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Abstract. This article surveys the known results for several related families of ring properties
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1 Introduction

Let R be a commutative ring with identity and let G be an Abelian group written
multiplicatively. The group ring RG is the free R module on the elements of G with
multiplication induced by G. An element x in RG has a unique expression: x =
> geG ¥gg> where xg € R and all but finitely many xg are zero. With addition,
multiplication, and scalar multiplication by elements of R defined analogously to the
standard polynomial operations, RG becomes a commutative R algebra.

Properties of the group ring RG, particularly in conjunction with questions of de-
scent and ascent of these properties between R and RG, have been of interest for at
least 70 years. In his book Commutative Semigroup Rings [14], Gilmer traces the be-
ginning of a systematic interest in the nature of RG, for general rings R and groups G,
to Higman'’s article [28] published in 1940. The commutative case became of interest
in its own right when the general results reached a stage of specialization at the start of
the 1960s. Many of the classical ring theoretic results for the commutative case were
collected in two books published in 1983—-84: Gilmer [14], and Karpilovsky [32].

In this article, we survey the known results for several related families of properties
in the context of commutative group rings. These properties include: finiteness proper-
ties (such as Noetherianess, coherence, quasi coherence, and finite conductor proper-
ties), homological properties (such as weak global dimension behavior, von Neumann
regularity, semihereditarity, and regularity properties), and properties which connect
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these two families (such as zero divisor controlling conditions, and Priifer conditions).
Most of the work in this area has been done after the publication of [14], and [32], and
employs homological algebra techniques — a direction that was not considered in [14],
and only marginally touched in [32]. In addition to highlighting the recent progress
in these areas, the article points out open problems and possible future directions of
investigation.

Section 1 explores finiteness conditions in the commutative group ring setting. Par-
ticularly, this section includes the necessary and sufficient conditions for a group ring
to be Noetherian or Artinian (Connell [9]); the necessary and sufficient conditions for
a group ring to be coherent (Glaz [16]); and a discussion, particular cases, and open
questions, regarding the finite-conductor and quasi coherence properties. This discus-
sion brings in a number of factoriality properties that are closely related to the finite
conductor condition, such as GCD, G-GCD and UFD conditions.

Section 2 delves into homological conditions in the group ring setting. The sec-
tion includes the determination of necessary and sufficient conditions for a group ring
to be von Neumann regular (Auslander [2], McLaughlin [37], and Villamayor [44]),
semihereditary (Glaz [16]), or coherent regular (Glaz [20]). It also exhibits a formula
connecting the weak global dimension of RG with the weak global dimension of R
and rank G (Douglas [11], Glaz [16]), and ends with a discussion of possible future
directions of exploration of properties such as global dimension, Cohen—Macaulay and
Gorenstein ring conditions.

Section 3 considers three zero divisor controlling conditions that can be explored
by homological techniques: the PP condition, the PF condition, and the condition that
O(R), the total ring of fractions of the ring R, is von Neumann regular. The section
includes the determination of conditions for ascent and descent of these properties
between R and RG, (Schwarz and Glaz [43]). It also highlights the applications of
these results to the exploration of Priifer conditions in group ring setting (Schwarz
and Glaz [43]). The Priifer conditions under exploration include arithmetical rings,
Gaussian rings, locally Priifer rings, and Priifer rings.

2 Finiteness Conditions

Let RG be the group ring associated with a commutative ring R and a multiplicative
Abelian group G. The first finiteness conditions to be considered were the properties
of being a Noetherian or an Artinian ring. The results in this direction are due to
Connell [9].

Theorem 2.1 ([9]). Let R be a commutative ring and let G be an Abelian group. Then
RG is a Noetherian ring if and only if R is a Noetherian ring and G is a finitely
generated group.

As a corollary of this result, Connell [9] determined when a commutative group ring
is Artinian.
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Corollary 2.2 ([9]). Let R be a commutative ring and let G be an Abelian group. Then
RG is an Artinian ring if and only if R is an Artinian ring and G is a finite group.

The next finiteness property to be considered was coherence. We start by recalling
a few definitions.

Definition 2.3. Let R be a commutative ring. R is said to be stably coherent if the
polynomial rings in finitely many variables over R are all coherent rings.

