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1 Introduction

There have been quite a few books and survey articles on tight closure (e.g. [40, 49,
50, 71, 72]), on integral closure (e.g. [51, 73, 74]), and on star-operations on integral
domains (e.g. [23; 25, Chapters 32 and 34] but as far as this author knows, no such
article on closure operations in general. However, several authors (e.g. [9, 19, 75]) have
recently found it useful to consider closure operations as a subject in itself, so I write
this article as an attempt to provide an overall framework. This article is intended both
for the expert in one closure operation or another who wants to see how it relates to
the rest, and for the lay commutative algebraist who wants a first look at what closure
operations are. For the most part, this article will not go into the reasons why any given
closure operation is important. Instead, I will concentrate on the structural aspects of
closure operations, how closure operations arise, how to think about them, and how to
analyze them.

The reader may ask: “If the only closure operation I am interested in is ¢, why
should I care about other closure operations?”” Among other reasons: the power of
analogical thinking is central to what mathematicians do. If the d-theorists have dis-
covered or used a property of their closure operation d, the c-theorist may use this to
investigate the analogous property for c, and may not have thought to do so without
knowledge of d-closure. Morover, what holds trivially for one closure operation can
be a deep theorem (or only hold in special cases) for another — and vice versa. A good
example is persistence (see Section 4.3).

The author was partially supported by a grant from the DFG (German Research Foundation).
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In most survey articles, one finds a relatively well-defined subject and a more-or-
less linear progression of ideas. The subject exists as such in the minds of those who
practice it before the article is written, and the function of the article is to introduce
new people to the already extant system of ideas. The current article serves a somewhat
different function, as the ideas in this paper are not linked sociologically so much
as axiomatically. Indeed, there are at least three socially distinct groups of people
studying these things, some of whom seem barely to be aware of each other’s existence.
In this article, one of my goals is to bridge that gap.

The structure of the article is as follows: In Section 2, I introduce the notion of
closures, eleven typical examples, and some non-examples. In Section 3, T exhibit
six simple constructions and show how all the closure operations from Section 2 arise
from these. The next section, Section 4, concerns properties that closures may have;
it comprises more than 1/4 of the paper! In it, we spend a good bit of time on star-
and semi-prime operations, after which we devote a subsection each to forcing al-
gebras, persistence, homological conjectures, tight closure-like properties, and (ho-
mogeneous) equational closures. The short Section 5 explores a tightly related set of
notions involving what happens when one looks at the collection of subideals that have
the same closure as a given ideal. In Section 6, we explore ring properties that arise
from certain ideals being closed. Finally in Section 7, we talk about various ways
to extend to closures on (sub)modules. Beyond the material in Sections 2 and 3, the
reader may read the remaining sections in almost any order.

Throughout this paper, R is a commutative ring with unity. At this point, one would
normally either say that R will be assumed Noetherian, or that R will not necessarily
be assumed to be Noetherian. However, one of the reasons for the gap mentioned
above is that people are often scared off by such statements. It is true that many of the
examples I present here seem to work best (and are most studied) in the Noetherian
context. On the other hand, I have also included some of the main examples and
constructions that are most interesting in the non-Noetherian case. As my own training
is among those who work mainly with Noetherian rings, it probably is inevitable that
I will sometimes unknowingly assume a ring is Noetherian. In any case, the article
should remain accessible and interesting to all readers.

2 What Is a Closure Operation?
2.1 The Basics

Definition 2.1.1. Let R be a ring. A closure operation cl on a set of ideals 4 of R is a
setmapcl: J — 4 (I — 1) satisfying the following conditions:

(i) (Extension) I € I forall I € J.
(ii) (Idempotence) ¢! = (1) forall I € .

(ili) (Order-preservation) If J C I are ideals of d, then J¢ C <.,



A Guide to Closure Operations in Commutative Algebra 3

If 4 is the set of all ideals of R, then we say that cl is a closure operation on R.
We say that an ideal I € J is cl-closed if I = I°!.

As far as I know, this concept is due to E. H. Moore [60], who defined it (over a
century ago!) more generally for subsets of a set, rather than ideals of a ring. Moore’s
context was mathematical analysis. His has been the accepted definition of “closure
operation” in lattice theory and universal algebra ever since (e.g. [5, V.1] or [12, 7.1]).
Oddly, this general definition of closure operation does not seem to have gained cur-
rency in commutative algebra until the late 1980s [62, 64], although more special
structures already had standard terminologies associated to them (see 4.1).

Example 2.1.2 (Examples of closures). The reader is invited to find his/her favorite
closure(s) on the following list. Alternately, the list may be skipped and referred back
to when an unfamiliar closure is encountered in the text.

@

(ii)

(iii)

(iv)

)

The identity closure, sending each ideal to itself, is a closure operation on R.
(In multiplicative ideal theory, this is usually called the d-operation.)

The indiscrete closure, sending each ideal to the unit ideal R, is also a closure
operation on R.

The radical is the first nontrivial example of a closure operation on an arbitrary
ring R. It may be defined in one of two equivalent ways. Either

VI = € R | Japositive integer n such that " € I
p g

or
VI = ﬂ{p € SpecR | I C p}.

The importance of the radical is basic in the field of algebraic geometry, due to

Hilbert’s Nullstellensatz (cf. any introductory textbook on algebraic geometry).

Let a be a fixed ideal of R. Then a-saturation is a closure operation on R. Using
the usual notation of (— : a®°), we may define it as follows:

(I :a®) = U(I :a") ={r € R|3n € N such that a"r C I}
neN
This operation is important in the study of local cohomology. Indeed,
(I :a®)
—

The integral closure is a closure operation as well. One of the many equivalent
definitions is as follows: For an element r € R and an ideal 7 of R, r € I~ if

HX(R/I) =

! Some may find my choice of notation surprising. Popular notations for integral closure include I,
and 7. T avoid the first of these because it looks like a variable subscript, as the letter a does not
seem to stand for anything. The problem with the second notation is that it is overly ambiguous.
Such notation can mean integral closure of rings, integral closure of ideals, a quotient module, and
so forth. So in my articles, I choose to use the /™ notation to make it more consistent with the
notation of other closure operations (such as tight, Frobenius, and plus closures).
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(vi)

(vii)

(viii)

(ix)

x)

(xi)

there existn € N and a; € I for 1 <i < n such that
n
"+ Zairn_’ =0.

Integral closure is a big topic. See for instance the books [51, 74].

Let R be an integral domain. Then plus closure is a closure operation. It is
traditionally linked with tight closure (see below), and defined as follows: For
an ideal I and an element x € R, we say that x € I if there is some injective
map R — § of integral domains, which makes S a finite R-module, such that
x € IS. (See Section 3.2 (vi) for general R.)

Let R be a ring of prime characteristic p > 0. Then Frobenius closure is a
closure operation on R. To define this, we need the concept of bracket powers.
For an ideal I, I[P"] is defined to be the ideal generated by all the p”th powers
of elements of /. For an ideal / and an element x € R, we say that x € [ Fif
there is some n € N such that x?" € 7LP"],

Let R be a ring of prime characteristic p > 0. Then tight closure is a closure
operation on R. For an ideal I and an element x € R, we say that x € I*
if there is some power eg € N such that the ideal ﬂezeo(l[l’e] : xP%) is not
contained in any minimal prime of R.

Let R be a complete local domain. For an R-algebra S, we say that S is solid
if Homg (S, R) # 0. We define solid closure on R by saying that x € I* if
x € IS for some solid R-algebra S. (See 3.2(ix) for general R.)

Let A be a multiplicatively closed set of ideals. The A-closure [64] of an ideal
Iis I® := Ukea(IK : K). Ratliff [64] shows close connections between
A-closure and integral closure for appropriate choices of A.

If (R, m) is local, and [ is m-primary, then the basically full closure [31] of 1
is /° := (Jm : m). (Note: This is a closure operation even for non-m-primary
ideals /. However, only for m-primary / does it produce the smallest so-called
“basically full” ideal that contains /.)

Additional examples of closures include the v-, t-, and w-operations (4.1), various
tight closure imitators (4.5), continuous and axes closures [8], natural closure [20], and
weak subintegral closure [77]. (See the references for more details on these last four.)

Some properties follow from the axiomatic definition of a closure operation:

Proposition 2.1.3. Let R be a ring and cl a closure operation. Let I be an ideal and
{1y }aen a set of ideals.

(i) If every Iy is cl-closed, so is (), Ia-
(i) Ny 1% is cl-closed.
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(iii) I¢ is the intersection of all cl-closed ideals that contain I .
. 1 1
(V) (g le™)” = (X4 )"

Proof. Let I and {I,} be as above.

(i) For any 8 € »A, we have (1), Io € Ig, so since cl is order-preserving, we have
(N 1) < IﬂCI = I. Since this holds for any 8, we have (), Io) € Nplp =
ma 1 o

(i1) This follows directly from part (i).

(iii) Let J be an ideal such that I € J = J°. Then by order-preservation, / o c
JY = J, so I is contained in the given intersection. But since 7' = (/") is one of
the ideals being intersected, the conclusion follows.

(iv) ‘D’: By the Extension property, I, D I, so D I, D > o o Then the
conclusion follows from order-preservation.

‘C: Forany B € A, Ig € Y, la € (34 Ia)!, so by order-preservation and
idempotence, I[;CI C (X, I)H = (3, 1)!. Since this holds for all B € 4, we
have 3", 1o € (3", Ta)!. u|

We finish the subsection on “basics” by giving two alternate characterizations of
closure operations on R:

Remark 2.1.4. Here is a “low-tech” way of looking at closure operations, due essen-
tially to Moore [60]. Namely, giving a closure operation is equivalent to giving a
collection € of ideals such that the intersection of any subcollection is also in €.

For suppose cl is a closure operation on R. Let € be the class of cl-closed ideals.
That is, I € € iff I = I°'. By Proposition 2.1.3 (i), the intersection of any subcollec-
tion of ideals in € is also in €.

