

Contents

Preface	vii
1 Introduction and preliminaries	1
1.1 Background information	1
1.2 Terminology and notation	1
1.3 Narrow operators on function spaces	2
1.4 Homogeneous measure spaces and Maharam’s theorem	9
1.5 Necessary information on vector lattices	12
1.6 Kalton’s and Rosenthal’s representation theorems for operators on L_1	21
2 Each “small” operator is narrow	24
2.1 AM-compact and Dunford–Pettis operators are narrow	24
2.2 “Large” subspaces are exactly strictly rich	26
2.3 Operators with “small” ranges are narrow	28
2.4 Narrow operators are compact on a suitable subspace	32
3 Applications to nonlocally convex spaces	36
3.1 Nonexistence of nonzero narrow operators	37
3.2 The separable quotient space problem	38
3.3 Isomorphic classification of strongly nonconvex Köthe F-spaces	38
4 Noncompact narrow operators	41
4.1 Conditional expectation operators	42
4.2 A narrow projection from E onto a subspace isometric to E	43
4.3 A characterization of narrow conditional expectations	51
5 Ideal properties, conjugates, spectrum and numerical radii	57
5.1 Ideal properties of narrow operators and stability of rich subspaces	57
5.2 Conjugates of narrow operators need not be narrow	60
5.3 Spectrum of a narrow operator	60
5.4 Numerical radii of narrow operators on $L_p(\mu)$ -spaces	62

6 Daugavet-type properties of Lebesgue and Lorentz spaces	71
6.1 A generalization of the DP for L_1 to “small” into isomorphisms	72
6.2 Pseudo-Daugavet property for narrow operators on L_p , $p \neq 2$	77
6.3 A pseudo-Daugavet property for narrow projections in Lorentz spaces	89
6.4 Near isometric classification of $L_p(\mu)$ -spaces for $1 \leq p < \infty$, $p \neq 2$	104
7 Strict singularity versus narrowness	109
7.1 Bourgain–Rosenthal’s theorem on ℓ_1 -strictly singular operators	111
7.2 Rosenthal’s characterization of narrow operators on L_1	132
7.3 Johnson–Maurey–Schechtman–Tzafriri’s theorem	150
7.4 An application to almost isometric copies of L_1	171
7.5 An application to complemented subspaces of L_p	173
7.6 The Daugavet property for rich subspaces of L_1	174
8 Weak embeddings of L_1	179
8.1 Definitions	179
8.2 Embeddability of L_1	181
8.3 Examples	184
8.4 G_δ -embeddings of L_1 are not narrow	190
8.5 Sign-embeddability of L_1 does not imply isomorphic embeddability	194
9 Spaces X for which every operator $T \in \mathcal{L}(L_p, X)$ is narrow	210
9.1 A characterization using the ranges of vector measures	210
9.2 Every operator from E to $c_0(\Gamma)$ is narrow	214
9.3 An analog of the Pitt compactness theorem for L_p -spaces	215
9.4 When is every operator from L_p to ℓ_r narrow?	216
9.5 ℓ_2 -strictly singular operators on L_p	225
10 Narrow operators on vector lattices	229
10.1 Two definitions of a narrow operator on vector lattices	230
10.2 AM-compact order-to-norm continuous operators are narrow	234
10.3 T is narrow if and only if $ T $ is narrow	238
10.4 The Enflo–Starbird function and λ -narrow operators	241
10.5 Classical theorems	243
10.6 Pseudonarrow operators are exactly λ -narrow operators	246
10.7 Regular narrow operators form a band in the lattice of regular operators	250

10.8	Narrow operators on lattice-normed spaces	252
10.9	ℓ_2 -strictly singular regular operators are narrow	260
11	Some variants of the notion of narrow operators	265
11.1	Hereditarily narrow operators	266
11.2	Gentle narrow operators on L_p with $1 < p \leq 2$	274
11.3	C-narrow operators on $C(K)$ -spaces	281
11.4	Narrow operators on $L_\infty(\mu)$ -spaces	289
11.5	Narrow 2-homogeneous polynomials	301
12	Open problems	303
	Bibliography	307
	Index of names	315
	Subject index	317

