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A Closer Look at Non-Unique Factorization
via Atomic Decay and Strong Atoms

Scott T. Chapman and Ulrich Krause

Abstract. Let D be an integral domain and x an irreducible (or atom) of D. We call x a strong
atom of D if every irreducible divisor of x¥ fork a positive integer, is an associate of x. If x is
not a strong atom, then there is a factorization of x of the form x* = xy -+ x,, where k is mini-
mal and each x; is irreducible and not associated to x. In this case we say that x admits atomic
decay with respect to x1, . .., x,. In this paper, we consider various implications of atomic de-
cay in integral domains. We characterize strong atoms in a general integral domain in terms of
a separation property involving prime ideals. We then use two classic examples from algebraic
number theory to illustrate how atomic decay effects factorization properties in general. While
we show that atomic decay behaves in a relatively mild manner in Z[+/—5], we also show that
its effect is much more dramatic in the subring Z[51] of the Gaussian integers Z[i].
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1 Introduction

In a first course in Abstract Algebra (such as one taught from [5]), the theory of inte-
gral domains culminates with the study of the factorization of elements into products
of irreducible elements. Of particular interest in such a discussion are two types of
elements. If D is an integral domain and x is a nonzero nonunit of D, then

(i) x is prime if whenever x divides yz with y and z in D, then either x divides y
or x divides z;

(i1) x is irreducible (or an atom) if whenever x = yz with y and z in D, then either
y or z is unit of D (a divisor of 1).

An elementary argument shows that a prime element must be irreducible, but the con-
verse fails (see equation (x) and its accompanying description in Section 4). Moreover,
it is easy to verify that a prime element p has the nice property that any atom which
divides a power pk of p must be an associate of p. We call an atom which has this
property a strong atom (in the literature, these atoms have also been called absolutely
irreducible [1] or [6, Definition 7.1.3], or completely irreducible [12]). An atom which
is not strong must have a power which is divisible by a nonassociated atom. That is,
powers of atoms can decay into other atoms, a phenomenon we refer to as atomic
decay. More precisely, we have the following definition.
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Definition 1.1. Let D be an integral domain and x an atom of D. We call x a strong
atom of D if each irreducible divisor of x¥ (where k is a natural number) is an associate
of x. If x is not a strong atom and xk = X1 -+ X, where none of the atoms x1, ..., Xy
are associates of x and k, n > 2, then we say that x admits atomic decay with respect
to X1,...,Xp.

A prime element is, of course, a strong atom, but the converse fails (see Proposi-
tion 4.1). Both prime elements and strong atoms play their roles in regard to unique
factorization in an integral domain D. Recall that D is a unique factorization domain
(also called a UFD or a factorial domain) if each nonzero nonunit of D factors into a
(finite) product of atoms which is unique up to order of associated factors. It is eas-
ily verified, for an atomic domain D (i.e., a domain where each nonzero nonunit is a
product of atoms), that D is a UFD if and only if every atom is prime. Moreover, as
we shall later see, the ring of integers of an algebraic number field is a UFD if and only
if each atom is a strong atom. Therefore, for these rings, we can consider nonunique
factorization as being rooted in atomic decay. We will demonstrate in this case that
some power of any nonzero nonunit can be factored by atomic decay into strong atoms
in a unique way (up to order and associates of factors). This can be viewed as a way
of restoring uniqueness without leaving the domain or the level of elements.

