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Regular Pullbacks
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Abstract. We investigate transference of ring-theoretic properties in certain pullback construc-
tions, focusing on the Noetherian property, Prüfer conditions, coherence, the n-generator prop-
erty, and factorization. This paper contains both new results on the subject and a survey of some
of the literature.
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1 Introduction

Let R be a commutative ring with identity. A classical theorem in dimension theory
states that the Krull dimension of the polynomial ringRŒX� is between nC1 and 2nC1
where n D dim.R/. Moreover, it was shown by Seidenberg [35, Theorem 3] that for
every pair of nonnegative integers m; n such that n C 1 � m � 2n C 1, there exists
an integrally closed quasilocal domain R such that dim.R/ D n and dim.RŒx�/ D m.
The ring R is constructed using what we now know of as the “classical” D C M

construction, introduced (as best we know) by Krull [30] and popularized by Gilmer
[26, Appendix 2].

For the classical construction, start with a valuation domain V containing a retract
fieldK, meaning that V D KCM whereM is the unique maximal ideal of V . LetD
be a subring ofK, and form the subringDCM 	 V . This is the situation considered
by Dobbs and Papick [16]. A more general version of this is introduced by Brewer and
Rutter [10] where the valuation condition in the ring T D K CM is dropped. Brewer
and Rutter lay much of the foundation for this subject, focusing on the transference of
properties between D CM and the rings D and K CM . A sample of their results is
contained in the next theorem.

Theorem 1.1. Given an integral domain of the form T D K CM where K is a field
and D is a subring of K, the following statements hold for the ring R D D CM :
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(i) [10, Theorem 4] The ring R is Noetherian if and only if T is Noetherian, D is a
field and ŒK W D� <1.

(ii) [10, Theorem 3] The ring R is coherent if and only if T is coherent and either
(M is T -finite, D is a field, and ŒK W D� <1) or (TM is a valuation ring, D is
coherent, and Q.D/ D K).

(iii) [10, Theorem 5] The ring R is a Prüfer domain if and only if T andD are Prüfer
domains and Q.D/ D K.

(iv) [10, Theorem 10] The ring R is a Prüfer domain with the n-generator property
if and only if T and D are Prüfer domains with the n-generator property.

TheDCM construction is a special case of a pullback. Moreover, it is a particular
pullback coming from a conductor square. Since this construction is the focus of this
paper, we describe it here explicitly. Start with a ring surjection �1WT � B and an
inclusion of rings �1WA ,! B with B ¤ 0, hence A ¤ 0. Let R denote the pullback
of these maps, that is, the subring of A 
 T consisting of all elements .a; t/ such that
�1.a/ D �1.t/. The natural maps �2WR � A and �2WR ,! T yield a commutative
diagram of ring homomorphisms

R
� �

2 ��

�2 ����

T

�1����
A

� �

1 �� B

(�)

such that Ker.�2/ and Ker.�1/ are isomorphic via �2. (We abuse notation in the se-
quel, viewing R as a subring of T , and writing Ker.�2/ D Ker.�1/.) The common
ideal Ker.�i / is the largest common ideal of R and T ; it is denoted C and called
the conductor of T into R. When C contains a T -regular element, we say that the
conductor square .�/ is regular.

Conductor squares can also be built as follows. Let T be a commutative ring with
subring R, and suppose that R and T have a common, non-zero ideal. We call the
largest common ideal C the conductor of T intoR. SettingA D R=C andB D T=C ,
we obtain a commutative diagram .�/ which is a conductor square. For additional
information on pullbacks, see Fontana, Huckaba, and Papick [21, Chapter I].

It is common in the study of pullback constructions to assume that T is an integral
domain and that C is a maximal ideal of T . However, important examples are obtained
by allowing zero-divisors in the pullback square. For example, let D be an integral
domain with field of fractions K, and let E D ¹e1; : : : ; erº 	 D. Setting T D KŒX�

and C D .X � e1/ � � � .X � er /KŒX�, we have B D T=C Š Qr
iD1K. Using A D

Qr
iD1D in the conductor square, we get R D Int.E;D/ D ¹g 2 KŒX� j g.E/ 	 Dº,

the ring of integer-valued polynomials onD determined by the subsetE. Observe that
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the rings A and B are not integral domains. It is worth noting that McQuillan [33,
Proposition 5] explicitly identifies Int.E;D/ as C CPr

iD1D�i where �1; : : : ; �r are
the Lagrange interpolation polynomials of degree r � 1. Other important examples
using pullbacks are collected by Lucas [32].

The point of this paper is to investigate the following question of Chapman and Glaz
[12, Open Problem 50]: What ring-theoretic properties transfer in the conductor square
.�/ when C is not a maximal (or even a prime) ideal of T ? We take our motivation
from Theorem 1.1, and from other similar results, e.g., [1, 9, 27, 33].

In this paper, we survey some of the results in the literature for conductor squares,
and we include some results that are (as best we know) new. We include specific refer-
ences for the older results, not necessarily to the original article where they appeared,
but we only include proofs for these results in a few cases. Given the wealth of re-
search in this area, we cannot hope to survey every known result. Our choices reflect
our current research interests. The articles of Gabelli and Houston [25] and Kabbaj
[29] contain excellent surveys of other aspects of this area.

The new results focus on regular conductor squares. Our perspective is that the
regularity condition implies that the rings R and T are not too far apart. (For instance,
see Proposition 2.5.) This is akin to Glaz’s assumption in [27] that the map R ,! T

be a “flat epimorphism.” It is worth noting that Sections 2–5 contain both new and old
results, while Sections 6 and 7 consist entirely of survey material.

2 Some Background

We begin with some preliminary results regarding general pullback constructions. Re-
call that the total quotient ring of a commutative ring U is the localization Q.U / WD
V �1U where V is the set of non-zero-divisors of U . An overring of U is a U -algebra
W that is isomorphic (as a U -algebra) to a subring ofQ.U /. Also, given a ring homo-
morphism f WU ! W and a multiplicatively closed subset S � W , the localization of
W as a U -module S�1W is a U -algebra under the natural operations; moreover, it is
an S�1U -algebra that is isomorphic to the localization f .S/�1W ' .S�1U /˝U W .

Lemma 2.1. Consider the conductor square .�/.

(i) [27, p. 149] There is an isomorphism B ' A˝R T .

(ii) [21, Lemma 1.1.4(3)] If P 2 Spec .R/ and C ª P , then there is a unique
Q 2 Spec .T / such that Q \ R D P ; moreover, the induced map RP ! TQ is
an isomorphism.

(iii) If T ' S�1R for some multiplicatively closed set S 	 R, then B ' S�1A;
moreover, B is an overring of A.
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(iv) If C is finitely generated overR, then it is finitely generated over T . The converse
holds if R ,! T is finite.

(v) The extensionA ,! B is of finite type (resp. integral, finite) if and only ifR ,! T

is of finite type (resp. integral, finite).