It is well known that contrary to the situation for Noetherian rings, the coherence
of a ring R does not necessarily ascend to R[x], the polynomial ring in one variable
over R (see, for example, [17, Chapter 7] for Soublin’s example of such a case). But it
is still an open question whether the coherence of the polynomial ring in one variable
over a ring R implies the coherence of the polynomial rings in any finite number of
variables over R. In all cases where the coherence of R ascends to R[x] this is indeed
the case, although the proofs do not employ an inductive argument on the number of
variables (as is the case for Noetherian rings). The class of rings which are known
to be stably coherent is of considerable size. To name a few: Noetherian rings, von
Neumann regular rings, semihereditary rings, coherent rings of global dimension two,
and others, are all stably coherent rings. For more details see [17, Chapter 7].

Definition 2.4. Let G be a multiplicative Abelian group. The rank of G, denoted by
rank G can be defined as follows: A set of non identity elements of G, {g1, ..., gk}, IS
called independent if the equation g' g52 - -- g/¥ = 1, where 0 < n; € Z, implies that
g1 =g5* =--- = g* = 1. Aninfinite set of elements of G is called independent if
every finite subset of it is independent. By Zorn’s Lemma, for every group G we can
select an independent set of elements that contains only elements of infinite order and
is maximal with respect to this property. The cardinality of this set is rank G. Note

that if rank G > 0, then G contains a free subgroup of order rank G.

With these definitions we can now describe the conditions under which RG is a
coherent ring. The necessary and sufficient conditions for the coherence of RG were
found by Glaz [16].

Theorem 2.5 ([16]). Let R be a commutative ring and let G be an Abelian group.
(1) If G is a torsion group, then RG is a coherent ring if and only if R is a coherent
ring.
(i) If 0 <rank G = n < oo, then RG is a coherent ring if and only if the polynomial

ring in n variables over R is a coherent ring.

(iii) Ifrank G = oo, then RG is a coherent ring if and only if R is a stably coherent
ring.
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Several finiteness properties exist which relax the coherence conditions on the ring
without completely eliminating them. Prominent among those are the finite conductor
and quasi coherence properties.

Definition 2.6. Let R be a commutative ring. For an element ¢ in R denote by (0 : ¢)
the annihilator of ¢. R is said to be a finite conductor ring if aR N bR and (0 : ¢) are
finitely generated ideals of R for all elements a, b, and ¢ in R. A ring R is said to be
a quasi coherent ringifaj RN ---Na, R and (0 : ¢) are finitely generated ideals of R
for all elements ay,...,a,, and ¢ in R.

The finite conductor property for integral domains first came into prominence in
McAdam’s work [36]. Quasi coherence for integral domains was defined by Dobbs
[10]. The definitions for general rings are due to Glaz [18]. The theory of these rings
is developed in [18]; while [19] provides a survey of the results in this direction and
a multitude of examples. Among the class of finite conductor (also quasi coherent)
rings we count all coherent rings, UFDs, and GCD domains (that is, integral domains
where any two non zero elements have a greatest common divisor), and G-GCD do-
mains (that is, integral domains in which the intersection of two invertible ideals is an
invertible ideal). Glaz [18] generalized this last class of rings to rings with zero divi-
sors, and called them G-GCD rings (A ring R is a G-GCD ring if principal ideals of
R are projective and the intersection of any two finitely generated flat ideals of R is a
finitely generated flat ideal of R). Neither the finite conductor, not the quasi coherence
properties have been investigated in the general group ring setting. A few cases, where
the finite conductor (or quasi coherent) ring is a particular integral domain, have been
solved by Gilmer and Parker [15]. We provide these results in Theorems 2.7 and 2.9
below:

Theorem 2.7 ([15]). Let R be a commutative ring and let G be an Abelian group.
Then RG is a GCD domain if and only if R is a GCD domain and G is a torsion free

group.

Definition 2.8. Let G be an Abelian group. G is said to be cyclically Noetherian if G
satisfies the ascending chain conditions for cyclic subgroups.

Theorem 2.9 ([15]). Let R be an integral domain and let G be a torsion free Abelian
group. Then RG is a UFD if and only if R is a UFD and G is cyclically Noetherian.

In the general ring setting, it follows from [19, Proposition 3.2] that both the fi-
nite conductor and the quasi coherence properties descend from RG to R. Regarding
ascent of these properties from R to RG, [19, Proposition 3.1] reduces the question
to the case where G is finitely generated. Beyond this not much is known about the
ascent of either property, not even for the simple case, where R is a G-GCD ring and
the structure of RG can be made very explicit (for example, when G an infinite cyclic
group). We venture to make the following conjecture:
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Conjecture 2.10. If R is a G-GCD ring and G is a finitely generated free Abelian

group, then the finite conductor and the quasi coherent properties ascend from R
to RG.

