predicate logic, i.e. the formulation of the calculus
uses positive- and negative-parts. With respect to this slightly more sophisticat-
ed formulation it is possible to formalize Russell’s convention which is origi-
nally stated in the meta-language of his theory of descriptions within our calcu-
lus. In this paper we prove an elimination theorem for this calculus.

1 INTRODUCTION

Russell’s theory of definite descriptions is an intellectual offspring of find-
ing (adequate) solutions to puzzling philosophical oddities, e.g. for Mei-
nong’s ontological jungle. In this article we focus on a calculus with de-
scriptions that is very much in the spirit of Bertrand Russell's treatment of
descriptions in the Principia Mathematica *14 (P.M.*14). However, it is
not the same. This is due to several reasons:

(a) Russell’s theory of descriptions is not focussed on the whole class
of descriptions but just on descriptions of a very simple kind.

(b) Russell does not develop his theory in a purely formal way. Es-
sential parts of it are found in the context that explains some im-
portant facts, e.g. the use of the scope-operator.

(c) The language and logic (developed below) is void of intensional
functors.



According to Russell a description has the following form:
the so-and-so

where ‘the’ is in the singular and ‘so-and-so’ is a (possibly) complex ex-
pression. (Definite) descriptions occur in two contexts — as Russell says,

e.g.

* The present King of France 1s wise.
* The present King of France exists.

Following Russell, the above statements can be formally represented as
follows:

(*14.01) [A(x)]B(xA(x)) <> IxVy((A(y) <> x =y) A B(x))
(*14.02) E'wxA(x) <> IxVy(A(y) <> x =)

Kurt Godel remarks (1944, p.126) in his contribution to the Schilpp-
volume that honours Russell:

It is to be regretted that this first comprehensive and thorough going representa-
tion of a mathematical logic and the derivation of Mathematics from it is so
greatly lacking in formal precision in the foundations (contained in *1-*21 of
Principia), that it represents in this respect a considerable step backward as
compared with Frege. What is missing, above all, is a precise statement of the
syntax of the formalism. Syntactical considerations are omitted even in cases
where they are necessary for the cogency of the proofs, in particular in connec-

7’1

tion with “incomplete symbols”.
Russell licenses the inference from (*14.01) to

(*14.101) B(ixA(x)) <> IxVy((A4(y) <> x =y) A B(x))
with the following convention:

It will be found that, in most cases in which descriptions occur, their scope is,
in practice, the smallest proposition enclosed in dots or brackets in which they
are contained. [...] For this reason it is convenient that, when the scope of an
occurrence of (1x)(¢x) is the smallest proposition enclosed in dots or other

" Interestingly, B. Russell did not respond to Gddel in the Schilpp-volume.
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brackets, in which the occurrence in question is contained, the scope need not
be indicated by “[()(¢x)].” [...] This convention enables us in the vast major-
ity of cases that actually occur, to dispense with the explicit indication of the
scope of a descriptive symbol; [...]

In the light of the quite critical remarks of Gddel, we develop in this paper
a thorough going treatment of descriptions.

At several occasions Russell points out that definite descriptions
have no meaning in isolation and that definite descriptions are incomplete
symbols. In our view the phrase “no meaning in isolation” is a semantical
thesis and is treated elsewhere (e.g. Gratzl (submitted)). In this paper I
shall focus on the phrase “incomplete symbol”, that means — according to
our understanding — that there is to each formula 4 containing a definite
description a formula B without any definite descriptions and the formulas
A and B are provable equivalent relative to a certain translation. The details
of this formal interpretation of “incomplete symbols” will be stated be-
low — in section 4.

2 LANGUAGE

The alphabet of L consists of a denumerable set of free individual vari-
ables, a denumerable set of bound individual variables, a denumerable set
of n-ary predicates variables, the logical symbols: A, v, =, V, 3, 1, [...], =,
E! and the auxiliary signs ( and ). We use as syntactical variables a, b, ¢ for
free individual variables; x, y, z for bound variables; u, v for any term and
P, 0", R", §" for any n-ary predicate variable.

2.1 Definition (Formulas and Terms of L)

[E—

Free individual variables are terms.

If ay,..., a, are terms and P" is an n-ary predicate variable, then
Pa,..., a,) is a formula.

If a, b are terms, then (a = b) is a formula.

If A is a formula, then —4 1s a formula.

If 4, B are formulas, then (4 A B), (4 v B) are formulas.

If A(a) 1s a formula, such that the bound individual variable x
does not occur 1n it, then VxA4(x) and dxA(x) are formulas.

7.  If A(a) and B(b) (a and b are not necessarily distinct) are for-
mulas such that the bound individual variable x does not occur

D

kW

357



in them, then wA(x) is a term and [wxA(x)]B(1xA4(x)) and

B(wxA4(x)) are formulas.