Conversely, suppose € is a collection of ideals for which the intersection of any
subcollection is in €. For an ideal 7, let I¢ := ("{J | I € J € €}. All three
of the defining properties of closure operations follow easily. Hence, cl is a closure
operation.

The applicability of this observation is obvious: Given any collection of ideals in a
ring, one may obtain a closure operation from it by extending it to contain all intersec-
tions of the ideals in the collection, and letting these be the closed ideals. The resulting
closure operation may then be used to analyze the property that defined the original
class of ideals.

Remark 2.1.5. On the other hand, here is a “high-tech” way of looking at closure
operations. Let R be a ring, and € be the category associated to the partially ordered
set of ideals of R. Then a closure operation on R is the same thing as a monad in
the category € (see [58, VI.1] for the definition of monad in a category). It is easy to
see that any monad in a poset is idempotent, and the theory of idempotent monads is
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central in the study of so-called “localization functors” in algebraic topology (thanks
to G. Biedermann and G. Raptis, who mention [1, Chapter 2] as a good source, for
pointing me in this direction).

2.2 Not-quite-closure Operations

It should be noted that the three given axioms of closure operations are independent
of each other; many operations on ideals satisfy two of the axioms without satisfying
the third. For example, the operation on ideals that sends every ideal to the 0 ideal
is idempotent (condition (ii)) and is order-preserving (condition (iii)), but of course is
not extensive unless R is the zero ring.

For an operation that is extensive (i) and order-preserving (iii), but is not idempotent,
let f be a fixed element (or ideal) of R, and consider the operation I +— (I : f). This
is almost never idempotent. For example one always has ((f2 : f) : f) = (f?:
f?) = R of course, but if f is any nonzero element of the Jacobson radical of R, then
(f2:H#R

Another non-idempotent operation that is extensive and order-preserving is the so-
called “a-tight closure", for a fixed ideal a [28], denoted (-)*®. By definition, x € I*¢
if there is some ep € N such that the ideal () eseoL [P] . qP°xP%) is not contained
in any minimal prime. In their Remark 1.4, Hara and Yoshida note that if a = (f)
is a principal ideal, then I*® = (I* : a), an operation which we have already noted
fails to be idempotent. (For a similarly-defined operation which actually is a closure
operation, see [79].)

Consider the operation which sends each ideal I to its unmixed part 1™ [50].
This is defined by looking at the primary ideals (commonly called components) in an
irredundant minimal primary decomposition of 7, and then intersecting those com-
ponents that have maximum dimension. Although the decomposition is not uniquely
determined, the components of maximum dimension are, so this is a well-defined op-
eration. Moreover, this operation is extensive (i) and idempotent (ii) (since all the
components of /""™ already have the same dimension), but is not order-preserving
in general. For an example, let R = k[x, y] be a polynomial ring in two variables
over a field k, and let J := (x2,xy) and I := (x2,xy,y?). Then J C I, but
JUM = (x) € I"™™ = [. Similar comments apply in the 3-variable case when
J = (xy,xz)and I = (y,z).

For another extensive, idempotent operation which is not order-preserving, consider
the “Ratliff—Rush closure” (or “Ratliff-Rush operation™), given in [65], defined on so-
called regular ideals (where an ideal I of R is regular if it contains an R-regular
element), defined by I:= U I(I’H'1 1), In [30, 1.11] (resp. in [29, 1.1]), the
domain R := k[x3,x*] (resp. R := k|[x, y]) is given where k is any field and x, y
indeterminates over k, along with nonzero ideals J < I of R such that J & 7.

Many of the topics and questions explored in this article could be applied to these
not-quite-closure operations as well, but additional care is needed.
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3 Constructing Closure Operations

There are, however, some actions one can take which always produce closure opera-
tions.

3.1 Standard Constructions

Construction 3.1.1. Let U be an R-module. Then the operation I + I := {f €
R| fU CIU} = ({U :g U) gives a closure operation on R. Extension and order-
preservation are clear. As for idempotence, suppose f € (I)!. Then fU < I°U.
But for any g € 14, gU C IU, whence 1¢U C IU, so fU C IU as required.

As we shall see, this is a very productive way to obtain closure operations, especially
when U is an R-algebra. For example, letting a be an ideal of R and U := R/a, we
see that the assignment / — I + a gives a closure operation. On the other hand,
letting U := a, the resulting closure operation becomes / + (/a : a), which is the
basis for the A-closures of [64] and for the basically full closure of [31].

Construction 3.1.2. We give here a variant on Construction 3.1.1.

Let ¢ : R — S be a ring homomorphism and let d be a closure operation on S.
For ideals I of R, define I¢ := ¢~ 1((¢(1)S)?). (One might loosely write 1¢ :=
(I5)% N R.) Then c is a closure operation on R.

Extension and order-preservation are clear. As for idempotence, if f € (1°)°, then
$(f) € (I9)S)! S (USH* = (IS), s0 that f € I°.

Construction 3.1.3. Let {c) } e be an arbitrary collection of closure operations on
ideals of R. Then /¢ := ("), I* gives a closure operation as well.?

Again, extension and order-preservation are clear. As for idempotence, suppose
f € (I°)°. Then for every A € A, we have f € (I°)°*. But since /¢ C [ and c)
preserves order, we have

fedH? M) =1,

where the last property follows from the idempotence of c;. Since A € A was chosen
arbitrarily, f € € as required.

For the next construction, we need to mention the natural partial order on closure
operations on a ring R. Namely, if ¢ and d are closure operations, we write ¢ < d if
for every ideal I, 1€ C [ d,

Construction 3.1.4. Let {c) } e be a directed set of closure operations. That is, for
any A1,z € A, there exists some p € A such thatcy, < ¢, fori = 1,2. Moreover,
assume that R is Noetherian. Then /¢ := ], .5 [+ gives a closure operation.

2 Similar considerations in the context of star-operations on integral domains are used in [2] to give
lattice structures on certain classes of closure operations.
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First note that 7€ is indeed an ideal. It is the sum ) aen 1. After this, extension
and order-preservation are clear. Next, we note that for any ideal 7, there is some
W € A such that 1€ = I°. To see this, we use the fact that /€ is finitely generated
along with the directedness of the set {c) | A € A}. Namely, /¢ = (fi,..., fu); each
fi € I®i;thenletc, be such thatcy, <cj, fori =1,...,n.

To show idempotence, take any ideal /. By what we just showed, there exist
A1, A2 € A such that (7€) = (I°)*1 and I¢ = I°2. Choose ; € A such that
¢y, <cyfori =1,2. Then

(IC)C — (1012)@\1 C (ICM)CIL — [u C IC.

Construction 3.1.5. Let d be an operation on (ideals of) R that satisfies properties (i)
and (iii) of Definition 2.1.1, but is not idempotent. Let § be the set of all closure
operations on R defined by the property that ¢ € § if and only if 79 € I°¢ for all ideals
I of R. Then by Construction 3.1.3, the assignment / > [9~ := (Nees I€ isitself a
closure operation, called the idempotent hull of d [15, Section 4.6]. It is obviously the
smallest closure operation lying above d.

If R is Noetherian, it is equivalent to do the following: Let d! := d, and for each
integer n > 2, we inductively define d” by setting /4" := (I Glnil)d. Let 1Y :=
U, 1 " for all /. One may routinely check that d’ is an extensive, order-preserving
operation on ideals of R, and idempotence follows from the ascending chain condition
on the ideals {/9" },en. Clearly, I¢ = 197,

Construction 3.1.6. This construction is only relevant when R is not necessarily Noe-
therian.
Let ¢ be a closure operation. Then we define ¢y by setting

1 = U{J ¢ | J afinitely generated ideal such that J C I}.

This is a closure operation: Extension follows from looking at the principal ideals
(x) for all x € I. Order-preservation is obvious. As for idempotence, suppose z €
(1<7)<s. Then there is some finitely generated ideal J < [ such that z € J€. Let
{z1,...,zn} be a finite generating set for J. Since each z; € 1/, there exist finitely
generated ideals K; C I such that z; € K§. Now let K := Y /_, K;. Then J C K¢,
so that

ze€ J°C(K) =K",

and since K is a finitely generated sub-ideal of 7, it follows that z € 1/,
If ¢ = cr, we say that c is of finite type. Clearly cy is of finite type for any clo-

sure operation c, and it is the largest finite-type closure operation d such that d < c.
Connected with this, we have the following:

Proposition 3.1.7. Let ¢ be a closure operation of finite type on R. Then every c-closed
ideal is contained in a c-closed ideal that is maximal among c-closed ideals.
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The proof is a standard Zorn’s lemma argument. The point is that the union of a
chain of c-closed ideals is c-closed because c is of finite type.

3.2 Common Closures as Iterations of Standard Constructions

Here we will show that essentially all the closures we gave in Example 2.1.2 result as
iterations of the constructions just given:

@
(i)
(ii1)

(iv)

v)

(vi)

The identity needs no particular construction.
The indiscrete closure is an example of Construction 3.1.1, by letting U = 0.

As for the radical, we use the characterization of it being the intersection of the
prime ideals that contain the ideal. Consider the maps 7, : R — Rp/pRp =:
k (p) for prime ideals p. Note that

~1 p, ifI Sp,
w, (Ik =

P (Zic(p)) {R, otherwise.
Let I? := m; L(Ik(p)). This is an instance of Construction 3.1.1 with U =
k(p), and the intersection of all such closures (Construction 3.1.3) is the radical.

That is, v = (Npespec & 1*-

The a-saturation may be obtained in one of two ways. Assuming one already
has the extensive, order-preserving operation (— : a), then applying Construc-
tion 3.1.5 yields the a-saturation.