Proof. (iii) If T ' S�1R, then B ' A ˝R T ' A ˝R .S�1R/ ' S�1A. To see
that B ' S�1A is an overring of A, use the fact that the map A ,! B ' S�1A '
�2.S/

�1A is a monomorphism to conclude that �2.S/ consists of non-zero-divisors
for A, so B is naturally a subring of Q.A/.

(iv) For one implication, assume that C D Rc1C � � � CRcn. Since C is an ideal of
R and an ideal of T , we have C D TC D Tc1C � � � C Tcn, so C is finitely generated
over T .

For the converse, suppose that T D Rt1 C � � � C Rtm and that C D Tc1 C � � � C
Tcn. Then for each c 2 C we have c D Pn

iD1 sici D
P

i�n.
P

j�m rij tj /ci D
P

i;j rij .tj ci /. It follows that ¹tj ciº is a set of generators for C over R.
(v) If R ,! T is of finite type (resp. integral, finite), then A ,! B is of finite type

(resp. integral, finite) by part (i). The converse holds by [21, Lemma 1.1.4 (7)].

It is reasonable to ask if “finitely presented” can be added to the list of finiteness
conditions in Lemma 2.1 (v) above. In the result that follows, we find that under certain
conditions, this is indeed the case.

Lemma 2.2. Consider the conductor square .�/.
(i) If T is finitely presented over R, then B is finitely presented over A.

(ii) If T is finitely generated over R, B is finitely presented over A, and C is finitely
presented (over R or T ), then T is finitely presented over R.

Proof. (i) Assume that T is finitely presented over R, and consider an exact sequence
Rn ! Rm ! T ! 0 over R. It follows that T is finitely generated over R. The
right-exactness of �˝R A provides an exact sequence

Rn ˝R A! Rm ˝R A! T ˝R A! 0

over A. From the isomorphism T ˝R A Š B , this yields an exact sequence An !
Am ! B ! 0 over A, so B is finitely presented over A.

(ii) Assume that T is finitely generated over R, B is finitely presented over A, and
C is finitely presented (over R or T ). Since T is finitely generated over R, there is an
R-module epimorphism ˛WRm � T . To show that T is finitely presented over R, it
suffices to show that Ker.˛/ is finitely generated over R.

As in the proof of part (i), the right-exactness of � ˝R A provides an A-module
epimorphism ˛WAm � B . The maps ˛ and ˛ fit into the following commutative
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diagram with exact rows and columns:

Rm

˛
��

f m

�� Am ��

˛
��

0

T
f 0

��

��

B ��

��

0

0 0:

Here, the maps f WR ! A and f 0WT ! B are the natural ones from the conductor
square .�/. In particular, we have Ker.f m/ D Cm and Ker.f 0/ D C . Given this
commutative diagram, we conclude that ˛.Ker.f m// � Ker.f 0/, yielding the next
commutative diagram with exact rows and columns:

0 �� Cm

 ��

˛0

��

Rm

˛
��

f m

�� Am ��

˛
��

0

0 �� C
i ��

��

T
f 0

��

��

B ��

��

0

0 0 0:

Here, the maps i and � are the inclusions, and ˛0 is the restriction of ˛ to Ker.f m/ D
Cm.

Claim 1. The map ˛0 is T -linear. The map ˛WRm ! T is R-linear, so there are
elements t1; : : : ; tm 2 T such that ˛.r1; : : : ; rm/ D Pm

jD1 rj tj . It follows that
˛0.c1; : : : ; cm/ DPm

jD1 cj tj ; and that ˛0 respects T -scalar multiplication.

Claim 2. The map ˛0 is surjective. (This is a fairly routine diagram chase with a twist.)
Let c 2 C . Since f m is surjective, there is a vector r D .r1; : : : ; rm/ 2 Rm such that
Pm
jD1 rj tj D ˛.r/ D 1. Hence, cr D .cr1; : : : ; crm/ 2 Cm is an element such that

˛0.cr/ DPm
jD1 crj tj D c.

Pm
jD1 rj tj / D c.1/ D c.

Claim 3. The module Ker.˛0/ is finitely generated over T and over R. Since ˛0 is
R-linear and T -linear, we know that Ker.˛0/ is an R-module and a T -module.

Assume first that C is finitely presented over T . It follows that Cm is finitely
generated over T , and the exact sequence

0! Ker.˛0/! Cm
˛0

�! C ! 0

implies that Ker.˛0/ is finitely generated over T ; see [34, Corollary 3.63]. Since T is
finitely generated over R, this implies that Ker.˛0/ is finitely generated over R.
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Assume next that C is finitely presented over R. The argument of the previous
paragraph implies that Ker.˛0/ is finitely generated over R. Since Ker.˛0/ is a T -
module and T is an R-algebra, it follows that Ker.˛0/ is finitely generated over T .
This completes the proof of Claim 3.

The Snake Lemma provides the following exact sequence:

0! Ker.˛0/! Ker.˛/! Ker.˛/! 0:

Since B is finitely presented over A, we know that Ker.˛/ is finitely generated over A,
hence over R. Claim 3 implies that Ker.˛0/ is finitely generated over R, so the above
exact sequence implies that Ker.˛/ is finitely generated over R, as desired.

The next result concerns local rings and pullbacks. Here, we observe how the local
property transfers in a general pullback of the type .�/.

Proposition 2.3. Consider the conductor square .�/.
(i) [21, Lemma 1.1.5] If R is local, then C is contained in the Jacobson radical of

T and there is a 1-1 correspondence between the maximal ideals of B and the
maximal ideals of T .

(ii) If A and T are local rings, then R is a local ring.

(iii) The rings R and B are local if and only if A and T are local.

Proof. (ii) Since A is local, it has a unique maximal ideal M for some maximal ideal
M of R.

We claim that C � N for each maximal ideal N of R. By way of contradiction,
suppose that C ª N . Lemma 2.1 (ii) provides a unique prime ideal N 0 of T such that
N 0 \R D N . The uniqueness of N 0, with the fact that N is maximal, implies that N 0
is maximal. Since T is local, it follows that N 0 is the unique maximal ideal of T . The
fact that T is local and C ¤ T implies that C 	 N 0; but the condition N 0 \ R D N

contradicts the assumption C ª N .
Using the claim with the prime correspondence for quotient rings, we conclude that

R is local with unique maximal ideal M
(iii) .)/ As R is local, so is A. As B is local, part (i) implies that T is local.
.(/ As T is local, so is B; and R is local by part (ii).

Notation 2.4. Given the conductor square .�/ and a prime ideal P of R that contains
C , we may use the R-flatness of RP to build a new square .�P / with conductor ideal
CP displayed below.

RP
� � ��

����

TP

����
AP

� � �� BP

(�P )
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Our next result is particular to regular conductor squares of the type .�/. Part (i) is
from the folklore of the subject; as best we know, parts (ii) and (iii) are new. Although
the proofs of parts (i) and (ii) are very straightforward, they prove to be extremely
useful in the sequal. In a sense, part (ii) says that T is very close to R. Part (iii) is a
generalization of [10, Lemma 1].