A further exploration of these conditions in the group ring setting may shed light on
a problem that is still open: Are the finite conductor and the quasi coherence properties
distinct [18,19]?

3 Homological Dimensions and Regularity

Let RG be the group ring associated with a commutative ring R and a multiplicative
Abelian group G. The first homological condition to be considered in the commuta-
tive group ring setting was von Neumann regularity, that is, the case of weak global
dimension equal to zero. The determination of conditions under which RG is von
Neumann regular, given in Theorem 3.2, was discovered independently, and almost
simultaneously, by Auslander in 1957 [2], McLaughlin in 1958 [37], and Villamayor
in 1959 [44]. Their work was also the first to mention a condition linking the ring
R and the group G that plays an important role in the majority of results involving
homological considerations.

Definition 3.1. Let G be an Abelian group and let R be a commutative ring. R is said
to be uniquely divisible by the order of every element of G if for every g in G of finite
order n, n divides every element r € R, and if for r € R, we have r = ns = nt for
somef,s € R, thens = ¢.

Since R is a ring with identity, R is uniquely divisible by an integer n if and only if
n is a unit in R. It follows that for an Abelian group G the condition of Definition 3.1
is equivalent to asking that for every element g of G, with order of g equal to p, where
p 1s a prime number, p is a unit in R.

Theorem 3.2 ([2,37,44]). Let R be a commutative ring and let G be an Abelian group.
RG is a von Neumann regular ring if and only if the following three conditions hold:

(i) R is a von Neumann regular ring.
(1) G is a torsion group.

(iii) R is uniquely divisible by the order of every element of G.

A year after the solution of the von Neumann regular case, Douglas [11] found a
general connection between the weak global dimension of R and that of RG. This
result was proved independently and by a different method for the case where R is
a coherent ring by Glaz in 1987 [16]. Combining the conditions required for the co-
herence of RG with the formulas for the weak global dimension made it possible to
determine when a commutative group ring is semihereditary.
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Theorem 3.3 ([11, 16]). Let R be a commutative ring and let G be an Abelian group.
Then w.gl.dim RG < oo if and only if the following three conditions hold:

(i) w.gl.dimR < o0
@i1)) rank G < o0
(iii) R is uniquely divisible by the order of every element of G

Moreover, when condition (iii) holds we have:
w.gl.dim RG = w. gl.dim R + rank G.

One corollary of this theorem is another proof of the characterization of von Neu-
mann regular group rings given in Theorem 3.2.

Recall that a ring R is a semihereditary ring if every finitely generated ideal of R is
projective. The class of semihereditary rings possesses the next level of homological
complexity after the class of von Neumann regular rings. Specifically:

Theorem 3.4 ([17]). Let R be a commutative ring. The following conditions are equiv-
alent:

(1) R is a semihereditary ring.

(i1) R is a coherent ring and w. gl.dim R < 1.

(iii) Q(R), the total ring of fractions of R, is a von Neumann regular ring and Ry, is
a valuation domain for every maximal ideal m of R.

Equipped with this characterization Glaz [16] determined necessary and sufficient
conditions for a group ring to be semihereditary.

Theorem 3.5 ([16]). Let R be a commutative ring and let G be an Abelian group.
Then RG is a semihereditary ring if and only if exactly one of the following conditions
hold:

(i) R is a von Neumann regular ring, rank G = 1, and R is uniquely divisible by the
order of every element of G.

(ii) R is a semihereditary ring, G is a torsion group, and R is uniquely divisible by
the order of every element of G.

Since the group ring of an infinite cyclic group over R is isomorphic to R[x, x 1],
where x is an indeterminate over R, we obtain as a bonus the following corollary.

Corollary 3.6 ([16]). Let R be a commutative ring and let x be an indeterminate
over R. Then R[x,x~'] is a semihereditary ring if and only if R is a von Neumann
regular ring.

Definition 3.7. A commutative ring R is said to be a regular ring if every finitely
generated ideal of R has finite projective dimension.
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This notion coincides with the usual definition of regularity if the ring R is Noether-
ian. The notion had been extended to coherent rings with a considerable degree of
success. Examples of coherent regular rings include all coherent rings of finite weak
global dimension. In particular von Neumann regular rings and semihereditary rings
are coherent regular rings. But, contrary to the situation for Noetherian rings, there are
local coherent regular rings of infinite weak global dimension. One such ring is, for
example, k[[x1, X2, ...]], the power series ring in infinitely many indeterminates over
a field k. For a detailed account of the notion of regularity in the context of coherent
rings, see [17, Chapter 6].