Alternately, let {a) | A € A} be a generating set for a, with each @) # 0. Let
€5 1 R — Rg, be the localization map. Then each (I : a§°) = ZII(IRM) =:
I* is an instance of Construction 3.1.1 (or 3.1.2, if you like), and we may apply
Construction 3.1.3 to get (1 : a®) = (N2 (I 1 aS°) = Nzep I*

For integral closure, let p be a minimal prime of R, let V' be a valuation ring (or
if R/p is Noetherian, it’s enough to let V' be a rank 1 discrete valuation ring)
between R/p and its fraction field, let jyy : R — V be the natural map, and
let IV = Jv L(IV) (which gives a closure operation via Construction 3.1.1
with U = V). Then it is a theorem (e.g. [S1, Theorem 6.8.3]) that /=~ =

Matt sueh v ¥ » which is an application of Construction 3.1.3.

For plus closure, when R is an integral domain, let Q be its fraction field, @ an
algebraic closure of Q, and let R be the integral closure of R in Q. That is,
R consists of all elements of O that satisfy a monic polynomial over R. Then
we let It := IRT N R, by way of Construction 3.1.1 with U = R*.

In the general case, where R is not necessarily a domain, for each minimal
prime p of R we let mp : R — R/p be the natural surjection. Then / t =
(Nal such p er_l ((IR/p)™), via Construction 3.1.2.
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(vii) For Frobenius closure (when R has positive prime characteristic p), we intro-
duce the left R-modules ¢R for all ¢ € N. ¢R has the same additive group
structure as R (with elements being denoted ¢r for each r € R), and R-module
structure given as follows: Fora € R and ¢r € ¢R, a -°r = ¢(a?‘r). Let
fo : R — €R be the R-module map given by a > a -¢1 = ¢(a?"). Let F, be
the closure operation given by I fe := f.71(I-¢R), via Construction 3.1.1. Note
that this is a totally ordered set (and hence a directed set) of closure operations,
in that F, < F,11 for all e, due to the R-module maps R — ¢*1R given by

¢r > ¢T1(rP). Thus, we may use Construction 3.1.4 to get I¥ := |, o I 7e.

(viii) For tight closure (when R has positive prime characteristic p), we cannot use
these constructions directly. However, recall the theorem [37, Theorem 8.6]
that under quite mild assumptions on R (namely the same ones that guarantee
persistence of tight closure, see 4.3), I* = I*, and use the constructions for
solid closure below.

(ix) For solid closure (when R is a complete local domain), letting ig : R — S
for solid R-algebras S and / S .= iEl (1S) by way of Construction 3.1.1 with
U = §, we note that this is a directed set of closure operations, since [37,
Proposition 2.1a] if S and T are solid R-algebras, sois S ® g T. Thus, we have
I* = Ui suchis I S via Construction 3.1.4.

For general R: Let m be a maximal ideal of R, R™ the completion of Ry,
at its maximal ideal, p a minimal prime of R™, and Uy, : R — R™/p
the natural map. Then we use Constructions 3.1.3 and 3.1.2 to get [* :=

—1 D
mall such pairs 1, p um,p((l Rm/p)*)-

(x) For A-closure, first note that for any ideal K € A, IX := (IK : K) gives a
closure operation via Construction 3.1.1 with U = K. Next, note that the clo-
sure operations {(—)X | K € A} form a directed set, since for any H, K € A,
1" 4+ X C [KH Thus, Construction 3.1.4 applies to give 12 := | Jgca IX.

(xi) For basically full closure, we merely apply Construction 3.1.1 with U = m.

4 Properties of Closures

4.1 Star-, Semi-prime, and Prime Operations

Definition 4.1.1. Let cl be a closure operation for a ring R. We say that cl is
(i) semi-prime [63]if for all ideals I, J of R, we have I-J' C (1J)¢!. (Equivalently,
(197 = (17)" forall 1, J.)

(ii) a star-operation [25, Chapter 32 and see below] if for every ideal J and every
non-zerodivisor x of R, (xJ) = x - (J).

(iii) prime [55, 56, 64] if it is a semi-prime star-operation.
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Sociological Comment. In the literature of so-called “multiplicative ideal theory”
(which is, roughly, that branch of commutative algebra that uses [25] as its basic text-
book), the definition of star-operation is somewhat different from the above. Namely,
one assumes first that R is an integral domain, one defines star-operations on fractional
ideals of R. However, when R is a domain, it is equivalent to do as I have done above.
Moreover, the terminology of star-operations is different from the terminology of this
article. For instance, if c is a star-operation on a domain R, then /€ is not called the
c-closure, but rather the c-envelope (or sometimes c-image) of I, and if I = I€, then
1 is said to be a c-ideal. For the sake of self-containedness, I have elected rather to use
the terminology I was raised on.

The field of closure operations on Noetherian rings has remained nearly disjoint
from the field of star- (and “semistar-"") operations on integral domains. I think this
is largely because the two groups of people have historically been interested in very
different problems and baseline assumptions. Multiplicative ideal theorists do not like
to assume their rings are Noetherian, for example. But I feel it would save a good deal
of energy if the two fields would come together to some extent. After all, there are
very reasonable assumptions under which tight, integral, plus, and Frobenius closures
are prime- (and hence star-) operations (see below). This provides the star-operation
theorists with a fresh infusion of star-operations to study, and it provides those who
study said closures with a fresh arsenal of tools with which to study them.

I take the point of view natural to one of my training, in which one generalizes from
integral domains to general commutative rings.

First note the following:

Lemma 4.1.2. Let cl be a closure operation on a ring R.

(1) cl is a semi-prime operation if and only if for all x € R and ideals J C R, we
have x - J9 C (xJ)°L.

(ii) If R is an integral domain, then cl is a star-operation if and only if it is prime.
Proof. 1f cl is a semi-prime operation, then for any x € R and ideal J € R, we have
x-J9V=(x)-JC () ) = (xJ)°.

Conversely, suppose xJ C (xJ)° for all x and J. Let / be an ideal of R, and let
{aj}ren be a generating set for /. Then

J.J9 = Z aj - g - Z(ak‘])d c (Za,’\])d _ (]J)Cl’
A

AEA A

so that cl is semi-prime.
Now suppose R is an integral domain. By definition any prime operation must
be a star-operation. So let cl be a star-operation on R. To see that it is semi-prime,
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we use part (). For any x € R, either x = 0 or x is a non-zerodivisor. Clearly
0-J%=0c 0% = (0J). And if x is a non-zerodivisor, then x - J< = (xJ)° by
definition of star-operation. O

One reason why the star-operation property is useful is as follows: any star-operation
admits a unique extension to the set of fractional ideals of R (where a fractional ideal
is defined to be a submodule M of Q, the total quotient ring of R, such that for
some non-zerodivisor f of R, fM < R). Namely, if cl is a star-operation and M
is a fractional ideal, an element x € Q is in M if fx € (fM), where f is a
non-zerodivisor of R such that fM C R. After this observation, another important
property of star-operations is that if two fractional ideals M, N are isomorphic, their
closures are isomorphic as well.

Star-operations are important in the study of so-called Kronecker function rings (for
a historical and topical overview of this connection, see [23]). However, the star-
operation property is somewhat limiting. For instance, I leave it as an exercise for the
reader to show that if R is a local Noetherian ring, then the radical operation on R is a
star-operation if and only if depth R = 0. The only star-operation on a rank 1 discrete
valuation ring is the identity. On the other hand, it is well known that integral closure
is a star-operation on R if and only if R is normal. This is true of tight closure as well:

Proposition 4.1.3. Consider the following property for a closure operation cl:
For any non-zerodivisor x € R and any ideal I, I®' = ((xI)* : x). (#)

(i) A closure operation cl is a star-operation if and only if it satisfies (#) and (x)¢' =
(x) for all non-zerodivisors x € R.

(i1) Closure operations that satisfy (#) include plus-closure (when R is a domain),
integral closure, tight closure (in characteristic p > 0), and Frobenius closure.

Proof. (i) Suppose cl is a star-operation, x is a non-zerodivisor, and / an ideal. Then
X)) = ()R = x- R = (x), and ((xI)' : x) = (x(I°) : x) (since cl is a
star-operation) = [/ ¢l (since x is a non-zerodivisor).

Conversely, suppose cl satisfies (#) and that all principal ideals generated by non-
zerodivisors are cl-closed. For a non-zerodivisor x and ideal I, we have x - I¢! =
x - ((xD) 1 x) € (xI), so we need only show that (x7)! € x - I°". So suppose
g € (xI). Since xI C (x), it follows that g € (x)*! = (x), so g = xf for some
f € R. Thus, xf € (xI),s0 f € (xI)": x) = I, whence g = xf € x -1 as
required.

(ii) (Frobenius closure): Let g € ((xI)F : x). Then xg € (xI)F, so there is some
q = p" such that

x7g? = (xg)! € (x])[q] = x4rlal

Since x is a non-zerodivisor, g7 € 19!, whence g € IF.
(Tight closure): The proof is similar to the Frobenius closure case.
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(Plus closure): If xg € (xI)™, then there is some module-finite domain extension
R C S suchthat xg € xIS. Butsince x is a non-zero element of the domain S' (hence
a non-zerodivisor on ), it follows that g € IS, whence g € I ™.

(Integral closure): Suppose xg € (x/)~. Then there is some n € N and elements
a; € (xI)' (1 <i < n) such that

(xg)" + Y _ai(xg)"" =0.

i=1

But each a; € (xI)' = x'I’, so for some b; € I' (for each i), we have a; = x'b;.
Then the displayed equation yields:

x" (g” + i:big"_i) =0,

i=1
and since x" is a non-zerodivisor, it follows that g € . O

Semi-prime operations, however, are ubiquitous. (In fact, some authors [54] even
include the property in their basic definition of what a closure operation is!) One can,
of course, cook up a non-semi-prime closure operation, even on a rank 1 discrete valu-
ation ring [75, Example 2.3]. However, essentially all the examples and constructions
explored so far yield semi-prime operations, in the following sense (noting that all of
the following statements have easy proofs):

e Any closure arising from Construction 3.1.1 is semi-prime.

