Irreducible Complexity
in Pure Mathematics

GREGORY CHAITIN, YORKTOWN HEIGHTS, NY

1. Introduction

In 1956 an article by Ernest Nagel and James R. Newman entitled “Gddel’s
proof” was published in Scientific American, and in 1958 an expanded ver-
sion of this article was published as a book with the same title. This is a
wonderful book, and it’s still in print.

At the time of its original publication, I was a child, not even a teenager,
and I was obsessed by this little book. I remember the thrill of discovering
the newly published Godel’s Proof in the New York Public Library. I used
to carry it around with me and try to explain it to other children.

Why was I so fascinated? Because Kurt Godel uses mathematics to
show that mathematics itself has limitations. How can this be? How could
reason have limits? In fact, Godel refutes the position of David Hilbert, who
about a century ago declared that there was a theory of everything (TOE)
for math, a finite set of principles from which one could mindlessly deduce
all mathematical truths by merely tediously following the rules of symbolic
mathematical logic. Such a theory is called a formal axiomatic mathemati-
cal theory.

My attempt to understand Godel’s proof took over my life, and almost-
half a century later, I have just finished writing a little book of my own. It’s
my own version of Nagel and Newman’s Godel’s Proof, in which every-
thing is done completely differently. The only thing the two books have in
common is their common goal of providing an auto-critique of mathemati-
cal methods and the fact that they are both small books.

Why did I have to completely rewrite Nagel and Newman? Because
their exposition and Godel’s original 1931 proof are both based on the two
self-referential paradoxes: “This statement is false” and “This statement is
unprovable.”1

262

My approach 1s completely different. It’s based on measuring informa-
tion and on showing that some mathematical facts have no redundancy and
cannot be compressed into any mathematical theory because these facts are
too complicated, in fact, infinitely complex. This new approach suggests
that what Godel originally discovered was just the tip of the iceberg and that
the problem is much bigger than most people think. And, amazingly
enough, I have recently discovered that these ideas can be traced back to
G.W. Leibniz in the late 17th century.

In this essay I’'m going to try to outline some of these ideas. Please bear
with me, since it is not really possible to present all the mathematical details
in a short essay. Instead I’ll just try to convey the general flavor of what is
going on, using vague but hopefully suggestive analogies and much hand-
waving. If you want to know more, you should read my new book, Meta
Math!, which is as non-technical as I could make it, but takes the time to do
things right. And there are a lot of other books on this subject, by me and by
other people.

My story begins in 1686 with Leibniz’s philosophical essay Discours de
métaphysique, in English, Discourse on Metaphysics, where Leibniz dis-
cusses how we can distinguish between facts that follow a law, and lawless,
irregular, chaotic facts. How can we do this?

Leibniz’s idea is very simple and very profound. It’s in section VI of the
Discours. 1t’s the observation that the concept of law becomes vacuous if
arbitrarily high mathematical complexity is permitted, for then there is
always a law. Conversely, if the law has to be extremely complicated, then
the data is irregular, lawless, random, unstructured, patternless, and also
incompressible and irreducible. A theory has to be simpler than the data that
it explains, otherwise it doesn’t explain anything.

2. Algorithmic Information

We live in an age of digital information: software, DNA, DVD’s, digital
cameras, etc. And the basic idea of algorithmic information theory is to
look at the size in bits of computer software, the minimum possible size,
without caring at all about the speed of this software.

Here is the basic insight, the basic model. It’s a software view of sci-
ence: A scientific theory is a computer program that computes our observa-
tions, the experimental data. And these are our two fundamental principles,

263

originally due to William of Occam and to Leibniz: The simplest theory is
best (Occam’s razor). This means that the smallest program that calculates
the observations is the best theory. Furthermore, if a theory is the same size
in bits as the data it explains, then it’s worthless, because there 1s always
such a theory (Leibniz). A theory is a compression of the data, comprehen-
sion 1s compression. And you compress things into computer programs,
into concise algorithmic descriptions. The simpler the theory, the better you
understand something. A very complex theory means something is wrong.