It was therefore natural that the determination of necessary and sufficient conditions
for a group ring to be coherent of finite weak global dimension raised the following
question [16]: When is a group ring a coherent regular ring? This was answered by
Glaz in the follow up paper [20].

Theorem 3.8 ([20]). Let R be a commutative ring and let G be an Abelian group such
that RG is a coherent ring. Then RG is a regular ring if and only if the following two
conditions hold:

(1) R is a coherent regular ring.

(i1) R is uniquely divisible by the order of every element of G.

‘We note that it is not known if this result holds without the coherence assumption. In
general, although the notion of regularity of rings makes sense without any finiteness
assumption, the theory of regular rings that do not possess some finiteness condition
is still to be developed. Not much is known about regular rings that are not, at least,
coherent.

There are a number of open homological questions whose solutions will consider-
ably enrich our knowledge of the nature of group rings. A natural occurring question
is:

Question 3.9. Under what conditions can one find a formula (perhaps similar to the
formula found in Theorem 3.3) that connects the global dimension of RG, the global
dimension of R and some invariant of the group G?

Very little progress has been made in this direction. Particularly, the only known
result is in the case of global dimension zero, the so called semisimple rings. This
is a classical result called Maschke’s Theorem, stated in Theorem 3.10, which can
be found, for example, in [32]. It is not known in general under what conditions a
commutative group ring is semisimple or hereditary (that is, of global dimension equal
to one).

Theorem 3.10 ([32]). Let G be a finite group and let K be a field. Then KG is a
semisimple ring if and only if the characteristic of K does not divide the order of the
group G.
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Another interesting direction to consider is a relatively recent development in co-
herent ring theory, the extension of the Cohen—Macaulay and Gorenstein ring notions
to the non-Noetherian setting. Theories of coherent Cohen—-Macaulay and Goren-
stein rings have been developed by Hamilton, Marley, and Hummel (see, for exam-
ple, [25,26,29]). [30] provides an in-depth overview of the recent developments in the
subject and an extensive bibliography. It will be of much interest to explore the con-
ditions under which coherent group rings acquire the Cohen—Macaulay or Gorenstein
properties.

4 Zero Divisor Controlling Conditions

Let RG be the group ring associated with a commutative ring R and a multiplicative
Abelian group G. This section focuses on the recent results obtained by Schwarz
and Glaz [43] regarding a number of zero divisor controlling conditions that can be
explored using homological algebra techniques and some of the applications of these
results to Priifer conditions. The determination of conditions under which RG is a
domain goes back Higman’s 1940 article [28]:

Theorem 4.1 ([28]). Let R be a commutative ring and let G be an Abelian group. Then
RG is an integral domain if and only if R is an integral domain and G is a torsion free

group.

We note that for a commutative ring the property of being an integral domain may
be viewed as a homological condition on principal ideals of the ring. Specifically, a
commutative ring R is an integral domain if and only if its principal ideals are free
[43]. Therefore Theorem 4.1 states that principal ideals of RG are free if and only
if principal ideals of R are free and G is a torsion free group. Related homological
conditions on principal ideals yield two other zero divisor controlling conditions.

Definition 4.2. A commutative ring R is said to be a PP ring (or weak Baer ring) if
principal ideals of R are projective. R is said to be a PF ring if principal ideals of R
are flat.

PP rings were first introduced by Hattori [27] and Endo [12] in 1960. Hattori aimed
to develop a torsion theory for modules over general rings. This condition has impli-
cations on the nature of the annihilator ideals of elements of the ring, and as such on
the nature of the zero divisors. Specifically:

Theorem 4.3 ([4]). Let R be a commutative ring. The following conditions are equiv-
alent:

(i) R isa PP ring.

(ii) For every element a in R, the ideal (0 : a) is generated by an idempotent.
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(iii) Every element of R can be expressed as a product of a non zero divisor and an
idempotent.

Although possessing a weaker condition, PF rings can be more explicitly linked to
domains. Specifically:

Theorem 4.4 ([17,35]). Let R be a commutative ring. The following conditions are
equivalent:

(i) R isa PF ring.
(ii) Rp is a domain for every prime ideal p of R.
(iii)) Ry, is a domain for every maximal ideal m of R.

(iv) R is a reduced ring and every maximal ideal m of R contains a unique minimal
prime ideal p. In this case p = {r € R: thereisau € R—m such that ur = 0}
and Ry = Q(Rp), the quotient field of Ry.