Proposition 2.5. Consider the regular conductor square .�/.
(i) T is an overring of R.

(ii) C contains an isomorphic copy of the R-module T .

(iii) If C is finitely generated over R, then every maximal ideal in B contracts to a
maximal ideal in R.

Proof. First we select any T -regular element c 2 C
(i) One readily checks that the map T ! Q.R/ given by t 7! ct

c
is a well-defined

monomorphism.
(ii) Since c is T -regular, there is an R-module isomorphism T ' Tc � C � R.
(iii) Fix a maximal ideal n 	 B , and let N denote the contraction of n in T along

the surjection T � B . Then N is a maximal ideal of T containing C . Set p D A\n.

Claim. C=NC ¤ 0. Since c is not annihilated by any element of T , we have
0 ¤ c=1 2 CN. In particular, the module CN is non-zero. Also, since C is finitely
generated over R, it is finitely generated over T . Hence CN is finitely generated over
TN. Nakayama’s Lemma implies that 0 ¤ CN=NCN Š C=NC .

Claim. C=NC is a finitely generated A=p-module. Let P denote the contraction of
p in R along the surjection R � A. Via the composition R ! A ! B , we have
PB D pB � n. It follows that C=NC is a module overR=P Š A=p via the structure
a �c D a � c. Since C is finitely generated overR, it follows that C=NC is also finitely
generated over R, hence over R=P Š A=p.

It remains to show that p is maximal. The quotient C=NC is a non-zero vector
space over the field T=N Š B=n, so there is a B=n-module epimorphism C=nC �
B=n. By construction, this is an A=p-module epimorphism. Since C=nC is finitely
generated over A=p, it follows that B=n is finitely generated over A=p. That is, the
extension A=p ,! B=n is module-finite. Thus, we have dim.A=p/ D dim.B=n/ D 0,
so p is maximal.

3 Pullbacks of Noetherian Rings

In this section, we investigate the transference of Noetherianicity in a conductor square
of the type .�/. We begin by recalling the next result which relates the Noetherianicity
of rings in the most general setting for pullbacks.
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Theorem 3.1 ([21, Proposition 1.1.7]). For the conductor square .�/, the rings R and
B are Noetherian and R ,! T is finite if and only if A and T are Noetherian rings
and A ,! B is finite.

Theorem 1.1 (i) above suggests the following analogous result for conductor
squares .�/ in which C contains a T -regular element.

Theorem 3.2. Consider the conductor square .�/ and the following conditions:

(i) The ring R is Noetherian.

(ii) The rings A, T , and B are Noetherian and the extensions A ,! B and R ,! T

are finite.

(iii) The rings A and T are Noetherian and the extension R ,! T is finite.

(iv) The rings A and T are Noetherian and the extension A ,! B is finite.

The implications (iv) , (iii) , (ii) ) (i) always hold. If the conductor square .�/
is regular, then the conditions (i)–(iv) are equivalent.

Proof. The implication (ii) ) (iii) is trivial, and the equivalence (iv) ) (iii) is from
Lemma 2.1 (v).

(iii) ) (ii) Since A ,! B is finite, Lemma 2.1 (v) asserts that the map R ,! T

is finite. Also, the fact that A ,! B is finite and A is Noetherian implies that B is
Noetherian.

(ii) ) (i) Since R ,! T is finite and T is Noetherian, Eakin’s Theorem [18,
Theorem 2] implies that R is Noetherian.

(i)) (iii) Assume that the conductor square .�/ is regular. Since R is Noetherian,
the ideal C is finitely generated over R and A is Noetherian. Since .�/ is regular,
Proposition 2.5 (ii) says that C contains an R-submodule that is isomorphic to T .
Hence, T is a submodule of a finitely generated module over the Noetherian ring R
and so, it too is a finitely generated R-module. It follows that the extension R ,! T is
finite, which in turn ensures that T is Noetherian.

The next three examples show why we need to assume that C is regular as an ideal
of T in the implications (i)) .n/ of Theorem 3.2.

Example 3.3. Let F be a field, and let S be a commutative F -algebra. Consider the
rings R D F 
 F and T D F 
 S with the common ideal C D F 
 0. The quotient
rings are A D R=C Š F and B D T=C Š S ; under these isomorphisms, the
induced map A! B is the same as the map F ! S giving S its F -algebra structure.
In particular, the ring R is Noetherian, but the rings T and B need not be Noetherian.
(They are Noetherian if and only if S is Noetherian.) Also, the maps R ! T and
A! B are not necessarily finite. (They are finite if and only if S is finite over F .)

Since pathologies are often easy to construct using products, we present the next
examples which do not decompose as products.
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Example 3.4. Let F be a field. Consider the rings R D F ŒX; Y �=.XY; Y 2/ and S D
F ŒŒX; Y ��=.XY; Y 2/ with the natural inclusion R ! S . The ideal C D .Y /R D
.Y /S is isomorphic to F as an R-module and as an S -module since XY D 0 D Y 2.
For quotients, we have A D R=C Š F ŒX� and B D T=C Š F ŒŒX��; under these
isomorphisms, the induced map A! B is the same as the natural inclusion F ŒX�!
F ŒŒX��. The ring F ŒŒX�� is not finitely generated as an F ŒX�-module.1 It follows that T
is not finitely generated as an R-module.

Of course, in the previous example, the rings T and B are Noetherian. This is not
the case in the next example.

Example 3.5. Let F be a field. Consider the rings R D F ŒX; Y �=.XY; Y 2/ and S D
F ŒX; Y;Z1; Z2; : : :�=.XY; Y

2; YZ1; YZ2; : : :/ with the natural inclusion R ! S .
The ideal C D .Y /R D .Y /S is isomorphic to F as an R-module and as an S -
module since XY D 0 D Y 2 D ZiY . For quotients, we have A D R=C Š F ŒX�

and B D T=C Š F ŒX;Z1; Z2; : : :�; under these isomorphisms, the induced map
A ! B is the same as the natural inclusion F ŒX� ! F ŒX;Z1; Z2; : : :�. The ring
F ŒX;Z1; Z2; : : :� is not Noetherian and is not finitely generated as an F ŒX�-module.
It follows that T is not Noetherian and is not finitely generated as an R-module.

4 Pullbacks of Prüfer Rings

In this section we consider the following six extensions of the Prüfer condition to
commutative rings with zero-divisors and investigate their behavior in the conductor
square .�/.

Definition 4.1. A fractional ideal of a commutative ring R is an R-submodule of the
total quotient ring Q.R/, possibly zero and possibly non-finitely generated. An ideal
I � R is invertible if there is a fractional ideal K such that IK D R.

(i) R is semihereditary if every finitely generated ideal of R is projective.

(ii) R has weak global dimension � 1 if every finitely generated ideal of R is flat.