If wA(x) 1s a term, then E!wxA(x) 1s a formula.

9. If[wA(x)]B(xA(x)) and [1xC(x)]D(wxC(x)) are formulas, then:
[xA(x), C(x)](B(wxA(x)) A D(1xC(x))) and
[wA(x), wC(x)](B(xA(x)) v D(xC(x))) are formulas.”

10. IfwA(x, a) is a term and B(a) is a formula, then
Vy([weA(x, y]B(wA(x, y))) and y([wed(x, y]B(wA(x, y))) are
formulas.

11. Nothing else is a formula or a term.

*

The remaining connectives are defined as usual.
2.2 A brief note on E!

Russell writes in the PM on p.174 (Russell/Whitehead 1970):

When in ordinary language or in philosophy, something is said to “exist,” it is
always something described, i.e. it is not something immediately presented, like
a taste or a patch of colour, but something like “matter” or “mind” or “Homer
(meaning “the author of the Homeric poems”), which is known by description
as “the so-and-so,” and is thus of the form (1x)(¢x). Thus in all such cases, the
existence of the (grammatical) subject (1x)(¢x) can be analytically inferred from
any true proposition having this grammatical subject. It would seem that the
word “existence” cannot be significantly applied to subjects immediately given;
i.e. not only does our definition give no meaning to “Elx,” but there is no rea-
son, in philosophy, to suppose that a meaning of existence could be found
which would be applicable to immediately given subjects.

Without entering the epistemological distinction between knowledge by
acquaintance and knowledge by description we take it from this quote for
granted, that for Russell the E!-predicate can only sensibly be applied to -
terms. This is reflected in the definition of terms and formulas — condi-
tion 8.

? This clause simply allows multiple occurrences of 1—terms in the scope. Although we
shall not deal explicitly with such formulas in this article.
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2.3 Examples

The following two examples should indicate that even quite simple exam-
ples taken from natural language show that the logical structure might al-
ready have a certain complexity, e.g. 1-terms can overlap in such a way
that the bound variable of a 1-term occurs in the basis of another one. The
first example is:

* The first born child of its father inherits the farm.
I use the following symbols:

P(x, y) stands for: y is father of x

O(x, y) stands for: x is a firstborn child of z

R(x) stands for: x inherits the farm
So the the sentence ist formalized as:

R(wO(x, wP(x, y)))
The second example is:

e+ The first born child of its father inherits the fatherly farm.

This quite easily understandable sentence will be expressed in the language
developed above, by using the following symbols:

P(x, y) stands for: y is father of x
O(x, z) stands for x is a firstborn child of z

R(x, z) stands for: x inherits z
S(z, y) stands for: z is farm of y

“The first born child of its father inherits the fatherly farm.” then is formal-
1zed as:

R(xQ(x, WP(x, y)), z8(z, WP(z, )))
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2.4 Definition (Positive and negative parts of formulas)

In section 3 we shall state an extended form of a Schiitte-style calculus for
predicate logic including rules dealing with definite descriptions. Schiitte’s
formulation of the predicate calculus makes use of positive and negative
parts; those should be thought of generalized notions of antecendent (i.e.
negative parts) and and consequent (i.e. positive parts) of Gentzen’s se-
quents.

The following definition of positive and negative parts of formulas is
due to Schiitte (1960, p.11).

F is a positive part of F.

If —A is a positive part of F, then A4 is a negative part of F.

If —A is a negative part of F, then 4 is a positive part of F.

If (4 v B) is a positive part of F, then both 4 and B are positive
parts of F.

5. If (4 A B) is a negative part of F, then both 4 and B are nega-
tive parts of F.

b=

In the following presentation of (1C) we make use of subscript plus und
subscript minus: these are devices to mark positve- and negative-parts
within formulas.

3 1-CALcuLus (10)

Axioms

(1) FA., A]
(12) Fl(a = a).]
(3) Fl(a =b)-, A(a)-, A(b):]

Rules of inference

(1R1) F[A.], F[B:] = F[(4 A B).]
(1R2) F[4 ], FIB.] = F[(A v B) ]
(1R3) F[A(a).] = FI(VxA(x)]
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(1R4) F[A(a)_ ] = F] [(EIxA(x),]3

(1RS5) F[(VxA(x)).] v ~A(a) = F[(VxA(x))-]

(IR6) F[(IxA(x))+] Vv A(a) = F[(IxA(x))+]

(WR7) Fl(a=b):], G[(a=b) ] = F[...] v GI...]