Then you define the complexity or, more precisely, the “algorithmic
information content,” of a set of facts (or any other digital object) to be the
size in bits of the smallest program for calculating them (or it), no matter
how slow. And a stream of bits is irreducible (also called “algorithmically
random”) if its complexity i1s equal to its size, in other words, if there is no
good theory for it, no program for calculating it that is smaller than it is. In
other words, such bit streams are incompressible, they have no redundancy;
the best thing to do is to transmit them directly. You gain nothing from
doing what DVD players and digital television attempt to do, which is to
transmit instructions for reassembling the picture frames rather than the pic-
tures themselves.

How close did Leibniz come to these modern ideas? Well, very close.
He had all the key elements, he just never connected them. He knew that
everything can be represented with binary information, he built one of the
first calculating machines, he appreciated the power of computation, and he
discussed complexity and randomness. All the key components of the mod-
ern theory of algorithmic information.

And if he had put all of this together, he might have been able to realize
that one of the key pillars of his philosophical position can be severely
questioned. For Leibniz, like Spinoza and Descartes, was a rationalist, he
believed in the power of reason, he followed that continental philosophical
tradition rather than the British school of empiricism, which is more
impressed with facts than with thoughts and theories.

And one of the key elements of Leibniz’s philosophy is what he called
“the principle of sufficient reason,” that everything happens for a reason. In
other words, if something is true, it must be true for a reason. Hard to
believe sometimes, in the confusion and chaos of daily life, in the contin-
gent ebb and flow of human history. Ah, said Leibniz, even if we cannot
always see a reason, perhaps because the chain of reasoning is long and

264

subtle, God can see the reason, it’s there! The universe is rational. In fact,
this is actually an idea that comes from the ancient Greeks.

Mathematicians certainly believe in reason and in Leibniz’s principle of
sufficient reason, because they always try to prove everything. No matter
how much computational or experimental evidence there is for something,
like the celebrated Riemann hypothesis or the P # NP conjecture of theo-
retical computer science, mathematicians demand a proof, nothing less will
satisfy them!

And here 1s where the concept of algorithmic information can make its
surprising contribution to epistemology, to the philosophical discussion of
the origins and limits of knowledge. What if we can find mathematical facts
that are true for no reason, where would that leave our philosophy, what
would it do to us?

In fact we can find irreducible mathematical facts, an infinity of them.
Later in this essay I’ll show you how. I’'ll exhibit an infinite irreducible
stream of yes/no, true/false mathematical facts. These facts turn out to be
not only computationally irreducible, they are even logically irreducible. In
essence, the only way to prove such mathematical facts, is to directly
assume them as new mathematical axioms, without using reasoning at all.

The concept of “axiom” is closely related to the idea of logical irreduc-
ibility. Axioms are mathematical facts that we take as self-evident and do
not attempt to prove from simpler principles. All formal mathematical theo-
ries start with axioms, and then deduce the consequences of these axioms,
which are called its theorems. That is how Euclid did things in Alexandria
two millennia ago, and his treatise on geometry is the classical model for
mathematical exposition, one of the all-time best-sellers of the Western
World, even though Euclid’s Elements is no longer taught in high-school
the way that it was when [was a child.?

In ancient Greece if you wanted to convince your fellow citizens to vote
with you on some issue, you had to reason with them. Which I guess is how
they came up with the idea that in math you had to prove things rather than
just discover them experimentally, which is all that it appears that previous
cultures in Mesopotamia and Egypt did. And using reason has certainly
been an extremely fruitful approach, leading to modern mathematics and
mathematical physics and all that goes with it, including, eventually, the
technology for building that extremely logical and mathematical machine,
the computer.

265

So am I saying that in a way all this crashes and burns?! Yes, in a sense
[am. My counter-example illustrating the limited power of logic and rea-
son, my source of an infinite stream of irreducible/unprovable mathematical
facts, is the number that I call Q, capital omega, the last letter of the Greek
alphabet. O-mega as opposed to o-micron, which means big-oh, not little-
oh. Omega is typically used in the expression “from alpha to omega,” from
the beginning to the end, or to denote something inaccessible or final, such
as the omega point or the omega man.

So now let me tell you about Q and why it provides us with an infinite
stream of irreducible bits and unprovable facts.