¢ In Construction 3.1.2, if d is a semi-prime operation on S, then ¢ is a semi-prime
operation on R.

* In Construction 3.1.3, if every c, is semi-prime, then so is c.
¢ In Construction 3.1.4, if every cj is semi-prime, then so is c.

« In Construction 3.1.5, if 7 - J4 € (1J)9 for all ideals 7, J of R, then d* is
semi-prime.

 In Construction 3.1.6, if ¢ is semi-prime, then so is ¢ fe

* Hence by 3.2, all of the closures from Example 2.1.2 are semi-prime.’

Here are some nice properties of semi-prime closure operations:

Proposition 4.1.4. Let cl be a semi-prime closure operation on R. Let I, J be ideals
of R, and W a multiplicatively closed subset of R.

G) (I : ) < (I: J). Hence if I is cl-closed, then so is (I : J).
(i) (I°: J) is cl-closed.

3 One need not go through solid closure to show that tight closure must always be semi-prime.
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(iii) If R is Noetherian and I is cl-closed, then (IW~'R) N R is cl-closed.

(iv) If R is Noetherian and I is cl-closed, then all the minimal primary components
of I are cl-closed. Hence, if I = I has no embedded components, it has a
primary decomposition by cl-closed ideals.

(v) The maximal elements of the set {I | I° = I # R} are prime ideals.

Proof. ()Let f € (I :JJ)". ThenJf CJ(I :J) < (J-(I:J)" I

(i1) follows directly from part (i).

(ii)Let J ;== /W™ 'R)NR. ThenJ = {f € R | Jw € W suchthatwf € I}.
But J is finitely generated (since R is Noetherian); say J = (f1,..., f»). Then for
each 1 <i < n, there exists w; € W such that w; f; € I. Let w := ]_[;’=1 w;. Then
wJ € I,s0J € (I : w). Butitis obvious that (/ : w) € J,soJ = ({ : w). Then
the conclusion follows from part (i).

(iv) The minimal primary components of I look like /Rp N R, for each minimal
prime P over /. Then the conclusion follows from part (iii).

(v) Let I be such a maximal element. Let x, y € Rsuchthatxy € [ and y ¢ I.
Then (I : x) is a cl-closed ideal (by part (i)) that properly contains / (since y €
(I : x)\ I), so since I is maximal among proper cl-closed ideals, it follows that
(I : x) = R, which means that x € . O

Finally, here is a construction on semi-prime operations:

Construction 4.1.5. Let ¢ be a semi-prime closure operation on R. Let cs-Max R (see
Construction 3.1.6 for the definition of c¢s) denote the set of cy-closed ideals which
are maximal among the set of all cs-closed ideals. By Proposition 4.1.4 (v), cs-Max R
consists of prime ideals, and by Proposition 3.1.7, every cy-closed ideal is contained
in a member of cs-Max R. Then we define ¢y, as follows:

I :={x e R|Vpecs-Max R, 3d € R\ psuchthatdx € I}.

In other words, 7°» consists of all the elements of R that land in the extension of I to
all localizations R — Ry for p € cy-Max R. As this arises from Constructions 3.1.1
and 3.1.3, ¢y, is a semi-prime closure operation.

Moreover, ¢y, < cr. To see this, let x € [°%. Then for all p € cr-Max R, there
exists dy € R\ p with dyx € I. Let J be the ideal generated by the set {dy | p € c¢-
Max R}. Then Jx C [ and J = R, so since ¢ £ is semi-prime, we have

x=1-x€eR(x)=JY(x)C (Jx) CIY.

If R is a domain, and c is a star-operation (i.e. prime), then this construction is
essentially due to [3], who show that in this context ¢, distributes over finite intersec-
tions, is of finite type, and is the largest star-operation d of finite type that distributes
over finite intersection such thatd < c.
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The v-operation

Arguably the most important star-operation (at least in the theory of star-operations per
se) is the so-called v-operation. Classically it was only defined when R is a domain
[25, Chapters 16, 32, 34], but it works in general. Most star-operations in the literature
(among those that are identified as star-operations) are based in one way or another on
the v-operation:

Definition 4.1.6. Let R be aring and Q its total quotient ring. For an ideal 7, the set /,
is defined to be the intersection of all cyclic R-submodules M of Q such that I C M.

Proposition 4.1.7. (i) v is a star-operation.

(ii) For any star-operation cl on R, 1! C I, for all ideals I of R. (That is, v is the
largest star-operation on R.)

(ii1) There exists a ring R for which v is not semi-prime (and hence not prime).

Proof. Ttis easy to see that v is a closure operation. For the star-operation property, let
x be a non-zerodivisor and / an ideal of R. Leta € I,. Let M be a cyclic submodule
of Q that contains x/. Then M = R - ? for some r, s € R with s a non-zerodivisor.
Moreover, xI € M implies that I C R-é. Sincea € I,, we havea € R-é as well,
so that xa € R - ? = M. Thus, xa € (xI)y as required.

For the opposite inclusion, we first note that principal ideals are v-closed because
they are cyclic R-submodules of Q. Now let a € (x/)y. Since xI < (x), we have
a € (xI)y € (x)y = (x),s0a = xb forsome b € R. Let M = R - 5 be a cyclic
submodule of Q that contains /. Then x/ € xM = R - xs—r, so since a € (xI)y, it
follows that xb =a € xM = R - xs—’ = x - R- %. Since x is a non-zerodivisor on Q,
we can cancel it to get b € R - § = M, whence b € I,. Thus,a = xb € x - I, as
required.

Now let cl be an arbitrary star-operation on R, and / an ideal. Let M = R - g be
a cyclic submodule of R that contains / (so that r, s € R and s is not a zerodivisor).
Then sI € rR = (r), so that

s 1= (s < () = ().

Thatis, I € R-% = M. Thus, I C I,.
For the counterexample, let

R :=k[X.Y]/(X?, XY, Y?) = k[x,y].

where k is a field and X, Y are indeterminates over k (with the images in R denoted
x, y respectively). Let m := (x, y) be the unique maximal ideal of R. Since R is
an Artinian local ring, it is equal to its own total ring of quotients, and so the cyclic
R-submodules of said ring of quotients are just the principal ideals of R. Since m is
not contained in any proper principal ideal of R, we have my, = R. Thus, m - m, =
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m - R = m. On the other hand, (mm), = (m?), = 0, = 0, which shows that
m -y € (mm)y, whence v is not semi-prime. O

Remark 4.1.8. When R is an integral domain, parts (i) and (ii) of the above Propo-
sition are well known (and since by Lemma 4.1.2, any star-operation on a domain is
prime, the analogue of (iii) is false). Two other well-known properties of the v-oper-
ation in the domain case are as follows:

* Homg(Homg(/, R), R) = I, as R-modules. For this reason, the v-operation is
sometimes also called the reflexive hull operation on ideals.

o I, = (I7Y)7!. (Recall that for a fractional ideal J of R, /™! := {x € O |
xJ € R}, where Q is the quotient field of R.) For this reason, the v-operation is
sometimes also called the divisorial closure.

These ideas have obvious connections to Picard groups and divisor class groups.

The t- and w-operations (see e.g. [80]) should be mentioned here as well. By defini-
tion, t := \73 (via Construction 3.1.6). When R is a domain, the w-operation is defined
by w := vy, (by Construction 4.1.5). So if R is a domain, then t is semi-prime, but
otherwise it need not be (as the counterexample in Proposition 4.1.7 shows), and w
may not even be well-defined in the non-domain case.

4.2 Closures Defined by Properties of (Generic) Forcing Algebras

Let R be aring, I a (finitely generated) ideal and f € R. Then a forcing algebra [37]
for [I; f] consists of an R-algebra A such that (the image of) f € [A. In particu-
lar, given a generating set I = (f1,..., fn), one may construct the generic forcing
algebra A for the data [ f1, ..., fn: f], given by

A= R[Tl,...,Tn]/(f—kifiTi).

i=1

Clearly A is a forcing algebra for [I; f]. Moreover, if B is any other forcing algebra
for [I; f7], there is an R-algebra map A — B. To see this, if f € IB, then there exist
bi,....by € Bsuchthat f + Y 7_; fibi = 0. Then we define the map A — B by
sending each T; +— b;.

Many closure operations may be characterized by properties of generic forcing al-
gebras. This viewpoint is explored in some detail in [9], where connections are also
made with so-called Grothendieck topologies. We list a few (taken from [9]), letting
f,I:=(f1,..., fn), and A be as above:

e f € I (the identity closure of 1) if and only if R is a forcing algebra for [ f; I].
That is, f € [ if and only if there is an R-algebra map A — R. In geometric
terms, one says that the structure map Spec A — Spec R has a section.
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e f e /1 if and only if f € IK for all fields K that are R-algebras, if and
only if the ring map R — A has the lying-over property, if and only if the map
Spec A — Spec R is surjective (as a set map).

e f el ifand onlyif f € I'V for all rank-1 discrete valuations of R (appropri-
ately defined), if and only if for all such V, there is an R-algebra map A — V.
It is not immediately obvious, but this is equivalent to the topological property
that the map Spec A — Spec R is universally submersive (also called a universal
topological epimorphism).

o If R has prime characteristic p > 0, f € IF if and only if f € IRy, if and
only if there is an R-algebra map A — Reo.

The final closure to note in this context is solid closure (the connection of which to tight
closure has already been noted). For simplicity, let (R, nt) be a complete local domain
of dimension d. We have f € I'* if and only if there is some solid R-algebra S such
that f € IS, i.e. iff there is an R-algebra map A — S. Hochster [37, Corollary 2.4]
showed in turn that this is equivalent to the condition that Hlﬁl1 (A) # 0. (!) This
viewpoint brings in all sorts of cohomological tools into the study of solid closure, and
hence tight closure in characteristic p. Such tools were crucial in the proof that tight
closure does not always commute with localization [10].