We break the remainder of our paper into 5 Sections. In Section 2 we characterize
for a general integral domain D strong atoms using a separation property involving
prime ideals. This allows us to describe, under certain conditions, strong atoms by
powers of prime ideals. Section 3 deals with the ring of integers of an algebraic num-
ber field for which the conditions in Section 2 are met. Using atomic decay, we obtain
the above mentioned factorization of powers of elements into strong atoms which is
essentially unique. From this we draw conclusions which characterize various factor-
ization properties in terms of the decay rate of atoms. In Section 4 we discuss in detail
an example within the domain Z[+/—5], well known since the time of R. Dedekind,
where unique factorization breaks down. Atomic decay works in a relatively mild man-
ner in that all atoms admit a finite and unique decay. By taking squares, two different
factorizations of an element reveal hidden uniqueness. We also relate strong atoms to
the ideal numbers of E. E. Kummer as viewed by E. Hecke [7]. In Section 5 we con-
sider the failure of uniqueness in the subring Z[5:] of the Gaussian integers Z[t] which
appears at first seemingly simpler than Z[+/—5]. Atomic decay in this case, however,
is much more dramatic. The decay of some atoms never reaches strong atoms and
the powers of a single atom are divisible by infinitely many nonassociated atoms. In
Section 6 we conclude with some remarks and questions. We ask, for example, if there
is a direct way to check whether a given atom is strong. One goal in our paper is to
use tools as elementary as possible. Hence, the examples presented are appropriate for
students with a limited background in Abstract Algebra. To better facilitate this, we
make use of algebraic number rings, where the reader need only have knowledge of
the basic facts of ideal theory, which we explicitly state. Readers who desire a deeper
or more technical analysis of the theory of nonunique factorizations, are directed to
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the well-known monograph of Geroldinger and Halter-Koch [6]. The authors greatly
acknowledge comments on an earlier draft of this paper by Alfred Geroldinger, Nathan
Kaplan and William W. Smith.

2 Strong Atoms and Prime Ideals

To later describe atomic decay in algebraic number rings, we first analyze strong atoms
within the common theory of ideals. We remind the reader of some basic notions.
Let D be an integral domain. A subset I of D is called an ideal if I is an additive
subgroup of D which is closed under the multiplication by elements from D. For
x € D, (x) ={rx | r € D} is the principal ideal generated by x. If 1 € (x), then x
is called a unit. If (x) = (y), then the elements x and y are associates. An ideal P
is called a prime ideal if P # D and whenever ab € P for a and b in D, then either
a € Porb e P. Anideal M is called a maximal ideal if M # D and the only ideals
containing M are M and D. It is easy to show that a maximal ideal is a prime ideal,
but not conversely [5, Theorems 14.3 and 14.4]. If 7 and J are two ideals of D, then

1J = {Zaib,' |ai € [ and b; eJ}
i

is another ideal of D called the product of I and J. The product /" of n copies of the
ideal I is the nth power of I. For an ideal I of D, the set

rad(/) = {x € D | x"* € I for some n € N}

is again an ideal called the radical of I.
For any integral domain D, the following lemma establishes relationships between
strong atoms and prime ideals.

Lemma 2.1. Let D be an integral domain and x € D an atom.

(1) The atom x is a strong atom if and only if x can be separated from any non-
associated atom y by a prime ideal P in the sense that x ¢ P buty € P.

(i) If (x) = M¥* for some maximal ideal M and k € N, then x can be separated
by a prime ideal from every non-associated atom y with (y) a product of prime
ideals.

(iii) Let x be a strong atom and (x) a product of prime ideals such that for at least
one prime factor P there exists an atom y such that (y) = P™ for some m € N.
Then (x) = P™.

Proof. (i) (=) Let x be a strong atom, S = {x* | k € No} and suppose S N (y) # @
for an atom y non-associated to x. Then there exists r € D and k € Ny with xk = yr.
Since x is a strong atom it follows that x and y are associates. This is a contradiction
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and we must have that S N (y) = @. By Zorn’s Lemma, there exists an ideal P which
is maximal with respect to (y) € P and S N P = @. We show that P is a prime
ideal. Suppose ajay € P witha; € D and a; ¢ P fori = 1,2. Then for the
smallest ideal (P, a;) containing P and a;, we have fori = 1,2 that P < (P, a;) and
(P,a;)NS # 0. Thus, there exists; € S,r; € D and b; € P suchthats; = b; +r;a;
fori = 1,2. We obtain

5152 = (b1 + r1a1)(b2 + r2az) = b1ba + biraaz + barvay + rirzaias.

Since aya, € P it follows that 5155 € P. Therefore S N P # @ which is a contradic-
tion and hence P is a prime ideal. Obviously y € P and x ¢ P since S N P = 0.