3. The Number O

In a famous paper published in 1936 in the Proceedings of the London
Mathematical Society, Alan Turing began the computer age by presenting a
mathematical model of a simple general-purpose programmable digital
computer. He then showed that there was something that no algorithm could
accomplish and no mathematical theory could ever decide, namely whether
or not a selfcontained computer program will eventually halt. This 1s Tur-
ing’s famous halting problem.

Of course, by running the program you can eventually discover that it
halts. The problem, and it is an extremely fundamental one, is to decide
when to give up. There is no general solution, even though a great many
special cases can in fact be solved. And Turing showed in 1936 that there
will never be a general solution; it’s impossible.3

Well, that’s the first step on the road to Q.

The next step, which is often a fruitful approach, is to forget about indi-
vidual cases of this problem, and consider the statistical ensemble. In other
words, let’s ask if a program chosen at random ever halts. The probability
of having that happen is my Q number.

How precisely do you go about picking a program at random? Well,
what you do is that every time your computer asks for the next bit of the
program, you just flip a coin. So Q is just the probability that a machine
will eventually do something. Not a big deal!

For those of you who want to know more about how to define Q, let me
remark that Q is actually the sum of 1/(two raised to the power which is the
size in bits of each program that halts). In other words, each N-bit program

266

that halts contributes precisely 1/2" to the sum that defines Q. Because if
each bit of a program is chosen using an independent toss of a fair coin,
head, 1, tails, 0, then the probability of getting any individual N-bit program
is precisely 1/2¥. And we want to know the total probability of all the pro-
grams that halt.

In other words, each N-bit program that halts adds a 1 to the Nth bit in
the binary expansion of Q. Do this for all programs that halt, and you’d get
the precise value of Q 4 This may make it sound like you can calculate Q
with arbitrarily great accuracy, just as if it were /2 or the number . How-
ever this is actually impossible, because in order to do it you’d have to solve
Turing’s halting problem. In fact, in a sense the halting probability Q is a
maximally uncomputable number.

So Q cannot be computed, but it can be defined mathematically as a
specific number. For this to work it is crucial that no extension of a valid
program 1s a valid program, which guarantees that the sum over all pro-
grams that halt defining Q converges to a value between zero and one
instead of diverging to infinity. Such programs are called self-delimiting,
they’re the ones for which a halting probability can be defined. Also, I
should mention that the precise numerical value of Q depends on your
choice of computer programming language, but Q’s surprising properties
aren’t at all affected by this choice.

Okay, those are just details.

The next thing that’s crucial for me to tell you is how you get an infinite
irreducible stream of bits out of Q.

Well, that’s not difficult. QO is a probability, which has to be between
zero and one. Zero would mean no program halts, one would mean all of
them do. Q is actually greater than zero and less than one, because some
programs halt and some don’t. Then write, or more precisely, imagine writ-
ing Q out in binary, in base-two notation. Just like the number = is
3.1415926. . . with an infinite sequence of digits, Q, if you knew its precise
numerical value, and if you wrote that out in binary, would give you some-
thing like 0.1110100. . . Let’s forget about the initial 0 before the decimal
point, and just consider the infinite stream of bits that comes after the deci-
mal point.

Well, it turns out that these are our irreducible mathematical facts, this
is an infinite irreducible stream of bits. The irreducible math facts are
whether each individual bitis a 0 or a 1. There’s no way to know that. These

267

turn out to be facts that are true for no reason, that are unprovable unless
you adopt them as new axioms.

Why? Well, it’s because Q squeezes all the redundancy out of individ-
ual cases of Turing’s halting problem. Q is the most compact, the most
compressed way of giving you the answer to all cases of the halting prob-
lem. In fact, knowing the first N bits of @ would in principle enable you to
decide whether or not each program up to N bits in size ever halts. From this
it follows that you need an N-bit program in order to be able to calculate N
bits of Q. From this it also follows that you need N bits of axioms in order
to be able to determine N bits of Q2. In other words, Q is logically as well as
computationally irreducible. Can you manage to see why? It’s certainly not
obvious.’

I remember realizing that this had to be the case for the first time when I
was flying back to the IBM lab in NY after a visit to a university in late
1973 or early 1974. It was a beautiful day, and at that precise moment I was
staring out the window at the Pentagon in Washington DC.