4.3 Persistence

Although it is possible to do so, usually one does not define a closure operation one
ring at a time. The more common thing to do is define the closure operation for a whole
class of rings. In such cases, the most important closure operations are persistent:

Definition 4.3.1. Let R be a subcategory of the category of commutative rings; let c be
a closure operation defined on the rings of JR. We say that c is persistent if for any ring
homomorphism ¢ : R — § in R and any ideal / of R, one has ¢(1°)S C (¢(1)S)°.

Common choices for R are

e All rings and ring homomorphisms.

 Any full subcategory of the category of rings.
¢ Graded rings and graded homomorphisms.

¢ Local rings and local homomorphisms.

For instance, it is easy to show that radical and integral closure are persistent on the
category of all rings (as are the identity and indiscrete closures), and that Frobenius
closure is persistent on characteristic p rings. Tight closure is persistent along maps
R — S of characteristic p rings, as long as either R/ V0 is F-finite or R is essentially
of finite type over an excellent local ring, although this is truly a deep theorem [44].
On the other hand, tight closure is persistent on the category of equal characteristic 0
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rings because of the way it is defined (see the discussion after Theorem 4.5.1). Satu-
ration (with respect to the maximal ideal) is persistent on the category of local rings
and local homomorphisms, as well as on the category of graded rings and graded ho-
momorphisms over a fixed base field.

Plus closure is also persistent on the category of integral domains, as is evident from
the fact that the operation of taking absolute integral closure of the domains involved
is weakly functorial, in the sense that any such map R — S extends (not necessarily
uniquely) to a map RT — ST [42, p. 139]. This argument may be extended to
show that plus closure is persistent on the category of all rings as well, by considering
minimal primes.

Basically full closure, however, is not persistent, even if we restrict to complete
local rings of dimension one, mi-primary ideals, and local homomorphisms R — §
such that S becomes a finite R-module. For a counterexample, let k be any field, let
X, v, z be analytic indeterminates over k, let R := k[x, y]/(x%,xy), I := yR, S :=
klx,y.z]/(x%, xy, z?), and let the map (R, m) — (S, 1) be the obvious inclusion.
Then I°f = (my :g m) = (x, y) because x is killed by all of m. But x ¢ (15)* =
(ny :s n) because zx € ux \ ny. (Indeed, IS is a basically full ideal of S.)

4.4 Axioms Related to the Homological Conjectures

A treatment of closure operations would not be complete without mentioning the so-
called “homological conjectures” (for which we assume all rings are Noetherian). So
named by Mel Hochster, these comprise a complex list of reasonable-sounding state-
ments that have been central to research in commutative algebra since the 1970s. For
the original treatment, see [35]. For a more modern treatment, see [39]. Rather than
trying to cover the topic comprehensively, consider the following two conjectures:

Conjecture 4.4.1 (Direct Summand Conjecture). Let R — S be an injective ring
homomorphism, where R is a regular local ring, such that S is module-finite over R.
Then R is a direct summand of S, considered as R-modules.

Conjecture 4.4.2 (Cohen—Macaulayness of Direct Summands conjecture). Let A —
R be a ring homomorphism which makes A a direct summand of R, and suppose R is
regular. Then A is Cohen—Macaulay.

Assuming a “sufficiently good” closure operation in mixed characteristic, these con-
jectures would be theorems. Indeed, they are theorems in equal characteristic, a fact
which can be seen as a consequence of the existence of tight closure, as discussed in
Section 4.5 (although the proof in equal characteristic of Conjecture 4.4.1 predated
tight closure by some 15 years [34], as did a proof of some special cases of Conjec-
ture 4.4.2 that come from invariant theory [46]).

Consider the following axioms for a closure operation cl on a category &R of Noether-
ian rings:
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(i) (Persistence) For ring maps R — S in R, we have /¢S C (15)°.
(ii) (Tightness) If R is a regular ring in R, then / ¢l = J for all ideals I of R.

(iii) (Plus-capturing) If R — S is a module-finite extensions of integral domains in
R and [ is any ideal of R, then IS N R C I (i.e. IT C I

(iv) (Colon-capturing) Let R be a local ring in R and x1, ..., xg a system of param-
eters. Thenforall 0 <i <d — 1, (x1,...,x;i) : Xi41 € (x1,...,x)°L.

Notation. Let d € N, and let a, b be numbers such that either ¢ = b is a rational
prime number, @ = b = 0, ora = 0 and b is a rational prime number. For any such
triple (d,a.,b), let R4 4 5 be the category of complete local domains (R, mt) such that
dim R = d, char R = a, and char(R/m) = b.

Proposition 4.4.3. Let (d, a, b) be a triple as above.
Suppose a closure operation cl exists on the category R g 4 p that satisfies conditions
(1), (ii), and (iii) above. Then the Direct Summand Conjecture holds in the category

Rd.ab-

Proof. Let R — S be a module-finite injective ring homomorphism in R4 4 5, Where
R is a regular local ring. Let I be any ideal of R. Then / € ISN R € I = I by
properties (iii) and (ii). That is, R — S is cyclically pure. But then by [36], since R is
a Noetherian domain it follows that R — S is pure. Since S is module-finite over R,
it follows that R is a direct summand of S [47, Corollary 5.3]. O

Proposition 4.4.4. Let (d, a, b) be as above.
Suppose a closure operation cl exists on the category R g , p that satisfies conditions
(1), (ii), and (iv) above. Then Conjecture 4.4.2 holds in the category R g 4 p-

Proof. Let A — R be a local ring homomorphism of Noetherian local rings such that
A is a direct summand of R, and suppose R is regular. Let xq, ..., xy be a system of
parameters for A, and pick some 0 < i < d. Then

(X1,...,xi) :xj+1 C (xl,...,xi)Cl C (xl,...,xi)CIRﬂA

C (X1, ., X)) RN A= (x1,....x)) RNA=(x1,...,%:).
Thus, A is Cohen—Macaulay. a

Remark 4.4.5. These ideas are closely related to Hochster’s big Cohen—Macaulay
modules conjecture. Indeed, Conjecture 4.4.1 holds when R has a so-called ‘big
Cohen—Macaulay module’ (see e.g. [39, the final remark of §4]). When R is a com-
plete local domain, Dietz [14] has given axioms for a persistent, residual closure opera-
tion on R-modules (see Section 7 for the basics on module closures) that are equivalent
to the existence of a big Cohen—Macaulay module over R.
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4.5 Tight Closure and Its Imitators

Tight closure has been used, among other things, to carry out the program laid out in
Section 4.4 in cases where the ring contains a field. Indeed, we have the following:

Theorem 4.5.1 ([41, 45]). Consider the category R := Ry , p, Where d is any non-
negative integer and p > 0 is either a prime number or zero. Then we have

(1) (Persistence) For ring maps R — S in R, we have I*S C (IS)*.
(ii) (Tightness) If R is a regular ring in R, then I* = I for all ideals I of R.

(iii) (Plus-capturing) If R — S is a module-finite extensions of integral domains in
R and I is any ideal of R, then IS N R C I*. (i.e. IT C I*)

(iv) (Colon-capturing) Let R be a local ring in R and x1, ..., xg4 a system of param-
eters. Thenforall0 <i <d — 1, (x1,...,%;) 1 Xi+1 € (x1,....x)*

(v) (Briangon—Skoda property) For any R € R and any ideal I of R,
aH-crrci .

Hence, by Propositions 4.4.3 and 4.4.4, both the Direct Summand Conjecture and
Conjecture 4.4.2 hold in equal characteristic.

Tight closure is defined (in [45]) for finitely generated (Q-algebras by a process of
“reduction to characteristic p”, a time-honored technique that we will not get into here
(but see Definition 6.3.1 for a baby version of it). Next, tight closure was defined on
arbitrary (excellent) Q-algebras in an “equational” way (see Section 4.6), and then
Artin approximation must be employed to demonstrate that it has the properties given
in Theorem 4.5.1. This is a long process, so various attempts have been made to give
a closure operation in equal characteristic 0 that circumvents it. More importantly,
though, people have been trying to obtain a closure operation in mixed characteristic
that has the right properties.

The first such attempt was probably solid closure [37], already discussed. Unfor-
tunately, it fails tightness for regular rings of dimension 3 [67]. Parasolid closure [7]
(a variant of solid closure) agrees with tight closure in characteristic p, and it has all
the right properties in equal characteristic 0, but is not necessarily easier to work with
than tight closure, and it may or may not have the right properties in mixed charac-
teristic. Other at least partially successful attempts include parameter tight closure
[38], diamond closure [48] and dagger closure (defined in [43], but shown to satisfy
tightness just recently in [11]).

The most successful progress on the homological conjectures since the advent of
tight closure theory is probably represented by Heitmann’s proof [33] of the direct
summand conjecture (Conjecture 4.4.1) for R3,9,, (i.e. in mixed characteristic in di-
mension 3), which he does according to the program laid out above. Indeed, he shows
the analogue of Theorem 4.5.1 when R = R3 9, , and tight closure is replaced every-
where with extended plus closure, denoted epf, first defined in his earlier paper [32].
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(So in fact, his proof works to show the dimension 3 version of Conjecture 4.4.2 as
well.)

4.6 (Homogeneous) Equational Closures and Localization

Let cl be a closure operation on some category &R of rings. We say that cl commutes
with localization in R if for any ring R and any multiplicative set W C R such
that the localization map R — W~IR is in R, and for any ideal / of R, we have
I9W=IR) = IW™IR).

Tight closure does not commute with localization [10], unlike Frobenius closure,
plus closure, integral closure, and radical. In joint work with Mel Hochster [21], we
investigated what it is that makes a persistent closure operation commute with local-
ization, and in so doing we construct a tight-closure-like operation that does commute
with localization. Our closure is in general smaller than tight closure, though in many
cases (see below), it does in fact coincide with tight closure.