(1R8) F([wxA(x)]B(xA(x)))+] = F(B(WxA(x)))+]

(1R9) FI(B(xA(x)))+] = FI(IxVY((A(Y) <> x =y) A B(x)))-]

(R10) FI(B(xA(x)))-] = FI([xA(x)]B(xA(x)))-]

(R11) FI([xA(x)]B(xA(x)))-] = FI(ExV((A(y) <> x =y) A B(x)))-]
(WR12) FI(E'xA(x))+] = FIGExVy(A() <> x =Y))+]

(IR13) F(E'WA(x))-] = FI(3xVy(A(y) <> x =Y))]

(11)-(13) and (1R1)—(1R8) are the usual axioms and rules of inference of
predicate logic with equality. The rules (1R8)—(1R13) deal with definite de-
scriptions and are formulated in such a way that Russell’s “contextual defi-
nitions” are provable.

Provability is defined as follows: (i) Every axiom is provable, and
(1) if the premises of a rule of inference are provable, then the conclusion
of this rule of inference is provable. It is easily seen that Russell’s so-called
contextual definitions are provable in (1C),. i.e. (*14.01, *14.02, and
*14.101).

4 ELIMINATION OF 1-TERMS

4.1 Definition (t-rank, rank)

The number of occurrences of the 1-symbol in a given formula is called the
t-rank (1rk) of this formula. The number of logical signs in a formula is the
rank (7k) of this formula.

4.2 Inductive definition of F'* relative to F

(1) If wk(F) =0, then F* is F.
(1) If wk(F) > 0, then:
(@) If Fis B(wxA(x)) where wA(x) is the leftmost 1-term, and
B is not of the form —C, [\xA(x)]C, [xA(x)]—=C, then F*

is (IVy((A4*() <> x =y) A B¥x))).

3 Both (1R3) and (1R4) are subject to the conditon on variables, i.e. the free individual
variable @ must not occur in the conclusion.
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(b) If Fis ElwA(x), then F* is IxVy(4A(y) <> x = ).

(c) If Fis =B(wxA(x)), where wxA(x)) is the leftmost t-term,
then F* is xVy((4*(y) <> x =y) A =B *(x)).

(d) If Fis =[wA(x)]B(xA(x)), where wxA(x) is the leftmost 1-
term, then F* is =(IxVy((4*(y) <> x =y) A B*(x))).

(e) If Fis[wA(x)]=B(xA(x)), where 1xA(x) 1s the leftmost -
term, then F™* is IxVy((4*(y) <> x =) A =B*(x))

(f) If Fis [ixA(x)]B(xA(x)), where wxA(x) is the leftmost 1-
term, then F* is AxVy((4*(y) <> x =y) A B*(x))

4.3 Elimination Theorem

If C) = F with wk(F) > 0, then there is a formula F* relative (to the
inductive definition stated above), such that UC) - F <> F™*.

In effect this theorem expresses that everything that can be said with the
aid of 1-terms can be stated in predicate logic with equality (lets call it (C)
without any loss, i1.e. (1C) is a conversartive extension of (C). However, the
reduced formula, 1.e. the formula obtained by elimination of t-terms, may
be quite cumbersome to read.

Proof sketch: The proof is an induction on the number of t-terms, 1.e. 1-
rank, of a formula F. If wk(F) = 0, then there is nothing to prove. If wk(F)
> (), then several cases (according to the translation *) have to be consider-
ed. This proof-step — although every step is quite easy to prove — will be
illustrated with an example:

(1O) - [wAMX)]B(wxA(x) <> IxVy((A4(y) <> x = y) A B(x)) such that
wA(x) is the left-most 1-term.

1. [wA(x)]B(xA(x) — [wA(x)]B(wxA(x) (1)
2. [A(x)]B(kxA(x) — B(xA(x) (1., (IR8))
3. [wA(x)]B(xA(x) = IxVy((4 (y) & x=y) A B(x)) (2., (1R9))
4. [xA(x)]B(xA(x) = [wA(x)]B(xA(x) (1)

5. 3IxVY((A(Y) &> x =) A B(x)) = [xd(x)]B(wxA(x) (4., lR11))
6. [xA(x)]B(xA(x) <> IxVy((4 (y) <> x=y) A B(x)) (3.,5., Def. <)

By eliminating each t-term from the left to the right in a given formula F
the procedure eventually terminates.
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5 CONCLUDING REMARKS

The elimination theorem for the 1-Calculus (1C) 1s intended to state a for-
mal interpretation of the phrase that definite descriptions are “incomplete
symbols” — as Russell put it. Despite the constructive features of (1C) it
still needs proving — as Kripke (2005, p.1033) notes:

“In these cases, however, | recall proving — though it really takes
proving! — that there are no real hydras. Every path eventually terminates,
and all are equivalent.”
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