(<) Assume x can be separated from every nonassociated atom y. Let x”* = yz for
some n € N where y is an atom and z € D. If y is not an associate of x, then y € P
and x ¢ P for some prime ideal P. This implies x” € P but x ¢ P, a contradiction.

(ii) Suppose, for every prime ideal Q, y € Q implies x € Q. We show that y must
be associated to x. By assumption (y) = Pj --- P; for prime ideals P;. Since y € P;,
we have x € P; and, hence, M¥ = (x) € Piforalli.If p € M,thenpk e Mk c p;
and, hence, p € P;. Thatis, M C P; foralli. Since M is maximal we have M = P;
forall i. Thus, (x) = M¥ and (y) = M"'. If k <1, then (y) € (x) and if k > [, then
(x) € (¥). In any case, since x and y are atoms, they must be associated.

(iii) Let x be a strong atom with (x) = Py --- Pg and P/ = (y) forsomei,m € N
and atom y. If y € Q for some prime ideal Q then P/” C Q and, hence, P; C Q.
Thus, (x) € Q and x € Q. Since x is a strong atom, y has to be associated to x by
property (i). Therefore, (x) = (y) = P/". O

As Lemma 2.1 indicates, there is a strong connection between the ideal theory of
an integral domain and the factorization properties of its elements. We weigh this
more carefully by considering three different ideal theoretic conditions on an integral
domain D:

(A) For every atom x € D there exist prime ideals Py,..., Py of D such that (x) =
Py Pp.

(B) For every nonzero prime ideal P of D, there exists a positive integer m(P) such
that P"(P) = (y) where y is an atom of D.

(©) Each nonzero prime ideal P of D is maximal.

Using these conditions, we obtain in Theorem 2.2 relationships between a strong atom
x and its resulting principal ideal (x). In domains which satisfy conditions (A), (B),
and (C), the relationships will all be equivalent, a key fact for our work in Section 3.

Theorem 2.2. For an atom x in an integral domain D consider the following proper-
ties.

(a) The ideal (x) is a power of a maximal ideal.
(b) The ideal rad(x) is a maximal ideal.
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(c) The atom x is a strong atom.
(d) The ideal (x) is a power of a prime ideal.
In an integral domain D the following relationships hold.
@ (a) = (D).
(ii) If D satisfies (C), then (d) = (a).
(iii) If D satisfies (A), then (b) = (a) = (¢).
@iv) If D satisfies (A) and (B), then (c) = (d).
Hence, if D satisfies (A), (B) and (C), then conditions (a)—(d) are equivalent.

Proof. () If y € rad(x), then y" € (x) = M k < M for some maximal ideal M.
Since M must be a prime ideal, we have that y € M. Conversely, y € M implies
yk € M* = (x) and, hence, y € rad(x). Thus (a) = (b).

The proof of (ii) is obvious.

(iii) Suppose that for each atom y there are prime ideals Py, ..., Py such that (y) =
Py--- Pr. We show that (b) = (a) = (c). Let rad(x) = M be a maximal ideal.
By assumption, (x) = Pj--- Py with prime ideals P;. If y € M = rad(x), then
y" € (x) C P;and y € P;. Therefore M C P; forall 1 <i < k. M a maximal ideal
implies P; = M foralli and (x) = M k This proves (b) = (a). Furthermore, let
x)=M k where M is a maximal ideal. From Lemma 2.1 (i1) and (1), it follows that
X is a strong atom.

(iv) We note that (c) = (d) follows from Lemma 2.1 (iii). The final statement now
easily follows. a

3 Atomic Decay in the Ring of Integers of an Algebraic
Number Field

The relationship between strong atoms and ideals given in Theorem 2.2 for integral
domains in general becomes particularly neat for the special class of algebraic number
rings. First we review some basic notation. An (algebraic) number field is a field
K = Q(0) obtained as the smallest field containing the rational numbers Q and a root
0 of a polynomial with coefficients in Z. The ring of integers of a number field K is
the set of all elements in K which are roots of a monic polynomial with coefficients
in Z. To describe atomic decay within the ring of integers D of a number field, we
will use the following well-known basic facts about the ideal theory in D. Proofs of
these facts can be found in [10] or [11].