The two conditions are related to another zero divisor controlling condition, namely
the requirement that Q(R), the total ring of fractions of R is von Neumann regular.
Denote by Min R the set of all minimal prime ideals of R with the induced Zariski
topology. The three zero divisor controlling conditions are closely linked in the theo-
rem below, which is Glaz’s [17] correction of a result of Quentel [39,40]:

Theorem 4.5 ([17,39,40]). Let R be a commutative ring. The following conditions are
equivalent:

(i) Risa PP ring.
(ii) R is a PF ring and Q(R) is a von Neumann regular ring.

(iii)) R is a PF ring and Min R is compact in the Zariski topology.

PP and PF rings make frequent appearances in the literature in a great variety of
contexts. The condition that Q(R) is von Neumann regular appears classically in the
characterization of semihereditary rings, Theorem 3.4, and has also appeared in a wide
variety of both classical and current investigations. For a small sample of papers where
some or all three of these conditions appear, see [1,7,12,13,17,27,31,33-35,39-42].
Recently all three conditions, but particularly the condition requiring the total ring of
quotients to be von Neumann regular, played an important role in the development of
the theory of Priifer conditions in rings with zero divisors, see [3—6,23] and [24] for
a comprehensive survey of this area. We further elaborate on this point later in this
section. In the context of group rings, the (not necessarily commutative) PP condition
was touched in Pelaez and Teply [38] and in Chen and Zan [8]. All three conditions
are explored in depth in Schwarz and Glaz [43], which contains further references to
other works involving these conditions. Most of the following results are taken from
Schwarz and Glaz [43].

We first resolved the case of von Neumann regularity of the total ring of quotients.
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Theorem 4.6 ([43]). Let R be a commutative ring, and let G be a group that is either
torsion free or R is uniquely divisible by the order of every element of G. If Q(R) is a
von Neumann regular ring, then Q (RG) is a von Neumann regular ring.

We note that the converse of this theorem is not true, even if the group is torsion
free. [43] provides an example of a torsion free group G (in fact infinite cyclic) and a
ring R with Q (RG) von Neumann regular, but Q (R) not von Neumann regular.

In contrast, if the group is torsion free the situation for the PP and the PF conditions
is more symmetrical.

Theorem 4.7 ([43]). Let R be a commutative ring, and let G be a torsion free group.
Then RG is a PF ring if and only if R is a PF ring.

Putting there two results together we conclude:

Corollary 4.8 ([43]). Let R be a commutative ring and let G be a torsion free group.
Then RG is a PP ring if and only if R is a PP ring.

We extended the descent results to the general case:

Theorem 4.9 ([43]). Let R be a commutative ring and let G be an Abelian group. If
RG is a PF ring (respectively, a PP ring), then R is a PF ring (respectively, a PP ring)
and G is either a torsion free group or R is uniquely divisible by every element of G.

The converse of Theorem 4.9 does not hold if G is not a torsion free group for either
the PP or the PF case. Chen and Zan [8] provide an example of a ring R which is PP
and a group G such that R is uniquely divisible by the order of every element of G,
but RG is not a PP ring. Schwarz and Glaz [43] show that in this case RG is not a PF
ring either.

We conclude this section with an application of the results we obtained for the three
zero divisor controlling conditions in this section to the extension of the Priifer con-
ditions to rings with zero divisors. Priifer domains admit many equivalent definitions.
Through the years several of these conditions were explored in a general ring setting,
and although there are strong connections between them, in general these conditions
were not found to be equivalent.

Definition 4.10. A ring R is said to be an arithmetical ring if ideals of Ry, are totally
ordered by inclusion for each maximal ideal m of R. Let R be a commutative ring
and let f € R[x], the polynomial ring in one variable over R. The so-called content
of f, denoted c(f), is the ideal of R generated by the coefficients of f. R is said to
be a Gaussian ring if c(fg) = c¢(f)c(g) for all f, g € R[x]. R is said to be a Priifer
ring if every finitely generated regular ideal of R is invertible. R is said to be a locally
Priifer ring if R is a Priifer ring for every prime ideal p of R.



Finiteness and Homological Conditions in Commutative Group Rings 139

In particular, we considered the following extensions of a Priifer domain notion to
rings with zero divisors:

(i) R is a semihereditary ring.
(i) w.gl.dimR <1
(iii) R is an arithmetical ring.
(iv) R is a Gaussian ring.

(v) R is alocally Priifer ring.
(vi) R is a Priifer ring.