And the fact that Q i1s irreducible immediately implies that there cannot
be a theory of everything (TOE) for all of mathematics. Why?

The basic intuition is that once you squeeze all the redundancy out of
anything, what you are left with is irreducible, and then whether each bit is
0 or 1 is a fact that in a sense 1s “true for no reason,” it’s a complete sur-
prise, it’s totally unexpected. So the bits of QO are irreducible mathematical
truths, they are mathematical facts that cannot be derived from any princi-
ples simpler than they are, and there are an infinity of them, an infinity of
bits of Q2. Math therefore has infinite complexity, whereas any individual
TOE only has finite complexity, and cannot capture all the richness of the
full world of mathematical truth, only a finite part of it.

But what does it all mean? This doesn’t mean that proofs are no good.
And I’m certainly not against reason. Just because some things are irreduc-
ible, doesn’t mean we should give up using reasoning.

But perhaps sometimes you shouldn’t try to prove everything. Some-
times mathematicians should just add new axioms. That’s what you’ve got
to do if you are faced with irreducible facts. The problem is knowing that
they are irreducible!

In a way, saying something is irreducible is giving up, saying that it
can’t ever be proved. Mathematicians would rather die than do that, con-
trasting sharply with their physicist colleagues, who are happy to be prag-
matic and to use plausible reasoning instead of rigorous proof. But remem-

268

ber, to avoid an infinite regress, you’ve got to stop somewhere, you can’t
always prove everything from something else. And these irreducible princi-
ples, which are called axioms, have always been a part of mathematics, they
are not something new. I’m just saying that there are a lot more of them out
there than people suspected.

Physicists are certainly willing to add new principles, new scientific
laws, in order to understand new domains of experience. Should mathema-
ticians do the same thing that physicists do and add new axioms because
they are pragmatically justified, even though they are not at all “self-evi-
dent?” This raises what I think is an extremely interesting question.

4. Is Math like Physics?

I don’t want to get into a long discussion about this, because it’s very, very
controversial, but in fact there are a few of us who do think that math is like
physics, sort of.

One of the people who does, or did, is Imre Lakatos, who left Hungary
in 1956 and worked on philosophy in England. There Lakatos came up with
a great word, quasi-empirical. That’s the word that I use to describe my
philosophical position on all of this: I think that math is quasi-empirical. In
other words, I feel that math is different from physics, but perhaps not as
different as most people think.

In science you compress your experimental observations into scientific
laws, and in math you compress your computational experiments into math-
ematical axioms. What counts 1s the compression, that’s what understand-
ing 1s. It’s the fact that you’re putting just a few ideas in, and getting a lot
more out; you’re using them to explain a rich and diverse set of physical or
mathematical experiences.6

If Hilbert had been right, math would be a closed system, with no new
ideas coming in. There would be a static closed finished theory of every-
thing for all of math, and this would be like a dictatorship. In fact, for math
to progress you actually need new ideas and plenty of room for creativity, it
does not suffice to mindlessly and mechanically grind away deducing all
the possible consequences of a fixed number of well-known basic princi-
ples. And I much prefer an open system, I don’t like rigid, totalitarian,
authoritarian ways of thinking. (For more on a quasi-empirical view of
math, see Tymoczko 1998.)

269

To end on a personal note, I’ve lived in both the world of math and the
world of physics, and I never thought there was such a big difference
between these two fields. It’s a matter of degree, of emphasis, not an abso-
lute difference. After all, math and physics co-evolved. Mathematicians
shouldn’t isolate themselves. They shouldn’t cut themselves off from rich
sources of new ideas.

References

J. Borwein and D. Bailey. Mathematics by Experiment. A. K. Peters, 2004.

J. Borwein, D. Bailey and R. Girgensohn. Experimentation in Mathematics.
A. K. Peters, 2004.

G. Chaitin. Meta Math!: The Quest for Omega. Pantheon Books, 2005.

E. Nagel, J. R. Newman and D. R. Hofstadter. Godel s Proof. (Revised Edi-
tion) New York University Press, 2001.

T. Tymoczko. New Directions in the Philosophy of Mathematics. Princeton
University Press, 1998.

Notes

1. Let’s start with the paradox of the liar: “This statement is false.” This statement is true if
and only if it’s false, and therefore is neither true nor false.