¢ The Fundamental Theorem of Ideal Theory. Let I be an nonzero ideal of
D with I # D. There exists a unique (up to order) sequence of prime ideals
Pi,..., Py of D such that I = Py --- Py.

 For each (nonzero) prime ideal P there exists m(P) € N such that P m(P) is the
principal ideal generated by an atom.

¢ Every (nonzero) prime ideal is a maximal ideal.
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By these facts, the properties (a)—(d) in Theorem 2.2 are equivalent for a ring D of
integers and strong atoms can be described in greater detail.

Theorem 3.1. Let D be the ring of integers of a number field.

(i) An element x € D is a strong atom if and only if x is an atom and rad(x) is a
prime ideal, or, equivalently, if (x) is a minimal power of a prime ideal.

(ii) For each nonzero nonunit x € D, there exists a sequence X1, ..., Xy of strong
atoms and a minimal m € N such that

X" = X1 xg (AD)

where this representation by atomic decay is unique up to ordering and associates
forthe x1,...,X.

Proof. (i) Follows from Theorem 2.2 according to the equivalence of (a)-(d). Hence,
(x) is a minimal power of P if (x) = P™®)_ (ii) By the Fundamental Theorem,
(x) = Py --- Py for nonzero prime ideals Pq,..., Py of D. Furthermore, Pm(P)
(yp,) for every prime ideal P;, with m(P;) € N and, by (i), yp; a strong atom. Let
m = lem{m(P;) | 1 <i <k} and for each i set m = m(P;)n(P;). Then it follows
that (x)” = (x™) = 1—[5;_1 P" = ]_[f-{_l(yp )”(P") Therefore, there exist associates
xp; of yp,, strong atoms again, such that x ]_[,_1 xn(P’

Concerning the uniqueness of this representation, assume ]—[1_1 v = ]—[ j=1 w
for strong atoms v;, w; and k;, [; € Nj the v;, as well as the w; are to be pa1rw1se
different. By property (i), we have (v;) = Pl."f ,(wy) = Q;nj for nonzero prime ideals
P; and Q;. Therefore

ﬁ Piniki — lL[ Q;_ﬂjlj
j=1

i=1

From the uniqueness property of the Fundamental Theorem we have k = [ and there
is a permutation o of {1,...,k} such that Q; = Py, mi = ngay, li = kg
Therefore, (w;) = (v (;)) and the representation is unique up to order and associates
of factors. O

The condition in Theorem 3.1 (ii) has been studied in general. In [4], the current
authors define an integral domain D to be a Cale domain with base B C D if a
power of every nonzero nonunit of D can be written uniquely as a product of elements
from B. For an algebraic ring of integers, the representation (AD) is known as the
Cale representation of x. It is an interesting feature of (AD) that the representation as
well as the definition of strong atoms is purely multiplicative. This is different for the
unique representation according to the Fundamental Theorem of Ideal Theory, which
does involve the addition operation of the ring. The reader interested in the general
Cale concept may find a more technical discussion in [3] or [4].
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As a further consequence, we obtain the following characterization of unique fac-
torization into atoms for rings of algebraic integers.

Corollary 3.2. The ring of integers D of a number field is a UFD if and only if D does
not have atomic decay. That is, every atom is a strong atom.

Proof. Using the norm function (see Section 4 or [10, 11]), it is easily argued that
any element of D is a product of atoms. (<) If every atom is strong, then by Theo-
rem 3.1 (ii) D is a UFD. (=) Assume D is a UFD. If x is an atom then

_xn = x e x
——
n times
is the unique representation into atoms and any atom dividing x” must be an associate

of x. Hence, x is a strong atom. O

We note that Corollary 3.2 fails if the hypothesis that D is a ring of integers is
dropped. While there are domains D with all atoms strong that are not UFDs, we are
unaware of an elementary example. Many examples using the theory of Krull domains
can be constructed using the main results of the recent paper [1].