To do this, we introduce the concepts of equational and homogeneous(ly equational)
closure operations. The former notion is given implicitly in [45], where Hochster and
Huneke define the characteristic 0 version of tight closure in an equational way.

In the following, we let A be a fixed base ring. Often A = [, Z, or Q.

Definition 4.6.1. Let ¥ be the category of finitely generated A-algebras, and let c be
a persistent closure operation on ¥ . Then the equational version of ¢, denoted ceq, is
defined on the category of all A-algebras as follows: Let R be a A-algebra, f € R,
and [ anideal of R. Then f € [°® if there exists A € ¥, anideal J of A, g € A, and
a A-algebramap ¢ : A — Rsuchthatg € J¢, ¢p(g) = f,and ¢(J) C I.

Let ¢ be the category of finitely generated N-graded A-algebras A which have
the property that [A]p = A. Let ¢ be a persistent closure operation on §. Then the
homogeneous(ly equational) version of c, denoted ch, is defined on the category of
all A-algebras as follows: Let R be a A-algebra, f € R, and I an ideal of R. Then
f e I°"if there exists A € &, a homogeneous ideal J of A, a homogeneous element
g € A,and a A-algebramap¢ : A — Rsuchthat g € J¢, ¢(g) = f,and ¢(J) C I.

If c is a closure operation on A-algebras, we say it is equational if one always has
I¢ = I°4, or homogeneous if one always has ¢ = I°h,

In [21], we prove the following theorem:

Theorem 4.6.2. Suppose c is a homogeneous closure operation. Then it commutes with
arbitrary localization. That is, if R is a A-algebra, I an ideal, and W a multiplicative
subset of R, then (W~11)¢ = W=1(I°).

In particular, homogeneous tight closure (I*") commutes with localization. The
following theorem gives circumstances under which /* = I*!. Parts (i) and (iii)
involve cases where tight closure was already known to commute with localization,
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thus providing a “reason” that it commutes in these cases. Part (ii) gives a reason
why the coefficient field in Brenner and Monsky’s counterexample is transcendental
over [Fp.

Theorem 4.6.3. Let R be an excellent Noetherian ring which is either of prime char-
acteristic p > 0 or of equal characteristic 0.
(1) If I is a parameter ideal (or more generally, if R/ I has finite phantom projective
dimension as an R-module), then 1* = I*".

(i) If R is a finitely generated and positively-graded k-algebra, where k is an alge-
braic extension of F, or of Q, and I is an ideal generated by forms of positive
degree, then 1* = I*h,

(iii) If R is a binomial ring over any field k (that is, R = k[X1,..., X,]/J, where
the X are indeterminates and J is generated by polynomials with at most two
terms each), then for any ideal I of R, I* = I*".

5 Reductions, Special Parts of Closures, Spreads, and Cores

5.1 Nakayama Closures and Reductions

Definition 5.1.1. [18] Let (R, m) be a Noetherian local ring. A closure operation c on
ideals of R is Nakayama if whenever J, I are ideals such that J C I C (J 4+ m[)°,
it follows that J¢ = €.

It turns out that many closure operations are Nakayama. For example, integral clo-
sure [61], tight closure [18], plus closure [17], and Frobenius closure [19] are all
Nakayama closures under extremely mild conditions. The fact that the identity clo-
sure is Nakayama is a special case of the classical Nakayama lemma (which is where
the name of the condition comes from). However, radical is not Nakayama. For exam-
ple, if R = k[x] (the ring of power series in one variable over a field k), J = 0, and
I = (x) = wm, thenclearly J € [ € +/J + w/, but the radical ideals J and [ are
distinct.

Definition 5.1.2. Let R be a ring, ¢ a closure operation on R, and J C [ ideals. We
say that J is a c-reduction of I if J¢ = I°. A c-reduction J C [ is minimal if for all
ideals K ¢ J, K is not a c-reduction of /.

For any Nakayama closure c, one can make a very strong statement about the exis-
tence of minimal c-reductions:

Lemma 5.1.3 ([18, Lemma 2.2]). If cl is a Nakayama closure on R and I an ideal,
then for any cl-reduction J of I, there is a minimal cl-reduction K of I contained
in J. Moreover, in this situation any minimal generating set of K extends to a minimal
generating set of J.
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This is another reason to see that radical is not Nakayama, as, for instance, the ideal
(x) in the example above has no minimal V/ -reductions at all.

5.2 Special Parts of Closures

Consider the following notion from [19]:

Definition 5.2.1. Let (R, m) be a Noetherian local ring and ¢ a closure operation on R.
Let 4 be the set of all ideals of R. Then a set map csp : 4 — d is a special part of ¢ if
it satisfies the following properties for all 7, J € J:

(1) (Trapped) m/ C I®P C [°€,
(i) (Depends only on the closure) (/€)*P = [P,
(iii) (Order-preserving) If J < [ then J*P C [P,
(iv) (Special Nakayama property) If / C I C (J + IP)¢, then I C J°.

Of course, any closure operation c that admits a special part csp must be a Nakayama
closure. Examples of special parts of closures include:

» “Special tight closure” (first defined by Adela Vraciu in [78]), when R is excel-
lent and of prime characteristic p:

I[*P = {f € R| x% e (mI9l)* for some power gq of p}.

» The special part of Frobenius closure (see [19]), when R has prime characteris-
tic p:
IF% .= {f e R|x% e mI9] for some power gq of p}.

e The special part of integral closure (see [19]):
I™P:={f e R|x" € (mlI™)™ for some n € N}.
¢ The special part of plus closure (when R is a domain) (see [17]):

IT™P:={f eR| f €Jac(S)IS for some module-finite
domain extension R — S},

where Jac(S) is the Jacobson radical of S

All of these are in fact special parts of the corresponding closures. Moreover, we
have the following:

Proposition 5.2.2.
o If (R, m) has a perfect residue field, then IT = I + I'T for all ideals I [19].

e If (R, m) is a Henselian domain with algebraically closed residue field, then
It =1+ 17 forallideals I [17].
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o If(R,m) is either an excellent, analytically irreducible domain with algebraically
closed residue field, or an excellent normal domain with perfect residue field, then
I* =1 + I™P forall ideals I [18, 52].

This property is called special c-decomposition, and goes back to the theorem of
Huneke and Vraciu [52] on tight closure, and K. Smith’s theorem [70, Theorem 2.2]
as a kind of pre-history. Of course integral closure fails this property rather badly.
Nevertheless, special c-decompositions allow for the following, matroidal proof of the
existence of the notion of “spread” in such circumstances:

Theorem 5.2.3. Suppose c is a closure with a special part csp. Suppose the following
property holds:

() 1€ =1+ I°P forall ideals I of R.

Let I be an arbitrary ideal. Then every minimal c-reduction of I is generated by the
same number of elements: the c-spread £¢(1) of 1.

Proof. Let J, K be minimal c-reductions of /. Say {ai,...,a,} is a minimal gener-
ating set for J, {b1, ..., b,} is a minimal generating set for K, andn < r.

Claim. There is a reordering of the a;’s in such a way that for each 0 < i < n, we
have I C L{, where L; := (ay,...,ai,bit+1,...,by).

Proof of Claim. We proceed by descending induction on i. If i = n there is nothing to
prove. So assume that I C L‘l? for some 1 < i < n. We need to show that / C L‘l?
It suffices to show that a; € L;j_,, since this would imply that L; € L;_,.

Notethath; € I° = L; = L; —I—L?p (by property («)). Hence, there existr;,s; € R
such that

-1

n i
csp
b; + Z rjbj+ZSjajeLi .
j=it1 =1

If all the s; € m, then

n
bi+ Y ribjemL;+Li* =L{T =I*")NK = K’ N K = mK,
j=i+1

contradicting the fact that the b; form a minimal generating set for K. Hence, by
reordering the a;, we may assume that s; ¢ .
Thus, a; € Li—1 + L?p. It then follows from the special Nakayama property that

aj € Lj_,, as required. O

Applying the Claim with i = 0 gives that I C L = (b1,...,b,). But since
K was a minimal c-reduction of I, it follows that (by,...,by) = K = (by,...,by),
whencen = r. O
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Remark 5.2.4. Integral closure does not satisfy quite the same matroidal properties
shared by plus closure, tight closure, and Frobenius closure, but it does so ‘generically’
as shown in [6].

It is natural to ask the following: Suppose c is a closure operation with well-defined
c-spread £¢. If one picks a random collection of £¢ (/) elements of I /wm/, will their
lifts to I generate a minimal c-reduction of /? This is unknown in general, but at least
for integral closure and tight closure, the answer is often “yes”:

Proposition 5.2.5. Let I be an ideal of the Noetherian local ring (R, m). Suppose we
are in one of the following situations:

e [61, Theorem 5.1] R has infinite residue field, and ¢ = integral closure.

¢ [24, Theorem 4.5] char R = p > 0 prime, R is excellent and normal with infinite
perfect residue field, and c = tight closure.

Let £ := £°(I). Then there is a Zariski-open subset U C (I /mI)* such that whenever
X1,...,Xx¢ € I are such that (x; + wl,...,xg +wml) € U, the ideal (x1,...,xp) is
a minimal c-reduction of 1.

As soon as one knows that minimal c-reductions exist in the sense given in Lemma
5.1.3 (thus, for any Nakayama closure c), one can investigate the c-core of an ideal,
which is by definition the intersection of all its (minimal) c-reductions. When ¢ =
integral closure (in which case we just call this object the core), this notion was first
investigated by Rees and Sally [66]. They showed that if R is a regular local ring
of dimension d, then for any ideal 7, (I¢)~ C core(!). Fouli and Vassilev [24] have
investigated the relationship between the core and the *-core of ideals in rings of prime
characteristic p.