Let’s consider “This statement is unprovable.” If it is provable, then we are proving a
falsehood, which is extremely unpleasant and is generally assumed to be impossible. The
only alternative left is that this statement is unprovable. Therefore it’s in fact both true and
unprovable, and mathematics is incomplete, because some truths are unprovable.

Godel’s proof constructs self-referential statements indirectly, using their Godel
numbers, which are a way to talk about statements and whether they can be proved by
talking about the numerical properties of very large integers that represent mathematical
assertions and their proofs.

And Godel’s proof actually shows that what is incomplete is not mathematics, but
individual formal axiomatic mathematical theories that pretend to be theories of
everything, but in fact fail to prove the true numerical statement “This statement is
unprovable.”

The key question left unanswered by Godel: Is this an isolated phenomenon, or are
there many important mathematical truths that are unprovable?

2. There are many well-known examples of controversial axioms, including:
— the parallel postulate in Euclidean geometry,
— the law of the excluded middle in logic,
— the axiom of choice in set theory.

270

But what are examples of potential new axioms?

Elsewhere the author of this essay has proposed that some variant of the Riemann
hypothesis might be pragmatically justified as a new axiom due to its diverse applications
in number theory.

But there are much better examples of new axioms. Here are two that have emerged by
group consensus in the past few years:

— the axiom of projective determinacy in set theory,
— the P # NP conjecture regarding time complexity.

The latter example is particularly interesting as it has many important applications, as I’1l
now explain.

Most theoretical computer scientists are concerned with time complexity — the time
required to compute things — not with program-size (or informational) complexity as in
this essay. And at the present time this community believes that many important problems
require an amount of time that necessarily grows exponentially, even though no one can
prove it.

An example of this presumed exponential growth is determining whether or not a
logical expression involving Boolean connectives is a tautology, that is, true for all
possible assignments of truth values to its variables. This can be done via truth tables in an
exponential amount of time by looking at all possible combinations of truth values. That
this exponential time growth is necessarily the case is a consequence of the P # NP
hypothesis, currently believed and freely used by almost all people working in the field of
time complexity.

A key step in showing that incompleteness is natural and pervasive was taken by Alan
Turing in 1936 when he demonstrated that there can be no general procedure to decide if a
self-contained computer program will eventually halt.

Why not? Well, let’s assume the opposite of what we want to prove, namely that there is
in fact precisely such a general procedure H, and from this we shall derive a contradiction.
This is what’s called a reductio ad absurdum proof.

So assuming the existence of H, we can construct the following program P that uses H
as a subroutine. The program P knows its own size in bits N (there is certainly room in P
for it to contain the number N) and then using H, which P contains, P takes a look at all
programs up to a hundred times N bits in size in order to see which halt and which don’t.
Then P runs all the ones that halt in order to determine the output that they produce. This
will be precisely the set of all digital objects with complexity up to a hundred times N.
Finally our program P outputs the smallest positive integer not in this set, that is, with
complexity greater than a hundred times N, and then P itself halts.

So P halts, P’s size is precisely N bits, and P’s output is the first positive integer having
complexity larger than a hundred times A, that is, that cannot be produced by a program
whose size is less than or equal to a hundred times N bits. However P has just produced
this highly complex integer as its output, and P is much too small to be able to do this,
because its size is only N bits, which is much less than a hundred times N. Contradiction!
Therefore a general procedure H for deciding whether or not programs ever halt cannot
exist, for if it did then we could actually construct this paradoxical program P using H.

Finally Turing points out that if there were a TOE that always enables you to prove that
an individual program halts or to prove that it never does, whichever is the case, then by
systematically running through all possible proofs you could eventually decide whether

271

individual programs ever halt. In other words, we could use this TOE to construct H,
which we have just shown cannot exist. Therefore there is no TOE for the halting
problem.