If a ring of algebraic integers D is not a UFD, then D has atomic decay and the
question arises how to arithmetically describe the different possible kinds of decay. A
natural measure to consider is the decay rate of a nonzero nonunit x € D, defined by

k
19(X) = Z

where x™ = xj---xi is the representation by decay (AD) according to Theorem
3.1(ii). Notice that for any representation x” = y; ---y; with strong atoms y; one
has that ¥ (x) = % Namely, x™"* = (x1---x%)" = (y1---y;)" and by uniqueness
nk = ml. The decay rate can be used to analyze two important invariants in the study
of non-unique factorizations. If x is a nonzero nonunit of D, then the elasticity of x is
defined by

k
p(x) =sup{7 )x =aj---ay = by---by foratoms ay,...,ar,b1,...,b; ofD}

and the elasticity of D by
p(D) = sup{p(x) | x a nonzero nonunit of D}.

The elasticity of a ring of algebraic integers was first studied by Valenza [13]. Notice
that if D is a UFD, then p(x) = 1 for each nonzero nonunit and hence p(D) = 1. The
converse of this statement is false (see Corollary 4.2). Hence, an integral domain D
with p(D) = 1 is known as a half-factorial domain or HFD. The following Corollary
gives a relationship between the decay rate and elasticity.
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Corollary 3.3. Let D be the ring of integers of a number field.

(1) 9 (xy) = V¥ (x) + U (y) for nonzero nonunits x, y € D.

(ii) D is half-factorial if and only if 9 (x) = 1 for all atoms x of D.
(iii) p(D) is finite if and only if

sup{9 (x), 9 (x)"! | x is an atom of D} < .

Proof. (i) Let x™ = x1---x, y" = y1---y; be the representations of x and y by
atomic decay. Then

()™ = (") (""" = (xrex )" (e )™,

From the uniqueness for the representations into strong atoms, we obtain

nk + ml k1
P(xy)= ———=—+—=0(x)+30).
mn m n
(ii) (=) If D is half-factorial, then the representation x”™ = xj---x; implies

m = k, thatis, 9(x) = 1. (&) If xy---xx = y1---y; for atoms x; y; then by
(i) it follows that
k l
k=) 9) =) d()=1
i=1 j=1
(iii) (=) The representation x"* = xj ---x; implies %, % =< p(D) and hence if
C = sup{®¥(x),%(x)~" | x an atom} then C < p(D). (<) Let x;-+-Xx; = y1---V;

for atoms x;, y;. If #(a) = mind(x;), ¥(b) = min¥(y;), then from (i) it follows
that

k [
k9(a) <D 9(x) = ) 0 (yy) < 19(b).
j=1

i=1

Therefore, ’7‘ < ¥(b)?¥(a)~! and C finite implies p(D) is finite. O

The point of Corollary 3.3 is that half-factoriality or finite elasticity can be checked
for rings of algebraic integers by considering only special factorizations aj ---ay =
b1 ---b; where on one side all the elements are equal. With the results thus far ob-
tained, we consider more deeply in Section 4 the failure of nonunique factorization
using an example which appears frequently in many entry level textbooks. We follow
this in Section 5 with an even more striking example of non-uniqueness whose decay
of atoms into strong atoms does not terminate.
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4 The Fundamental Example of the Failure of Unique
Factorization: Z[+/—5]

The ring
D =Z[Vv-5={m+nv-5|m,n €’}

is the ring of integers of the algebraic number field Q(+~/—5). An example of non-
unique factorization into atoms in D, is

2-3=(1+ V=51 —-+v=5). (%)

That the four elements involved are nonassociated atoms of D can be easily verified
using the norm function

N(m + nv/=5) = m?* + 5n°

which has the property that N(xy) = N(x)N(y) for x, y € D. For example, to see
that 1 4+ +/—5 is an atom notice N(1 + +~/—5) = 6 and that 1 4+ +/—5 = xy implies
N(x), N(y) € {1,2,3,6}. That N(x) = 2 or 3 is impossible and, hence, N(x) = 1 or
6. N(x) = 1 for x € D is an equivalent condition for x to be a unit of D. Therefore,
x or y must be a unit which implies that 1 + V=5 is an atom. Obviously, +1 are the
units of D and, hence, 1+ +/—5 is not associated to any of the other factors of (x). This
non-unique factorization implies also that none of the four factors is a prime element
of D. Obviously, for three of the factors, we have the following diagram outlining
atomic decay.