In joint work with Holger Brenner, we are developing a related notion (which one
could call “specific c-closure” co’), which we show in many cases coincides with csp,
defined as follows: Let c be a closure operation defined by certain properties of generic
forcing algebras (see Section 4.2). That is, let (R, m) be local and for f € R and an
ideal I = (f1,..., fa) of R,let A = R[Ty,..., Ty]/(f + X_7—; fiTi). Consider the
ideal n := mA + (Ty,...,T,) of A. Suppose that J is a property of R-algebras such
that f € 1€ if and only if A has property &. We say that f is in the specific c-closure
of I if Ay also has property &#. In the cases where both are defined, we can show
that /P C [°°. Moreover, we show that Fsp = Fo in general, that +sp = +0 in
Henselian domains (e.g. complete local domains), and that *sp = »o in normal local
domains of prime characteristic with perfect residue field.

6 Classes of Rings Defined by Closed Ideals

A typical reason that a closure operation is studied in the first place is often that the
closedness of certain classes of ideals is related (and often equivalent) to the ring hav-
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ing certain desirable properties. In the following, we will give examples based on
various closure operations.

6.1 When Is the Zero Ideal Closed?

When ¢ = F, +, %, %, +/ ., or —, we have 0° = /0, the nilradical of the ring. Hence,
in these cases, the zero ideal is closed iff the ring is reduced.

For a local ring (R, m), we have (0 : m®) = HQ(R). So the zero ideal is m-
saturated iff depth R > min{dim R, 1} (that is, iff R is an (S;) ring).

6.2 When Are 0 and Principal Ideals Generated by Non-zerodivisors
Closed?

Example (Radical). For a Noetherian ring R, the answer here is: “R is a product of
fields”. First, note that if R is a product of fields, all ideals are radical. Conversely,
R is a Noetherian ring where 0 and all principal ideals generated by non-zerodivisors
are radical. As noted above, the fact that O is radical means that R is reduced. Now
take any non-zerodivisor z of R. We have z € /(z2) = (z?) (since z2 is a non-
zerodivisor), so there is some r € R with z = rz2. Thatis, z(1 — rz) = 0. Since z
is a non-zerodivisor, this means that rz = 1, so that z is a unit. Hence R is a reduced
ring in which all non-zerodivisors are units, and thus a product of fields.
When R is reduced, this condition may be written: R = Q(R).

Example (Integral and tight closures). Recall that for reduced rings, tight closure and
integral closure coincide for principal ideals. So in these cases, we may look at inte-
gral closure, in which case the answer is: “R is integrally closed in its total ring of
fractions".

For suppose R is integrally closed in its total ring Q of fractions. Let f € R be a
non-zerodivisor, and suppose g € (/). Then we have an equation of the form

g rafg" o tanf" =0,
where ay,...,a, € R. Dividing through by ", we get the equation:
(/)" +ar(g/)" ™+t an =0,

which shows that the element g/ f € Q is integral over R. But this means that g/f €
R, whence g € (f). The converse statement follows the same steps in reverse.
For reduced rings, this condition may be written: R = R™ N Q(R).

Example (Frobenius closure). For a Noetherian ring of characteristic p > 0, the an-
swer here is: “R is weakly normal™*. To see this, recall first [53, Proposition 1] that a
Noetherian ring R is weakly normal if and only if the following conditions hold (where
Q is the total quotient ring of R):

4 Weak normality has a complicated history. The reader may consult the recent guide, [76].
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(i) R isreduced.
(ii) Forevery f € Q suchthat 2, f3 € R,onehas f € R.

(iii) For every f € Q such that there exists a prime integer n with f”,nf € R, one
has f € R.

Suppose first that R is weakly normal. The fact that R is reduced means that O is
Frobenius closed. So let z be a non-zerodivisor of R and suppose y € (z)¥. Then
there is some a € R and g = p¢ such that y?° € (zP°) as an ideal of R. In Q(R), this
means that (y/z)?° = ((y/z)?°"')? € R. But we also have p - (y/2)?°" =0 € R,
so by condition (iii) above, it follows that (y/z)?~" € R, ie., y?* ' e (zP°""). By
induction on e, it follows that y € (z).

Conversely, suppose that 0 and every principal ideal generated by a non-zerodivisor
is Frobenius closed. Condition (i) follows from O being Frobenius closed. For con-
dition (ii), note that there exist integers a,b € N such that 2a + 3b = p. So if
12, f3 e R, it follows that f7 = (f2)2(f3)? € R as well. But f = y/z for some
v,z € R, where z is a non-zerodivisor, so f# € R means that y? € (z?), so that
y € (z)F = (z), whence f € R. As for condition (iii), let f, n be as given. If n # p,
then the image of n in R is a unit, so that the fact that nf € R means that f € R
automatically. So we may assume that » = p. But then f? € R, which means that
yP € (zP) (where f = y/z for some non-zerodivisor z), whence y € (2)f = (2)
and f € R.

6.3 When Are Parameter Ideals Closed (Where R Is Local)?

For this subsection and the next, we need the following definitions (which represent a
special case of “reduction to characteristic p”):

Definition 6.3.1. Let J be a property of positive prime characteristic rings. Let R
be a finitely generated K-algebra, where K is a field of characteristic 0. That is,
R =K[Xy,...,Xn]l/(f1, ..., fm)- Let A be the Z-subalgebra of K generated by the
coefficients of the polynomials fi,..., fin. Let R4y := A[X1,..., Xul/(f1,--., fm)-
We say that R is of P-type (resp. dense P-type) if there is a nonempty Zariski-open
subset U of the maximal ideal space of A (resp. an infinite set U of maximal ideals
of A) such that for all u € U, the ring R4 ®4 A/ has property P.

Example (Frobenius closure). Suppose (R, ) is a local Cohen—Macaulay ring of
prime characteristic p > 0. Consider the map R — 'R defined in Section 3.2 (vii).
By definition R is F-injective if the induced maps on local cohomology Hriu(R) —
an(l R) are injective. All parameter ideals are Frobenius closed if and only if R is
F-injective.

Moreover, there are connections to characteristic 0 singularity theory. Namely, if
R is a reduced, finitely generated Q-algebra (or C-algebra) of dense F -injective fype,
then Spec R has only Du Bois singularities [68]. (A converse is not known.)
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Example (Tight closure). By definition, a ring R of prime characteristic p > 0 is
F -rational if every parameter ideal is tightly closed.

The connection to characteristic O singularity theory is very strong. Indeed, it was
shown by [26, 69] (Smith showed one direction and Hara showed the converse) that
a finitely generated QQ-algebra (or C-algebra) R is of F-rational fype if and only if
Spec R has only rational singularities.

Example (Integral closure). Let (R, 1) be a Noetherian local ring. Then every pa-
rameter ideal is integrally closed if and only if R is either a field or a rank 1 discrete
valuation ring.

As usual, one direction is clear: if R is a field or a rank 1 DVR, then every ideal
is integrally closed. So we prove the converse. We already know that R must be a
normal domain (from the integral closure example in Section 6.2), so we need only
show that dim R < 1. Accordingly, suppose dim R > 2. Let x, y be part of a system
of parameters. Then x2, y? is also part of a system of parameters. Thus, we have

xy € (x%,y%)7 = (x%, %),

But this is easily seen to contradict the fact that x, y are a regular sequence (which in
turn arises from the fact that R is normal, hence (S»).)

6.4 When Is Every Ideal Closed?

Example (Frobenius closure). For a Noetherian ring R of prime characteristic, we say
that R is F-pure if the map R — ! R defined in Section 3.2 (vii) is a pure map of R-
modules — that is, when tensored with any other R-module, the resulting map is always
injective. This is easily seen to be equivalent to the condition that Frobenius closure
on modules is trivial, which for excellent rings is then equivalent to the condition that
all ideals are Frobenius closed (by [36, Theorem 1.7], since the rings in question must
be reduced as (0)¥ is the nilradical of the ring).

Again, there is a connection to characteristic O singularity theory. Namely, if R
is normal, Q-Gorenstein, and characteristic 0 of dense F-pure type, then Spec R has
only log canonical singularities [27]. (No converse is known.)

Example (Tight closure). For a Noetherian ring R of prime characteristic, we say that
R is weakly F-regular if every ideal of R is tightly closed. It is called F-regular if
R, is weakly F-regular for all prime ideals p. (Or equivalently, W~!R is weakly
F-regular for all multiplicative sets W C R.) One of the outstanding open problems
of tight closure theory is whether these two concepts are equivalent. The problem is
open even for finitely generated algebras over a field.

In any case, we again have a connection to characteristic 0 singularity theory.
Namely, if R is normal, Q-Gorenstein, and characteristic 0, then R has F-regular
type if and only if Spec R has only log terminal singularities [27].
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Example (Integral closure). As shown earlier, assuming that R is Noetherian, all ide-
als are integrally closed iff R is a Dedekind domain. (More generally, all ideals are
integrally closed iff R is a Priifer domain.)

Example (The v-operation). Let R be a Noetherian domain. Then [59, Theorem 3.8]
all ideals are v-closed (equivalently t-closed) if and only if R is Gorenstein of Krull
dimension < 1 (iff Q/R is an injective R-module, where Q is the total quotient ring
of R).

7 Closure Operations on (Sub)modules

Whenever an author writes about a closure operation on (ideals of) rings that extends
to a closure operation on (sub)modules, a choice must be made. Either the operation is
defined generally for all submodules, after which all proofs and statements are made
for modules and the statements about ideals follow as a corollary, or everything is done
first exclusively on ideals and only afterwards is the reader shown how to extend it to
the module case. I have opted for the latter option.