These six Priifer conditions had been extensively studied for the last 5 to 7 years.
For a comprehensive survey and an extensive list of references on the subject see [4]
and [24]. In particular, [3, 6,22] show that the Priifer conditions listed above satisfy
the following diagram of strict implications.

(i) = (i) = (iil) = (1v) = (v) = (vi).

Glaz [23] and Bazzoni and Glaz [3, 4] found conditions that allow for reversals
of implications for properties (i)—(iv) and (vi), while Boynton [6] covered the same
ground for property (v). In particular, the three zero divisor controlling conditions
described in this section allow several reversals of implications and if Q(R) is a von
Neumann regular ring, then conditions (i)—(vi) are equivalent for the ring R.

Theorem 3.5 gives the exact conditions under which a commutative group ring sat-
isfies the first Priifer condition, that is, the semihereditary condition. As a corollary of
Theorem 3.3, we obtain similar conditions for a commutative group ring to satisfy the
second Priifer condition, that is, w. gl. dim R < 1.

Theorem 4.11 ([43]). Let R be a commutative ring and let G be an Abelian group.
Then w.gl.dim RG = 1 if and only if exactly one of the following conditions hold:

(1) R is a von Neumann regular ring, rank G = 1, and R is uniquely divisible by the
order of every element of G.

(i) w.gl.dim R = 1, G is a torsion group, and R is uniquely divisible by the order
of every element of G.

Using the result of Theorem 4.6 we can prove the following:

Theorem 4.12 ([43]). Let R be a commutative ring, and let G be a torsion free or a
mixed Abelian group. Then the following conditions are equivalent:

(1) RG is a semihereditary ring.
(i) w.gl.dimRG =1
(iii) RG is an arithmetical ring.

(iv) RG is a Gaussian ring.



140 S. Glaz and R. Schwarz

(V) RG is a locally Priifer ring.
(vi) RG is a Priifer ring.

(vii) R is a von Neumann regular ring and rank G = 1.

Some of these equivalences (iii), (vi), and (vii) were proved by different methods
in [14] and [15]. As a consequence we obtain as a corollary:

Corollary 4.13 ([43]). Let R be a commutative ring and let x be an indeterminate
over R. Then R[x, x| satisfies any of the six Priifer conditions if and only if R is a
von Neumann regular ring.

If G is a torsion group and R is uniquely divisible by the order of every element of
G, we obtain a result similar to Theorem 4.12 under the assumption that the total ring
of fractions of R is von Neumann regular.

Theorem 4.14 ([43]). Let R be a commutative ring such that Q (R), the total ring of
fractions of R, is von Neumann regular. Let G be a torsion Abelian group and assume
that R is uniquely divisible by the order of every element of G. Then the following
conditions are equivalent:

(1) RG is a semihereditary ring.
(i) w.gl.dim RG =1
(i) RG is an arithmetical ring.
(iv) RG is a Gaussian ring.
(v) RG is a locally Priifer ring.
(vi) RG is a Priifer ring.
(vil) R is a semihereditary ring.

An example is given in [43], which shows that the conclusions of Theorem 4.14
need not hold without the assumption that Q(R) is von Neumann regular. At this
point the conditions on R and G under which RG satisfies any of the individual Priifer
conditions (iii)—(vi) are not clear. We note that there are several scattered results in
the literature giving conditions under which a commutative group ring satisfies one

of the Priifer conditions (iii)—(vi), but those seem to be ad hoc conditions that do not
generalize. For example, below is a result from [14]:

Theorem 4.15 ([14]). Let R be a local arithmetical ring with maximal ideal m and
let ¢ = char(R/m). Assume that G is a finite group of prime power order p*, where
¢ # p. Then RG is an arithmetical ring.
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Some examples of group rings that satisfy some, but not other of the six Priifer
conditions also muddy the waters (see [43] for more details). The answer may, or
may not, lie in the exploration of other zero divisor controlling conditions in RG. In
any case, it is worthwhile exploring other zero divisor controlling conditions in the
group ring setting. See [21] for a survey of many of these conditions that appear in the
literature.

As a concluding remark, we point out that some of the properties described in this
article in the setting when R is a commutative ring and G is an Abelian group have
been extended to the case where G is an Abelian monoid. But not all the properties
described in this article were considered in this case. In particular, the recent work on
Priifer conditions and zero divisor controlling conditions have not yet been considered
in the Abelian monoid setting. Given that in the past such extensions yielded rich and
interesting results, this is one direction worth pursuing.
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