(iii) R is arithmetical if its lattice of ideals is distributive.

(iv) R is Gaussian if for every f; g 2 RŒX�, one has the content ideal equation
c.fg/ D c.f /c.g/.

1 This is well known, but we do not know of a proper reference. To explain this fact, consider the
induced ring homomorphism F ŒX�.X/ ! F ŒŒX��. Since F ŒX�.X/ is not complete (with respect
to the ideal-adic topology determined by its maximal ideal), we conclude from [22, Theorem B]
that F ŒŒX�� is not finitely generated over F ŒX�.X/, so it is not finitely generated over the subring
F ŒX�. Alternately, suppose that F ŒŒX�� were finitely generated over F ŒX�.X/. Since F ŒŒX�� is flat
over the local ring F ŒX�.X/, it is free, so there is an F ŒX�.X/-module epimorphism F ŒŒX�� �
F ŒX�.X/. Since F ŒŒX�� is finitely generated over F ŒX�.X/, it follows that F ŒX�.X/ is complete, a
contradiction.
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(v) R is locally Prüfer if RP is a Prüfer ring (see condition (vi)) for every prime
ideal M of R.

(vi) R is Prüfer if every finitely generated regular ideal is invertible.
We say that R satisfies Prüfer condition .n/ when R satisfies condition .n/ from the
above list.

It is worth noting that the definitions above are equivalent when R is a domain.
Also, for non-domains, to verify locally Prüfer, it is not enough to check localizations
at maximal ideals; see [5, Example2.4].

The following characterizations of Prüfer rings will be quite useful for us. The proof
is straightforward.

Lemma 4.2. Let R be any commutative ring.
(i) If I is finitely generated and regular then: I is invertible if and only if I is

projective if and only if I is locally principal.

(ii) If every 2-generated ideal of R is locally principal, then every finitely generated
ideal of R is locally principal.

(iii) If R is local, then R is Prüfer if and only if every 2-generated regular ideal is
principal.

(iv) The ring R is Prüfer if and only if every 2-generated regular ideal is locally
principal.

The papers [2, 6] also show that the implications in the next result are strict.

Theorem 4.3 ([2, for n D i; ii; iii; iv] and [6, Theorem 2.2 for n D iv; v; vi]). For
any commutative ring, we have the following implications for Prüfer condition .n/:
(i)) (ii)) (iii)) (iv)) (v)) (vi).

The next result relates the Prüfer condition of a ring with its total quotient ring. It is
crucial for the main theorem of this section.

Theorem 4.4 ([3, Theorems 3.7 and 3.12 for n D i; ii; iii; iv; v; vi] and [6, Theorem
3.4 for n D 5]). Let R be any commutative ring. Then R has Prüfer condition .n/ if
and only if R is a Prüfer ring and Q.R/ has Prüfer condition .n/.

Use the fact that every overring of a Prüfer ring is again a Prüfer ring (see for exam-
ple [31, Theorem 10.19]) together with Theorem 4.4 to obtain the following.

Lemma 4.5. Let R be any commutative ring. If R has Prüfer condition .n/ and if T is
an overring of R, then T has the same Prüfer condition .n/.

The next result gives more information about overrings in the local case.

Lemma 4.6 ([5, Theorem 3.6]). Let R be any local commutative ring. If R has Prüfer
condition .n/ and if T is an overring of R, then T is a local ring with Prüfer condition
.n/. Moreover, T D RP for some prime ideal P of R.
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The next result shows that all of the Prüfer conditions are in fact well behaved in
.�/ in the local case. Note that the cases n D v and n D vi are equivalent in the local
case.

Theorem 4.7 ([5, Theorem 4.1]). Consider the regular conductor square .�/. The
commutative ring R is a local ring with Prüfer condition .n/ if and only if T is a local
ring with Prüfer condition .n/, A is a local Prüfer ring, and B is an overring of A.

In the next result, we say that B is locally an overring of A if for every prime P 2
Spec.A/ the localization BP is an overring of AP . Note that the cases n D i; ii; ii; iv
are from [5, Theorem 4.2], but our proof works equally well for all cases.

Theorem 4.8. Consider the regular conductor square .�/. For n D i; ii; ii; iv; v, the
ring R has Prüfer condition .n/ if and only if T has Prüfer condition .n/, A is locally
Prüfer, and B is locally an overring of A.

Proof. .)/ Assume that R has Prüfer condition .n/. The fact that T has Prüfer con-
dition .n/ follows from Proposition 2.5 (i) and Lemma 4.5. Since n 2 ¹i; ii; iii; iv; vº,
we conclude that R is locally Prüfer by the implication .n/ ) (v) in Theorem 4.3.
To complete this implication, let P 2 Spec.A/, and let P be the contraction of P
in R along the surjection R � A. It follows that the localization .�P/ is a regular
conductor square such that RP is Prüfer. From Theorem 4.7, it follows that AP D AP

is Prüfer and BP is an overring of AP . We conclude that A is locally Prüfer and B is
locally an overring of A.
.(/ Assume that T has Prüfer condition .n/, A is locally Prüfer, and B is locally

an overring of A. Since n 2 ¹i; ii; iii; iv; vº, we conclude that T is locally Prüfer by the
implication .n/) (v) in Theorem 4.3.

We claim that R is locally Prüfer. To see this, let P 2 Spec.R/. If C ª P then,
by Lemma 2.1 (ii), there is a prime ideal Q 	 T such that RP ' TQ; since T is
locally Prüfer, the ring RP ' TQ is Prüfer. Assume that C � P. In this case,
we have the regular conductor square

�

�P

�

. Since AP is a local Prüfer ring and
BP is an overring of AP, Lemma 4.6 implies that BP is a local Prüfer ring. Thus,
Proposition 2.3 (i) implies that TP is local. Since T is locally Prüfer, the ring TP is
Prüfer. An application of Theorem 4.7 to the conductor square .�P/ implies that RP

is Prüfer. This establishes the claim.
The claim implies that R is Prüfer because of the implication (v) ) (vi) in Theo-

rem 4.3. The ring T is an overring of R by Proposition 2.5 (i), so we have Q.R/ D
Q.T /. Since T has Prüfer condition .n/, we conclude from Theorem 4.4 thatQ.R/ D
Q.T / has Prüfer condition .n/. The fact thatR is Prüfer then implies thatR has Prüfer
condition .n/ by another application of Theorem 4.4.

Question 4.9. Does the conclusion of Theorem 4.8 hold for n D vi?
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5 Pullbacks of Coherent Rings

We refer the reader to [27] for more background information on coherent rings, in-
cluding unspecified terminology.

Definition 5.1. Let R be any commutative ring.

(i) An R-module M is coherent if it is finitely generated and if every finitely gener-
ated R-submodule of M is finitely presented.

(ii) The ring R is coherent if it is coherent as an R-module.

It is well known that every Noetherian ring is coherent, as is every Prüfer domain.
Moreover, every semihereditary ring is coherent.