Definition 7.0.1. Let R be aring and M a category of R-modules. A closure operation
on M is a collection of maps {clys | M € M}, such that for any submodule L € M
of amodule M € M, cly(L) := Lﬁfl is a submodule of M, such that the following
properties hold:

(i) (Extension) L C Lf&l for all submodules L C M € M.
(i) (Idempotence) Lf‘ll = (L%ll)jll for all submodules L C M € M.
(iii) (Order-preservation) If M € M and K € L C M are submodules, then KX/II C
Lgll. If moreover L € M, then Kil - K]CVII.

Some other properties of closure operations on modules are given below:

Definition 7.0.2. Let cl be a closure operation on a category M of R-modules. We say
that cl is

(i) functorial if whenever g : M — N is a morphism in M, then for any submodule
L € M, we have g(le,I) - g(L)‘]’l,.
(ii) semi-prime if whenever L € M are modules with M € M and [ is an ideal, we
have I - LY, < (IL)$,.
(iii) weakly hereditary if whenever L. € M C N are submodules such that M, N €
M,if L =LY and M = M§ then L = L.

(iv) hereditary if whenever L € M C N are submodules such that M, N € M, then
LY N M =L
N - M-
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(v) residual if whenever & : P — M is a surjection of modules in M, and N € P
is a submodule, we have
Np =77 ((N)jy)

Remark 7.0.3.° We note here that any functorial closure is semi-prime, provided
that for any x € R and M € M, the endomorphism uy, : M — M (defined by
multiplying by the element x) is in M. To see this, let L € M be a submodule and
x € I. Then x - Lf&l = ux(Lf\l,I) - (/,LX(L))%[ = (xL)il,l. But by order-preservation,
(xL)$, € (IL)S, for any x € I. Thus, we have

I-Lyy =Y x-Ly €Y (xL)jy € (IL)j.
xel xel
For systematic reasons, one usually assumes that a closure operation is functorial.
The disadvantage, of course, is that there is no way to extend a non-semi-prime closure
on R to a functorial module closure on M (e.g. the v-operation on certain non-domains,
as in Proposition 4.1.7 (iii)).

Remark 7.0.4. Given a closure operation on (ideals of) R that one wants to extend
to a (functorial) closure on a category M of R-modules, one typically must make a
choice: should the resulting operation be weakly hereditary or residual? Most closure
operations on modules do not satisfies both conditions (but see Section 7.1 below).

Among integral closure-theorists, the usual goal has been to construct a weakly
hereditary operation (so that for instance, if J is a reduction of an integrally closed
ideal 7, then the integral closure of J as a submodule of I is required to be [ itself).
See [16], or [51, Chapter 16] for a general discussion.

On the other hand, tight closure-theorists have gone the residual route (so that for
instance, to compute the tight closure of an ideal /, one may take the tight closure of 0
in the R-submodule R/ and contract back). See [49, Appendix 1]. For a residual
version of integral closure, see [22], by the present author and Bernd Ulrich.

Lemma 7.0.5 (Taken from [21]). Let & (resp. Fiin) be the category of free (resp.
finitely generated free) R-modules. Let cl be a functorial closure operation on ¥
(resp. Ffn). Then cl extends uniquely to a residual closure operation on the category
of all (resp. all finitely generated) R-modules if and only if for all (resp. for all finitely
generated) R-modules Fy, F> and submodules L1 C Fy, Ly C F,, we have

(L1®L> %@Fz = (L, %1 ® (L2 3}-2-

We omit the easy proof. As for the construction: For a (f.g.) R-module M, let
7w : F — M be a surjection from a (f.g.) R-module F, and let Ljfl = n(n_l(L)‘}).

Indeed, this is the way that tight closure, Frobenius closure, and plus closure are
defined on modules. First they were defined for free modules, and then extended to a
residual operation in the way outlined above.

5 Thanks to Holger Brenner for pointing this out.
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Remark 7.0.6. All but one of the constructions from Section 3 can be extended to
make residual closure operations. Namely:
e Construction 3.1.1 may be extended as follows: Fix an R-module U as before,
and let L € M be R-modules. We say that f € Lf&l if the image of the map
U ®R (Rf — M) is contained in the image of the map U ® g (L < M). This
always yields a residual and functorial closure operation.

e Construction 3.1.2 may be extended similarly. That is, if ¢ : R — S is aring
homomorphism and d is a closure operation on S-modules, then for R-modules
L C M,let jpr : M — S ®@r M be the natural map, and for z € M, we declare
that z € Lj, if the image (under jjs) of z is in the d-closure (in § ® g M) of the
image of the map S ® g (L — M). Then c is a closure operation, semi-prime if
d is, functorial if d is, and residual if d is.

e Constructions 3.1.3, 3.1.4, and 3.1.5 may be extended in the obvious way to mod-
ules, and the resulting operation is semi-prime (resp. residual, resp. functorial) if
the operations it is based on are.

In this way (via Section 3.2), all the closure operations from Example 2.1.2 may
be extended to residual, functorial closure operations on modules. This yields the
usual definitions of Frobenius, plus, solid, tight, and basically full closures, and also
of the a-saturation. The resulting extension of integral closure is of course not the
usual (weakly hereditary) definition, but rather the residual, “liftable integral closure”
from [22]. The extension of radical is the one mentioned in [9].

An analogue of Proposition 4.1.4 (i)—(iv) is also available for semi-prime closure

operations on modules.

One more construction should be mentioned:

Construction 7.0.7. Let c be a closure operation on a module category M. We define
the finitistic c-closure of a submodule L € M by setting

L;flg = U{L§v | L € N C M such that N/L is finitely generated and N € M}

For a closure operation c, one may ask what the difference is, if any, between the
closure operations c and cfg. This is very important in tight closure theory, for instance,
in the question of whether weak F-regularity and F'-regularity coincide. Indeed, if
(R, m) is an F-finite Noetherian local ring of characteristic p and E is the injective
hull of the residue field R /ut, then R is weakly F-regular if and only if ()>'<Efg =041,
Proposition 8.23], but it is F-regular if 03, = 0 [57, follows from Proposition 2.4.1].

Thus, the two concepts would coincide if O*E = Ozfg .

7.1 Torsion Theories

A functorial closure operation on modules that is both residual and weakly hereditary
is essentially equivalent to the notion of a torsion theory (see [13] for torsion theories,
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the book [4] for the connection with preradicals, or [9, Section 6] for a connection
with Grothendieck topologies). We briefly outline the situation below, as this provides
a fertile source of residual closure operations:

Definition 7.1.1. Let M be a category of R-modules which is closed under taking
quotient modules, and let r : M — M be a subfunctor of the identity functor (That is,
it assigns to each M € M a submodule r(M) € M of M,andeverymap g: M — N
in M restricts to a map r(g) : r(M) — r(N).) Then we say that r is a preradical.

A preradical r is called a radical if for any M € M, we have r(M/r(M)) = 0.

A radical r is idempotent if ror =r.

A radical r is hereditary if for any submodule inclusion L € M with L, M € M,
we have L Nr(M) =r(L).

Definition 7.1.2. Let M be an Abelian category. Then a torsion theory is a pair (77, )
of classes of objects of M (called the torsion objects and the torsion-free objects,
respectively), such that:

@ T nF =10},
(ii) T is closed under isomorphisms and quotient objects,
(iii) ¥ is closed under isomorphisms and subobjects, and

(iv) For any object M € M, there is a short exact sequence
0O0—->T—->M-—>F—0

withT €e T and F € ¥.

(Recall that the T and F in the short exact sequence are unique up to isomorphism.)
A torsion theory (77, ) is hereditary if T is also closed under taking subobjects.

Proposition 7.1.3. Given an Abelian category M of R-modules, the following struc-
tures are equivalent:

* a functorial, residual closure operation on M.
* a radical on M.

Moreover, the closure operation is weakly hereditary if and only if the radical is idem-
potent. In this case, the structures are equivalent to specifying a torsion theory on
M. In this case, the closure operation is hereditary iff the radical is hereditary iff the
torsion theory is hereditary.

Proof. Instead of a complete proof, we show the correspondences below and leave the
elementary proofs to the reader.

If ¢ is a functorial, residual closure operation on M, we define a radical r on M by
letting r(M) := 03, forany M € M.

If r is a radical on M, we define a closure operation on M by letting L, :=
a1 (r(M/L)) forany L € M, where 7 : M — M/ L is the canonical surjection.
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Given an idempotent radical r on M, we define a torsion theory by letting 7 :=
{r(M) | M € M}and ¥ := {M € M | r(M) = 0}. Conversely, given a torsion
theory (7, %), weletr(M) := T, where 0 - T — M — F — 0 is a short exact
sequence with 7 € 7 and F € ¥. O

The literature on torsion theories is immense. At the time of publication, I could not
find the first place where it is shown that specifying a hereditary radical is equivalent
to specifying a certain kind of filter of ideals, but this is nevertheless true, and was
known by the late 1960s.

None of tight closure, plus closure, Frobenius closure, or radical (as given in Re-
mark 7.0.6) are weakly hereditary; hence none of them provide examples of torsion
theories. However, we have the following illustrative examples:

* For any ideal a of R, the a-saturation (defined by L, := (L :py a®) = {z €
M | 3n € N suchthat a”z C L}) is a hereditary, residual, functorial closure
operation on R-modules, and thus provides an example of a hereditary torsion
theory on R-modules. (The corresponding radical is Hg (=)

e Let R be a commutative ring that contains at least one non-zerodivisor x that is
not a unit, and let Q be its total ring of quotients (so that in particular, Q # R).
Recall that a module M is divisible if for every non-zerodivisor r of R, the map
M — M given by multiplication with r is surjective. Any module has a unique
largest divisible submodule, since any sum of divisible submodules of a module
is divisible. Consider the assignment d given by d(M) := the largest divisible
submodule of M. Then this is a weakly hereditary radical that is not hereditary.
Hence, it defines a weakly hereditary residual closure operation that is not hered-
itary, hence a non-hereditary torsion theory. To see that it is not hereditary, note
thatd(Q) N R = Rbut 1 ¢ d(R) since x is not a unit.
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