32 (1++v/=5)? (1-v=5)?

(—24++/=5) (—2—+/5) 2 (—=24++/=5) 2 (—2—v/=5)

The factor 2 does not decay in a nontrivial way as shown by the following proposi-
tion.

Proposition 4.1. The element 2 is a strong atom of D which is not prime in D.

Proof. We have verified above that 2 is not prime in D. Suppose in D that an atom
x = m + n~/=5 divides a power 2%. Then N(x) must divide 22¥, that is m? + 512 =
N(x) = 2! with 1 <1 < 2k. Consider this equation modulo 2. If exactly one of m and
n is odd, then 2!l s odd, a contradiction. If m and n are both odd, then m = 2m; + 1
andn = 2nq + 1. Thus

@2my + 12 +52n1 + 1)% = 4w + 20v + 6 = 2!
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for integers w and v. Thus 2w + 10v 4+ 3 = 2/"1and / = 1. But m? + 512 = 2 has
no solutions in Z. Thus, we must have that m and n are both even and, since x is an
atom, it follows that m = £2 and n = 0. Thus, any atom dividing a power of 2 in D
must be equal to +2. 0

Below we will see that the other factors —2 + +/—5 appearing in the diagram of
atomic decay are strong atoms. Thus, by squaring the non-unique factorization (),
we obtain a unique factorization of 62 into strong atoms (i.e., the representation of
Theorem 3.1 (ii)). The decay diagram also shows that all atoms in () have decay rate
equal to 1. The common view of restoring uniqueness for equation (x) is to use the
Fundamental Theorem of Ideal Theory as follows (see [10, page 60]). The decompo-
sitions of the factors of () into prime ideals are

(2):P2’ (S)ZQ'Q/, (1+«/—_5):P-Q and (1—\/—_5):P-Q/
with prime ideals
P=Q2.1+vV=5), 0=0G.1+v=5 and Q' =@3.1-+-5).

Thus, by taking ideals in equation (), the non-uniqueness results from different group-
ings of the prime ideals P, Q and Q’. The above decompositions also show that the
elements 2, —2 + /=5 are strong atoms. Namely, (2) = PZ and (2(—2 + V=3)) =
(1 + v/=5)2 = P20Q2, hence, (-2 + v/—5) = Q2. Similarly, (-2 — +/=5) = 0”.
Therefore, according to Theorem 3.1 (i), 2 and —2 £ V=5 are strong atoms. Thus, the
representation by atomic decay (AD) according to Theorem 3.1 (ii) becomes for the
element 6

6> =2-2- (=2 + vV=5) (=2 — V=53). (%)

By using the Fundamental Theorem as above and some further techniques from [10]
and [11] involving the class group of D, one can argue that the decay rate of all atoms
in D is 1. Thus, using Corollary 3.3 and equation (x), we obtain the following.

Corollary 4.2. D is a half-factorial domain which is not a unique factorization do-
main.

Carlitz [2] was the first to recognize that Z[~/—=5] is half-factorial. The interested
reader can find many examples of half-factorial domains which are not UFD’s as well
as examples of domains exhibiting various values of elasticity in [6] and [8].

One is tempted to derive from () a factorization of 6 itself by taking square roots.
Of course, the complex roots obtained will in general not belong to D and are called
ideal numbers with respect to D. More precisely, call a complex number « an ideal
prime number for Z[\/—_S] if its square is a strong atom. Thus, complex numbers sat-
isfying B2 = 2, y2 = =2+ /=5 or 62 = —2 — /=5 are ideal primes for Z[+/—5].
Taking roots with a positive sign, the square root of the (AD)-representation () be-
comes 6 = BBys. Of course, since by Theorem 3.1 (ii) the (AD)-representation is
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unique up to units of D, that is £1, we obtain uniqueness for factorization into ideal
primes only up to factors of fourth roots of 1. The non-unique factorization () reads
in ideal primes as

2.3 =BBys =By B8 =(1+V=5)(1—-5). (k%)

Again, non-uniqueness results from different groupings, this time of ideal primes. The
ideal primes can be described by ideals in D as follows. Consider for an ideal prime
o the set

I@)={yeD|y=ad, o« € D for some m € N}.