To discuss the behavior of coherence in conductor squares, we recall some facts
about coherent rings.

Theorem 5.2 ([27, Theorem 4.1.1]). Let �WR ! T be any homomorphism of com-
mutative rings making T into a finitely presented R-module. (For instance, this is the
case when T Š R=I where I is a finitely generated ideal of R.) If R is coherent, then
so is S . The converse holds when � is injective.

The next result represents the first progress on the transference of the coherent prop-
erty for conductor squares outside of the D CM setting. Note that the term “epimor-
phism” is used in a category-theory sense, as in [27] ; in particular, an epimorphism of
commutative rings need not be surjective.

Theorem 5.3 ([27, Theorems 4.1.4 and 5.1.3]). Given the conductor square .�/, sup-
pose that R ,! T is a flat epimorphism and that C is flat as an R-module.

(i) If R is coherent, then so is T .

(ii) If A; T are coherent and C is a maximal ideal of T , then R is coherent.

(iii) If A is coherent such that wk.gl.dim..A/ � 1 and if T is semihereditary, then R
is coherent.

(iv) If A is Noetherian and T is coherent, then R is coherent.

To continue our survey of coherence, we need a few more definitions.

Definition 5.4. Let D be any integral domain with quotient field K.

(i) The inverse of a fractional ideal I is the fractional ideal I�1 D .D W I / D ¹x 2
K j xI � Dº.

(ii) A fractional ideal I is divisorial if I D .I�1/�1.

(iii) The v-closure of a fractional ideal I is Iv D .I�1/�1. (This is also called the “v
divisorial closure” of I .)
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(iv) A fractional ideal I is v-invertible if .II�1/v D D.

(v) A fractional ideal I is v-finite if I�1 D J�1 for some finitely generated frac-
tional ideal J of D.

(vi) The t -closure of a fractional ideal I is It D S¹Jv j J is a finitely generated
fractional subideal of I º.

(vii) A fractional ideal I is t -invertible if .II�1/t D D.

We now recall several coherent-like properties studied in [24].

Definition 5.5. An integral domain D is

(i) quasicoherent if every finitely generated ideal I of D has the property that I�1
is finitely generated.

(ii) a v-coherent if every finitely generated ideal I of D has the property that I�1 is
v-finite.

(iii) a finite conductor domain if the intersection of any two principal ideals of D is
finitely generated.

(iv) a Prüfer v-multiplication domain (PVMD) if every finitely generated ideal of D
is t -invertible.

(v) a v-domain if every finitely generated ideal of D is v-invertible.

(vi) a DVF domain if every divisorial ideal of D is v-finite.

(vii) a Mori domain if it satisfies the ascending chain condition on divisorial ideals.

We summarize the relations between these conditions (from [24]) next:

coherent �� quasicoherent ��

��

finite conductor

v-domain PVMD ��

 v-coherent DVF

 Mori.



The transference of these coherent-like properties in a special case of .�/ is well-
studied in [24]. We list the main results of that paper in the three theorems that follow.

Theorem 5.6. Consider the conductor square .�/ such that R and T are domains,
Q.A/ D B , and C is a maximal ideal of T .

(i) [24, Theorem 3.4] The ringR is v-coherent if and only if A and T are v-coherent
and C is a t -ideal of T .

(ii) [24, Theorem 4.7] The ring R is (quasi)coherent if and only if A and T are
(quasi)coherent and TC is a valuation domain.
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(iii) [24, Theorem 4.8] The ring R is a finite conductor domain if and only if A and
T are finite conductor domains and TC is a valuation domain.

(iv) [24, Theorem 4.20 (1)] If T is local, then R is a DVF domain if and only if A and
T are DVF domains and C is a nonprincipal v-finite divisorial ideal of T .

Theorem 5.7. Consider the conductor square .�/ such that R and T are domains,
Q.A/ ¤ B , and C is a maximal ideal of T , so B is a field.

(i) [24, Theorem 3.5] The ringR is v-coherent if and only if A and T are v-coherent
and either C is not a t -ideal of T or C is a v-finite divisorial ideal of T .

(ii) [24, Theorems 4.9 and 4.11] The ring R is (quasi)coherent if and only if T is
(quasi)coherent, A is a field with ŒB W A� < 1, and C is a finitely generated
ideal of T .

(iii) [24, Theorem 4.10] The ring R is a finite conductor domain if and only if T is
a finite conductor domain, A is a field with ŒB W A� < 1, and C is a finitely
generated ideal of T .

(iv) [24, Theorem 4.20(2)] If T is local, then R is a DVF domain if and only if A and
T are DVF domains and either C is not a t -ideal of T or C is a v-finite divisorial
ideal of T .

Theorem 5.8. Consider the conductor square .�/ where R and T are domains and C
is a maximal ideal of T .

(i) [20, Theorem 4.1] The ring R is a PVMD if and only if A and T are PVMDs,
Q.A/ D B , and TC is a valuation domain.

(ii) [24, Theorem 4.15] The ring R is a v-domain if and only if A and T are v-
domains, Q.A/ D B , and TC is a valuation domain.

(iii) [24, Theorem 4.18] The ringR is a Mori domain if and only if T is a Mori domain
and A is a field.

The final result of this section characterizes the coherency of R in a regular conduc-
tor square .�/.

Theorem 5.9. Consider the conductor square .�/ and the following conditions:

(i) The ring R is coherent and the extension R ,! T is finite.

(ii) The rings A, T; and B are coherent, B is finitely presented over A, and T is
finitely presented over R.

(iii) The rings A and T are coherent and T is finitely presented over R.

(iv) The rings A and T are coherent and B is finitely presented over A.
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The following hold:

(a) The implications (iv)( (iii), (ii)) (i) always hold.

(b) IfC is finitely generated overR or over T , then we have (iv), (iii), (ii)) (i).

(c) If the conductor square .�/ is regular and C is finitely generated over R or
over T , then the conditions (i)–(iv) are equivalent.

Proof. (a) The implication (ii)) (iii) is trivial, and (iii)) (iv) is from Lemma 2.2 (i).
For (iii)) (ii), use Lemma 2.2 (i) to conclude that B is finitely presented over A, and
use Theorem 5.2 to show that B is coherent. The implication (ii) ) (i) also follows
from Theorem 5.2, using the fact that T finitely presented over R implies that T is
finitely generated over R, by definition.

(b) Assume that C is finitely generated over R or T . We need to show (iv)) (iii),
so assume thatA and T are coherent andB is finitely presented overA. Lemma 2.1 (v)
implies that T is finitely generated overR, thus C is finitely generated overR and over
T by Lemma 2.1 (iv). Since T is coherent andC is finitely generated over T , it follows
that C is finitely presented over T , and we conclude that T is finitely presented over
R by Lemma 2.2 (ii).