Let’s look at an example. Suppose that the computer that we are dealing with has only
three programs that halt, and they are the bit strings 0001, 000001 and 000011. These
programs are, respectively, 4, 6 and 6 bits in size. And the probability of getting each of
them by chance is precisely 1/24,1/2% and 1/2°, since each particular bit has probability 1/
2. So the value of the halting probability for this particular computer is precisely
LoLloLoLly2 Lyl o o000

4 46 A6 o4 6 4
2 2

Q =

N
N
\S]
N
N

We’re adding a 1 bit into the 4th, 6th and 6th bits of this (2. Note that we’ve gotten a
carry out of the 6th bit position after the decimal point. Adding a 1 bit twice into the 6th
bit position yields a 0 bit there and a 1 bit in the 5th bit position. The final value of €2 is
the probability of getting one of these three programs by chance.

Here’s an embarrassing question. What if we have a computer for which the two 1-bit
programs 0 and 1 both halt? Then we would have
o=1,1_

2 2

This is embarrassing because 1 said that €2 had to be greater than zero and less than
one. What is going on here? Well, remember that I said that programs must be self-
delimiting? This means that the computer decides by itself when to stop asking for more
bits, each of which is determined by an independent toss of a fair coin.

The fact that programs are self-delimiting implies that no extension of a valid program
is a valid program. Therefore if 0 and 1 were both programs that halt, then no other
program could ever halt, and our computer would only be good for running two programs.
That’s not much of a computer! The halting probability €2 is only of interest, it only has
surprising properties, when it is the halting probability of what is called a “universal”
computer. That’s a general-purpose computer that can run all possible algorithms, of
which there are infinitely many.

This is an example of how the fact that no extension of a valid program is a valid
program keeps €2 from being greater than 1.

Why is Q2 irreducible/incompressible?

Well, let’s assume that we are given the first N bits of the base-two numerical value of
(2. So we know (2 with accuracy one over two to the N, in other words, with N-bit
accuracy. Our strategy is to show that this would tell us a lot about Turing’s halting
problem, which in fact we already know cannot be solved.

More precisely, if we can use the first N bits of €2 to solve the halting problem for all
programs up to N bits in size, this will show that the first N bits of €2 cannot be produced
by a program substantially less than N bits in size nor deduced using a formal axiomatic
math theory with substantially less than N bits of axioms.

Why does knowing N bits of €2 enable us to solve the halting problem for all programs
up to N bits in size? We can do this by performing a computation in stages, one for each K

272

=1, 2, 3, ... At stage K run every program up to K bits in size for K seconds. Then
compute a lower bound € g on the halting probability €2 based on all the programs that
halt that you discover at stage K. This will give you an infinite list of lower bounds €2 g on
the actual value of ().

These lower bounds on €2 will eventually get closer and closer to the actual value of
€2. And as soon as the first N bits are correct, you know that you’ve encountered every
program up to N bits in size that will ever halt, for otherwise the lower bounds on 2
would then become larger than the true value of {2, which is impossible.

It should be mentioned that the stage K at which the first N bits of €2 are correct grows
immensely quickly, in fact, faster than any computable function of V.

For how far you can get in math without bothering with proofs, see Borwein and Bailey
2004, Borwein, Bailey and Girgensohn 2004.

Experimental mathematics is the idea of discovering new mathematical results by looking
at many examples using a computer. While this is not as persuasive as a short proof — but
it may be more convincing than a long and extremely complicated proof — for some
purposes it is quite sufficient.

Such calculations, checking many diverse examples of a mathematical problem, are
usually done using a symbolic programming language such as Mathematica or Maple, or
using a numerical programming language such as MATLAB.

In the past this approach was defended with great vigor by George Pélya and by Imre
Lakatos, believers in heuristic reasoning and in the quasi-empirical nature of mathematics.

In this generation, experimental mathematics has been promoted most forcefully by Jon
Borwein and David Bailey, authors of a two-volume treatise on the power of experimental
methods. Another eminent practitioner of experimental math is my IBM colleague Benoit
Mandelbrot, of fractal fame. This methodology is also practiced and justified in Stephen
Wolfram’s A New Kind of Science.

Contemporary mathematicians are also fortunate to have a journal, Experimental
Mathematics, where they can publish their numerical observations and conjectures.

Extensive computer calculations can be extremely persuasive, but do they render proof
unnecessary?! Yes and no. In fact, they provide a different kind of evidence. In important
situations, I would argue that both kinds of evidence are required, as proofs may be
flawed, and conversely computer searches may have the bad luck to stop just before
encountering a counter-example.