One verifies easily for D = Z[+/—5] that I(8) = rad(2), I(y) = rad(—2 + v/—5)
and I(§) = rad(—2 — ~/=5). Therefore, I(B), I(y) and I(§) are ideals in D given
as radical ideals for strong atoms. By Theorem 3.1 (i), these 3 ideals are prime ideals.
Indeed, one easily verifies that /(8) = P, I(y) = Q and I(§) = Q’. Ideal numbers
were invented by E. E. Kummer (for the so called cyclotomic fields) prior to the in-
vention of prime ideals by R. Dedekind. E. Hecke, who considered Kummer to be the
creator of ideal theory (“Schopfer der Idealtheorie,” [7, page 87]) gave a construction
of ideal numbers for the ring of integers of any number field. Though our definition of
ideal prime numbers differs from Hecke’s treatment, his discussion of another example
seems quite similar [7, pages 83—86].

5 A More Striking Example

While factorization of elements into products of irreducible elements is not unique
in Z[v/=5] = Z[+/51], we were able to show for the example () that atomic decay
behaves in a finite manner. Namely, the decay of atoms reaches strong atoms just after
one step, the decay rate equals 1 for all atoms and the elasticity of the domain equals 1.
In this section, we construct an example of algebraic numbers where atomic decay is
not as well mannered. The decay of the atoms involved will never end with strong
atoms, infinitely many nonassociated atoms can divide the powers of a single atom
and the elasticity p(D) is infinite. Consider

Z|51) ={m+5n1 | m,n € Z}

which is a subdomain of Z[z], the domain of Gausssian integers. An example of non-
unique factorization in Z[51] is given by

5.5.5=(5+ 10:)(5— 100). ()

All factors are nonassociated atoms in Z[5:] which is easily verified using the norm
function N(m +5n1) = m?425n2 (see also Proposition 5.1 below). It is already clear
from equation (f) that Z[51] is neither factorial nor half-factorial. As for the example
(%) in Z[+/=5], the factors in () further decay into atoms as can be seen from the
following diagram.
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53 [5(1+20)]3 [5(1—2i)]3

5(142i) 5(1-2i)  5(142i)* 5(1—2i) 5(1—-2i)% 5(142i)

The equation (7) is just the decay of 5 in the above diagram. Thus, in a manner
simpler than (), it is not necessary to square () to see that both sides of the equation
contain the same atoms. In contrast to (x), however, all the atoms created above by
decay will decay further without reaching strong atoms. This will be demonstrated in
Proposition 5.1 and is illustrated by the following diagram where all elements a; =
5(1 + 21)%, k > 0, and their conjugates @ are atoms.

527

ars ai as a  ais ai ay ai

Proposition 5.1. (i) The elements aj, = 5(1+ 2l)k, k > 0, are nonassociated atoms
in Z[51].
(i) Any (proper) power of the atom ay,. decays into exactly two nonassociated atoms,
a,f = dp(k+1)—2 " dp—2 forany p > 2, k > 0.
(iii) For each k > 0 the set of non-associated atoms dividing a,f for some p > 0 is
infinite.

(iv) The elasticity of Z[51] is infinite.

Proof. (i) Using the Binomial Theorem we obtain

K (k
ap =5(1+2u)F =" (1)5(21)1

=0
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and hence ap € Z[5t]. Obviously, N(ar) < N(a;) for k < [ and, hence, the a; are
nonassociated. Suppose 5(1 + Zz)k = (m + 5n1)(p + 5q1) is a factorization of ay in
Z[51]. Applying the norm function in Z[i] we obtain

NG +20)%) = N5) - N(1 4 20)F = 55+2 = (m? + 2512)(p? + 25¢2).
Therefore,
m? + 25n% = 59, p2—|—25q2 =5 and a+b=k+2fora.bec No.