(c) Assume that the conductor square .�/ is regular and C is finitely generated over
R or over T . We need to prove that (i) ) (ii), so we assume that R is coherent and
the extension R ,! T is finite. Lemma 2.1 (iv) implies that C is finitely generated
over R and over T . By Proposition 2.5 (ii), the R-module T is isomorphic to an ideal
of R. Since T is a finitely generated over the coherent ring R, we conclude that T is
finitely presented over R. Theorem 5.2 implies that T is coherent, and that A D R=C
is coherent.

6 The n-generator Property in Pullbacks

This section is devoted to the behavior of the (strong) n-generator property in the
conductor square .�/. We recall the following definitions.

Definition 6.1. Let R be any commutative ring.

(i) An ideal I of R is n-generated if there exist a1; : : : ; an 2 I such that I D
.a1; : : : ; an/.

(ii) An ideal I of R is strongly n-generated if for every nonzero a 2 I , there exist
a1; : : : ; an�1 2 I such that I D .a; a1; : : : ; an�1/. It is also common to say that
I is “.n � 1/1

2
-generated.”

(iii) The ring R is said to have the (strong) n-generator property if every finitely
generated ideal is (strongly) n-generated.

We record some familiar examples here.
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Example 6.2. (i) A domain has the 1-generator property if and only if it is Bézout,
by definition. In particular principal ideal domains have the 1-generator property.

(ii) Every Prüfer domain of finite character has the strong 2-generator property. In
particular, Dedekind domains have the strong 2-generator property. See [23, The-
orem 2.2 (a)].

(iii) Every integrally closed domain with the 2-generator property is a Prüfer domain
by [23, Proposition 1.11].

(iv) It is routine to show that if a commutative ring S has the strong n-generator
property (n � 2), then any proper homomorphic image of S must have the .n�1/-
generator property.

As best we know, there are no comprehensive theorems in the literature regarding
the transference of the n-generator property in the most general setting of .�/. For
example, the proof of Theorem 1.1 (iv) relies heavily on the fact that T contains a
retract field. In the theorem that follows, the retract condition in T is dropped.

Theorem 6.3 ([28, Theorem]). Suppose that C is a maximal ideal in the conductor
square .�/ and let I ª C be an ideal of R. If IA is an n-generated ideal of A and if
IT is an m-generated ideal of T , then I is max¹2; n;mº-generated.

In order to study the n-generator property in a conductor square of the type .�/
where C is not a prime ideal, we put a strong condition on the ring T making it a
PID. In doing so, we are able to give some partial results regarding the transference
of the (strong) n-generator property in a conductor square .�/ where C is a finite
intersection of maximal ideals. The set up for these results is next.

Definition 6.4. Let D be an integral domain that is not a field. Let K be its field of
fractions. In the diagram .�/ above, we set T D KŒX� andC D F1 � � �FrKŒX�where
F1; : : : ; Fr are irreducible polynomials over the field K that are pairwise coprime in
KŒX�. Now we have thatB DQr

iD1KŒ�i �where, for each index i � r , the element �i
is a root of Fi in some extension field ofK. IfDi is any subring ofKŒ�i � that contains
DŒ�i �, then a conductor square .�/ with A DQr

iD1Di yields a ringR betweenDŒX�
and KŒX� with a non-zero conductor from KŒX� into R.

R
� � ��

����

KŒX�

����
Qr
iD1Di

� � ��
Qr
iD1KŒ�i �

(�)

In this case we will say that R is defined by a conductor square of the type .�/. It is
worth noting that one can assume without loss of generality in this construction that
each Fi is monic with coefficients in D.
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Example 6.5. Let D be an integral domain with field of fractions K and let E D
¹e1; : : : ; erº be any finite subset of D. As noted in the introduction, setting C D
.X � e1/ � � � .X � er/KŒX� and A D Qr

iD1D, we find that R D Int.E;D/ D ¹g 2
KŒX� j g.E/ 	 Dº; the ring of integer-valued polynomials on D determined by the
subset E, is defined by a conductor square of the type .�/.

More generally, it was observed by Elliot [19, Proposition 6.1] that Int.S;D/ is
defined by the conductor square .�/ where S is any subset of D, T D KŒX�, B D
KS , the map T � B is evaluation at S , and A D DS .

Next, we generalize some definitions made for the ring Int.E;D/whereE is a finite
subset of D. For more information on the various Skolem properties, see [11].

Definition 6.6. Suppose that R is a domain defined by a conductor square of type .�/.
(i) We call an ideal U � R unitary if U \D ¤ 0. It is straightforward to show that

an ideal U is unitary if and only if UKŒX� D KŒX� if and only if U \K ¤ 0.

(ii) For each subset I � KŒX� and each element � 2 F where F is an extension
field of K, set I.�/ D ¹g.�/ j g 2 I º � F . Note that in a conductor square of
type .�/, the set I.�i / is an ideal of Di , moreover it is the ideal IDi .

(iii) We say that the domain R has the almost strong super Skolem property if, for
every pair of unitary ideals U; V � R and every index k � r , one has U D V if
and only if U.�k/ D V.�k/.2

The point of the next few results is to remove the Prüfer assumption from several
results of [4]. We begin with [4, Theorem 5.4].

Theorem 6.7 ([4, Theorem 5.4]). Suppose that R is a domain defined by a conductor
square of the type .�/. Then R has the almost strong super Skolem property.

Proof. Let U and V be unitary ideals of R such that U.�i / D V.�i / for i D 1; : : : ; r .

Claim 1. C � U \ V . (Compare to [4, Lemma 5.2].) We show that C � U ; the
containment C � V then follows by symmetry. Let g 2 C . Since U is unitary, there
is a non-zero element d 2 U \D. Since d is a non-zero constant in KŒX�, we have
g=d 2 KŒX�. Furthermore, we have .g=d/.�i / D g.�i /=d D 0 since d is constant
and Fi divides g. By definition, this means that g=d 2 R, so the condition d 2 U
implies that g D d.g=d/ 2 dR � U , as desired.

Claim 2. For any ideal I � R, we have IA D .I CC/=C DLr
iD1 I.�i /. (Compare

to [4, Lemma 5.3].) By definition, we have A DQr
iD1Di Š R=C , hence the equality

IA D .I C C/=C . Since the map R ! A is given by f 7! .f .�1/; : : : ; f .�r//,
the containment IA � Lr

iD1 I.�i / is routine. For the reverse containment, let x D
.f1.�1/; : : : ; fr.�r// 2Lr

iD1 I.�i / with each fi 2 I . Let e1; : : : ; er 2Qi Di denote

2 Note that this differs from the terminology used in [4], but is consistent with [11].
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the primitive idempotents, and fix liftings t1; : : : ; tr 2 R. By assumption, this implies
that ti .�j / D ıij , the Kroenecker delta. The element f DP

i tifi is in I , since each
fi is in I , and the image of f in

Q

i Di is
P

i eifi .�i / D x, so we have x 2 IA, as
desired.