We shall show that eithera = O or b = 0. Thenm + 5n1 = £l or p + 5q1 = £1
which proves that aj, is an atom. Suppose @ > 1 and b > 1. Then m = 5m’, p = 5p’
and 5(1 + 21)% = 5(m’ + n1)5(p’ + qu). It follows that

(1+20F = (1 +20)(1 = 20)(m +n)(p' + q1).
Hence, kK > 2 and
(142051 = (1 =20)(m +n)(p' + q1).
Now, we can write 1 + 21 = (1 —21)(—1 + 1) —1 to obtain by the Binomial Theorem

k—1

A+t =a-20)" (k 1_ 1) (1—20) "N (=1 + )l (=)kF 1 4 (—)F 1,

=1

Therefore, (—1)k1 = (1 4+ 21)*~! — (1 — 21) with @ € Z[1] and, combining we
obtain

()T =a =20 +n)(p' +q))—(1=2)A=(1—-2)-8

with f € Z[1]. Multiplying the two sides of this equation by its conjugate, we obtain
1 = 5- BB, which is impossible.
(i1) By definition
apt1)-2dp—2 = 5(1 +20)PEFD=25(1 — 2)P =2
= 52[(1 4 20)(1 — 20)]P72(1 + )Pk
= 525P72(1 4 21)Pk
=a.

(ii1) Is immediate from (ii) and (i).
(iv) Is immediate from (ii) and the definition of elasticity. |
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Putting p = 3 in Proposition 5.1 (ii), one obtains ai = a3(k+1)—2 - @1 wWhich is the
formula that generates the atomic decay depicted in the diagram Figure 3. Though at
first the domain Z[5:] may seem simpler than the domain Z[+/—5], Proposition 5.1
shows that the opposite is the case with respect to atomic decay. In Z[51], as in
7[~/—5], each nonzero nonunit is a product of atoms, as can again be seen using the
norm function. Also, there are strong atoms in Z[5:], for instance 2, as can be seen
from the same argument used in Proposition 4.1. But Z[5:] differs from Z[+/—5], as
there are not enough strong atoms to represent all elements by atomic decay.

6 Concluding Remarks and Questions

In this paper, we argue that non-unique factorization into atoms descends from atomic
decay. Of course, by its very definition an atom cannot be broken up into parts, but after
taking powers of an atom, atomic decay can occur, in which case unique factorization
fails. For the ring of integers of an algebraic number field, we proved using atomic
decay, that for each nonzero nonunit element some power can be factored uniquely (up
to order and associates of factors) into strong atoms. In this sense, unique factorization
is restored by forcing atoms to decay into strong atoms which can no longer decay.
In particular, unique factorization into atoms is possible precisely if each atom is a
strong atom. Also, the properties of half-factoriality and finite elasticity descend from
atomic decay and can be described by the decay rates of atoms. The decay behavior
may differ very much for different rings of algebraic integers. In one example we
found decay ending with strong atoms after finitely many steps. In another, the decay
turned out to be much more drastic and never ended with strong atoms. As a tool we
employed the Fundamental Theorem of Ideal Theory and some well-known related
simple properties. Is it possible to obtain unique factorization into strong atoms in a
more direct way, without these tools? One might think of “extracting” strong atoms out
of atoms in finitely many steps. Can this be done in an elementary way? For an indirect
and non-elementary example employing “extraction” see [3]. Also, is it possible to
check if a given atom is strong in a direct way? That is, using the norm function
but not ideal theory. We did this in the case Z[+/—5] for the element 2, but for other
elements we needed ideal theory. In such investigations, the interesting question arises
whether for a (rational) prime number p a prime power pl is of the form m? + kn? for
given k € N. Finally, though we touched upon historical issues in the paper there are
further interesting questions here. We mentioned Kummer’s ideal numbers, as seen by
Hecke, and connected these to strong atoms. It has been argued that Kummer’s ideal
numbers developed from the work of C. G.J. Jacobi (see the recent paper [9] and the
references therein). Do Jacobi’s “wahre complexe Primzahlen” (true complex prime
numbers) connect in any way to the notion of strong atom?
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