To complete the proof of the theorem, note that the assumption U.�i / D V.�i / for
i D 1; : : : ; r explains the second equality in the following display

U=C D UA D
r
M

iD1
U.�i / D

r
M

iD1
V.�i / D VA D V=C:

The other equalities are from Claims 1 and 2. It follows that U D V , as desired.

The almost strong super Skolem property guaranteed by the previous result is key
for the proof of the next theorem, which in turn yields the two subsequent results.
Compare to [4, Theorems 6.2 and 6.3, and Corollary 6.4].

Theorem 6.8. Let R be a domain defined by a conductor square of the type .�/, and
let U � R be a unitary ideal.

(i) U is principal if and only if there is a non-zero v 2 U \ K such that U D Rv

if and only if there is a non-zero v 2 U \ K such that U.�k/ D Dkv for each
k � r .

(ii) U is strongly 2-generated if and only if U .�k/ is principal for each k � r .

(iii) For n � 2, the ideal U is strongly .n C 1/-generated if and only if U is n-
generated if and only if U .�k/ is n-generated for all k � r .

Proof. (i) If there is a non-zero v 2 U \K such that U D Rv, then U is principal and
U.�k/ D Dkv for each k � r . If U is principal and unitary, write U D Rv for some
v 2 U . The unitary condition implies that KŒX� D UKŒX� D vKŒX�, and it follows
that v is a constant in KŒX�, so v 2 K \ U .

Assume that there is a non-zero v 2 K \ U such that U .�k/ D Dkv for k D
1; : : : ; r . Set V D Rv, and observe that V is necessarily unitary since v 2 V \ K.
For each index k � r , we have V .�k/ D Dkv D U .�k/. Theorem 6.7 implies that
U D V D Rv.

(ii) .)/ If U is strongly 2-generated, then its homomorphic image U.�k/ is princi-
pal in the proper quotient Dk by Example 6.2 (iv).
.(/ Choose any non-zero f 2 U . Since each U.�k/ is principal, we can write

U D Qr
kD1Dkdk , where each dk 2 Dk; moreover, there exist polynomials rk 2 R

such that rk .�k/ D dk . Now, form the polynomial g D Pr
kD1 rkek , where each

ek 2
Q

i Di is the primitive idempotent corresponding toDk , and set V 0 D Rf CRg.
If V 0 is unitary then V 0 .�k/ D Dkf .�k/ C Dkdk D Dkdk D U .�k/, and we

are done by Theorem 6.7. If not, then we show (as in [13, Theorem 4]) how to find a
polynomial h 2 KŒX� such that g0 D gChF1 � � �Fr is relatively prime to f inKŒX�;
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once this is shown, then g0.�k/ D g.�k/ D dk 2 Dk for each index k, which implies
that g0 2 R and V D Rf CRg0 is unitary, so again Theorem 6.7 ensures that U D V .

Note that the fact that U is unitary implies that U.�k/ ¤ 0 for each k, so dk ¤ 0

and it follows that g is relatively prime to F1 � � �Fr . Write f D f1h where f1 and h
are relatively prime, each irreducible factor of f1 divides g, and each irreducible factor
of h does not divide g. To show that f and g0 D gChF1 � � �Fr are relatively prime in
KŒX�, we let p 2 KŒX� be an irreducible factor of f and show that p does not divide
g0. Since p divides f D f1h, there are two cases.

Case 1: p j f1. In this case, we have p j g and p − h by construction of f1. Since
g is relatively prime to F1 � � �Fr and p j g, we have p − F1 � � �Fr , so p − hF1 � � �Fr
and p − g C hF1 � � �Fr D g0.

Case 2: p j h. In this case, we have p − g by construction of h. Since p j h, we
have p j hF1 � � �Fr , so p − g C hF1 � � �Fr D g0.

(iii) Certainly if U is n-generated, then it is strongly .nC 1/-generated, and if U
is strongly .nC 1/-generated, then each of the proper homomorphic images U .�k/ is
n-generated by Example 6.2 (iv). Thus, we assume that n � 2 and that each U .�k/ is
n-generated. It suffices to prove that U is also n-generated. Write U.�k/ D Dkd1;kC
� � � CDkdn;k; then for each index k � r , there exist polynomials ai;k 2 R such that
ai;k .�k/ D di;k . Since U is unitary, we have U.�k/ ¤ 0 for each k, so we have
dj;k ¤ 0 for some j . Reorder the di;k if necessary to assume that d1;k ¤ 0 for each
k. As in [9, Theorem 3], for each i � n put gi D ai;1e1 C � � � C ai;rer , where
ek 2

Q

i Di is the primitive idempotent corresponding to Dk for all k � r , and set
V D Rg1 C � � � CRgn. Note that g1.�k/ D di;k ¤ 0 for all k.

If V is unitary, then the condition U .�k/ D V .�k/ for each k � r implies that
U D V , by Theorem 6.7. If V is not unitary, then, as above, we can find a polynomial
h 2 KŒX� such that g01 D g1ChF1 � � �Fr is relatively prime to g2 inKŒX�. It follows
that V 0 D Rg01 C Rg2 C � � � C Rgn is unitary and that U .�k/ D V 0 .�k/ for each
index k � r . Again by Theorem 6.7, we get that U D V .

As a consequence of the preceding result, we obtain the following theorem and its
corollary describing the behavior of the (strong) n-generator property in a conductor
square .�/.

Theorem 6.9. Let R be a domain defined by a conductor square of type .�/.
(i) If n � 2 and R has the strong n-generator property, then Dk has the .n � 1/-

generator property for each index k.

(ii) If n � 2 and Dk has the n-generator property for each index k, then R has the
n-generator property.

(iii) The ring R has the strong 2-generator property if and only if Dk is Bézout for
each index k.
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Proof. Note that every finitely generated ideal in R is isomorphic to a unitary ideal;
argue as in [33] or see [7]. Thus, the desired result follows from Example 6.2 (iv) and
Theorem 6.8.

Corollary 6.10. If R is a domain defined by a conductor square of type .�/, then the
following conditions are equivalent for n � 2:

(i) For each index k, the ring Dk has the n-generator property.

(ii) R has the n-generator property.

(iii) R has the strong .nC 1/-generator property.

We summarize the implications from the preceding results in the next diagram.

each Dk: 1 �� 11
2

�� 2 ��

��

21
2

�� 3 ��

��

31
2

�� � � �

R: 1 �� 11
2

��
��

���������

�������

2 �� 21
2

��

����������

��������

3 �� 31
2

��

����������

��������

� � �

In contrast to the previous results, note that the Prüfer hypothesis in the next corol-
lary is crucial; see Example 6.12.

Corollary 6.11 ([4, Theorem 6.6]). IfR is any Prüfer domain between ZŒX� and QŒX�
such that the conductor with respect to QŒX� is non-zero, then R has the 2-generator
property.

Proof. By [4, Proposition 4.5], the ring R is a Prüfer domain defined by a conductor
square of the type .�/. Since R is integrally closed in Q.R/ D K.X/, it is integrally
closed inKŒX�. It follows from [21, Lemma 1.1.4 (8)] that

Q

kDk is integrally closed
in
Q

k KŒ�k�, that is, that each Dk is integrally closed in its quotient field KŒ�k�. The
containment ZŒ�k� 	 Dk , implies that each Dk contains the integral closure Zk of Z
in QŒ�k�. The Krull-Akizuki Theorem says that Zk is a Dedekind domain. Since Dk
is an overring of Zk , it too is a Dedekind domain by [31, Theorem 6.21] and therefore
has the (strong) 2-generator property. Now apply Corollary 6.10.

Next, we show that, if r D 1 and D1 is Bézout in the conductor square .�/, then R
need not be Bézout, in contrast to the statement of [4, Theorem 6.3 (4)]. In particular,
[4, Example 6.8 (1)] incorrectly states that the ring R in the next example is Bézout.
Note that Theorem 6.9 (iii) implies that R does have the strong 2-generator property.
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Example 6.12. We consider the specific conductor square

R
� � ��

����

QŒX�

����
ZŒi � � � �� QŒi �

which has conductor ideal C D .X2 C 1/. It is straightforward to show that R D
ZCZXC .X2C1/QŒX�; in other words, a polynomial f 2 QŒX� is in R if and only
if the remainder after dividing by X2C1 is in ZŒX�. The ring ZŒi � is Bézout. To show
that R is not Bézout, we show that the ideal U D .X C 1;X2 C 1/R is not principal.

By way of contradiction, suppose that U is principal. Since the polynomials X C 1
and X2 C 1 are relatively prime in QŒX�, the ideal U is unitary. Theorem 6.8 (i)
provides a non-zero element c 2 U \Q such that U D cR. Since X C 1 2 U D cR,
we have .X C 1/=c 2 R. Given the explicit description of R, the condition c 2 R
implies that c 2 Z, and the condition .X C 1/=c 2 R implies that c D ˙1. We
conclude that 1 D ˙c 2 U D .XC1;X2C1/R, so there are elements p; q 2 R such
that 1 D .X C 1/p C .X2 C 1/q. Rewriting p and q using the explicit description
of R, we conclude that there are elements Qp 2 ZŒX� and Qq 2 QŒX� such that 1 D
.XC1/ QpC .X2C1/ Qq. Evaluating at i , we obtain the equation 1 D .iC1/ Qp.i/ which
implies that .1 � i/=2 D 1=.1C i/ D Qp.i/ 2 ZŒi � a contradiction.

7 Factorization in Pullbacks

In this section, we highlight a few examples in the theory of factorization supplied by
pullback constructions. First we recall some relevant definitions.

Definition 7.1. Let D be any integral domain.

(i) We denote by D	 the set of all nonzero nonunits of D.

(ii) We denote by A.D/ the set of all atoms (irreducible elements) of D.

(iii) We call D an atomic domain if for every a 2 D	, one has a factorization a D
p1p2 � � �pn where each pi 2 A.D/ and n � 1.

(iv) We say that D is ACCP if it satisfies the ascending chain condition on principal
ideals.

(v) We call D a half factorial domain (HFD) if for every a 2 D	, one has a fac-
torization a D p1p2 � � �pn where each pi 2 A.D/ and n � 1. Moreover, if
a D q1q2 � � � qn is any other such factorization, then m D n.
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The following implications are straightforward:

UFD �� HFD �� ACCP �� Atomic

Noetherian �� Mori

��

It is worth noting that these factorization properties are not well behaved in a con-
ductor square of the type .�/. In fact, one of the most basic constructions ZCXQŒX�
is not even atomic [17, Exercise 9.3.4] while the rings Z and QŒX� are UFDs. More
generally, if A � B , then A C XBŒX� is a UFD if and only if A D B and A is a
UFD. In order to investigate the weaker half factorial condition in the A C XBŒX�
construction, [15] makes the following definitions.

Definition 7.2. Let D be any integral domain.

(i) Two nonzero elements x; y 2 D are called v-coprime if xD \ yD D xyD.

(ii) A subset S 	 D is called a splitting multiplicative set of D if every d 2 D is
expressible as d D st where s 2 S and t is v-coprime to every element of S .

We can now give a characterization of the HFD property in the A C XBŒX� con-
struction.

Theorem 7.3 ([15, Corollary 3.5]). Let A � B be any pair of integral domains such
that B has a “proper” element b 2 B (no unit of B multiplies b into A). In the
conductor square .�/, set T D BŒX�, C D XBŒX�, and R D A C XBŒX�. The
following statements are equivalent:

(i) S D ¹g 2 R j g.0/ ¤ 0º is a splitting set of R.

(ii) R is an HFD and A � ¹0º is a splitting set of R.

(iii) B is integrally closed and A � ¹0º is a splitting set of R.

Example 7.4. We use the conductor square .�/ to exhibit some examples in the theory
of factorization.

(i) [32, Example 26] Though it is true that a domainD is a UFD if and only ifDŒX�
is a UFD, the same cannot be said about HFDs. Indeed, the ringR D RCXCŒX�
is a Noetherian HFD while the polynomial ring RŒt� is not an HFD. For example,
X � X � .1 C t2/ D X2 C X2t2 D .X C iXt/.X � iXt/ has an irreducible
factorization of length 2 and of length 3.

(ii) [32, Example 27] In [14, Theorem 2.2], it is shown that ifD is an integral domain
such that its polynomial ring DŒX� is an HFD, then D must be integrally closed.
However, we cannot conclude that D is completely integrally closed. Let A be
any UFD and let X; Y be indeterminates. If R D A C XAŒX; Y �, then R is an
HFD and its polynomial ring RŒt� is an HFD as well. However, R is neither a
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UFD nor completely integrally closed. For example, X;XY;XY 2 are all atoms
so that X � XY 2 D X2Y 2 D XY � XY is not a unique factorization into atoms.
Moreover, Y … R while XY n 2 R for all n � 1 so that R is not completely
integrally closed.

(iii) [32, Example 25] The integral closureD of an atomic integral domainD may not
be atomic. Let Z denote the set of all algebraic integers and setR D ZCXZŒX�.
Then R satisfies ACCP and is therefore atomic. However, the integral closure
R D ZŒX� of R is not atomic.

We conclude this paper with a result that guarantees that the ring R in the conductor
square .�/ is atomic.

Theorem 7.5 ([8]). For the conductor square .�/, we set C D X.X � 1/KŒX�, so
that B D K 
 K and A D D1 
 D2. Also, set S D ¹d1d2 j d1 2 D1; d2 2 D2º
and J0.R/ D R \K. If the following conditions hold, then the ring R defined by the
conductor square .�/ is atomic:

(i) S D K.

(ii) Every nonunit of J0.R/ is also a nonunit of D1 and D2.

(iii) The J0.R/-modules D1 and D2 satisfy ACC on their cyclic submodules.

Acknowledgments. We are grateful to Lee Klingler and the referee for valuable sug-
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