Preface

Welcome to the second edition! This is a book that is intended to be used to teach
programming to introductory students. There is material here for intro CS, but
also for Science and other disciplines. I still believe that programming is an es-
sential skill for all professionals and especially academics in the 21 century and
I have tried to make that clear in the contents of this book.

There are two new chapters and some seriously revised ones. First, the book
exclusively uses the Pygame library. The Glib module has been updated but is no
longer used in this book. This means that Chapters 7, 9, and 12 are quite different
from those in the previous edition. Also, Pygame no longer supports video, so
rather than build a new module from scratch, video is not discussed.

The new Chapter 14 concerns parsing. This can be a more advanced topic,
but parsing is a good thing to know about for many reasons, not the least of
which is to deal with user input effectively. The main example is a programming
language for which a parser (and compiler) will be written. The language was de-
veloped for this book and is called PyJ: it is a small subset of the Julia language,
which in turn is a variation on Python designed for efficiency.

The new Chapter 15 involves graphical input. Here a paint-type program will
be developed, so as to clarify ideas in mouse input and graphical output. The re-
sulting program (Mondrean) is actually usable for making drawings.

Tuse a “just-in-time” approach, meaning that I try to present new information
just before or just after the reader needs it. As a result, there are a lot of examples,

xvi @ Preface

and those examples were carefully selected to fit into the place they reside in the
text. Not too soon, and not too late.

I believe in object-oriented programming. My master’s thesis in the late
1970s was on that subject, and I cut my teeth on Simula, was there when C++
was created, and knew the creator of Java. I do not believe that object-oriented
programming is the only solution, though, and realized early that good objects
can only be devised by someone who can already program. I am therefore not an
“objects first” teacher. I am a “whatever works best” teacher.

A lot of my examples involve games. That’s because undergraduate students
play games. They understand them better than, say, accounting or inventory sys-
tems, which have been typical early assignments. I believe in presenting students’
assignments that are interesting. Not all students like games, and certainly not
computer games, but a large number do. And they come to a game assignment
with prior knowledge of the genre.

I have taught computer science for 26 years, and then moved to the arts.
That’s because of many things, but my experience teaching in a Drama depart-
ment and more recently in the Art department has helped me immensely in un-
derstanding the role of computing and programming in general. | strongly feel
that every student in a university should know how to write, and know how to
program a computer. If you can’t understand the computer, you are at the whim
of programmers who, unseen in downtown high-rises and basements, who dic-
tate how the world will work by default. The (sometimes poor) design decisions
made, and the lack of attention paid to human needs results in actual policy being
formed, and that is simply wrong. It’s not always true that the code is bad, but
when it is, it can have far reaching consequences.

Here is a truth: nobody wants to run your program. What they want is to
get their work done, or play their game, or send their email. If you are an excel-
lent programmer then you will enable that, and nobody will know your name.
But nobody will curse your code either. The truth is that good code is invisible.
It simply allows things to flow smoothly. Bad code is memorable. It interferes,
makes people frustrated and angry. If you believe in karma, then I know what
you would prefer.

You see, software (any computer program) is ubiquitous. Cars, phones, fridg-
es, television, and almost everything in our society is computerized. Decisions

Preface W xvii

made about how a program is to be built tend to live on, and even after many
modifications can affect how people use that device or system. Creating good
software means making a productive and happy civilization. It sounds trite, but if
you think about it I'm sure you will agree.

Python is a great language for beginning programmers. It is easy to write
the first programs, because the conceptual overhead is small. That is, there’s no
need to understand what ‘void’ or ‘public’ means at the outset. Python does a
lot of things for a programmer. Do you want something sorted? It’s a part of the
language. Lists and hash tables (dictionaries) are a part of the language. You can
write classes, but do not have to, so it can be taught objects first or not. The re-
quired indentation means that it is much harder to place code incorrectly in loops
or if statements. There are hundreds of reasons why Python is a great idea.

And it is free. This book was written using Python version 3.4, and with the
PyCharm APIL. The modules used that require download are few, but include
PyGame and tweepy. All free.

Overview of Chapters

Here’s a breakdown of the book, for instructors. It can be used to teach computer
science majors or science students who wish to have a competency in program-
ming.

Chapter 0: Historical and technological material on computers. Binary num-
bers, the fetch-execute cycle. This chapter can be skipped in some syllabi.

Chapter 1: Problem solving with a computer; breaking a problem down so it
can be solved. The Python system. Some simple programs involving games that
introduce variables, expressions, print, types, and the if statement.

Chapter 2: Repetition in programming: while and for statements. Random
numbers. Counting loops, nested loops. Drawing a histogram. Exceptions (try-
except)

Chapter 3: Strings and string operations. Tuples, their definition, and use.
Lists and list comprehension. Editing, slices. The bytes type. And set types. Ex-
ample: the game of craps.

Chapter 4: Functions: modular programming. Defining a function, calling
a function. Parameters, including default parameters, and scope. Return values.

xviii I Preface

Recursion. The Game of Sticks. Variable parameter lists, assigning a function to a
variable. Find the maximum of a mathematical function. Modules. Game of Nim.

Chapter 5: Files. What is a file and how are they represented? Properties of
files. File exceptions. Input, output, append, open, close. Comma separated value
(CSV) files. Game of Jeopardy. The with statement.

Chapter 6: Classes and object orientation. What is an object and what is a
class? Types and classes. Python class structure. Creating instances, __init__
and self. Encapsulation. Examples: deck of playing cards; a bouncing ball; Cat-
a-pult. Designing with classes. Subclasses and inheritance. Video game objects.
Duck typing.

Chapter 7: Graphics. The Pygame module. Drawing window; color repre-
sentation, pixels. Drawing lines, curves, and polygons. Filling. Drawing text.
Example: Histogram, Pie chart. Images and image display, getting and setting
pixels. Thresholding. Generative art.

Chapter 8: Data and information. Python dictionaries. Latin to English
translator. Arrays, formatted text, formatted input/output. Meteorite landing
data. Non-text files and the struct module. High score file example. Random ac-
cess. Image and sound file types.

Chapter 9: Digital media: Using the mouse and the keyboard. Animation.
Space shuttle control console example. Transparent colors. Sound: playing sound
files, volume, pause. Pygame module for sound.

Chapter 10: Basic algorithms in computer science. Sorting (selection,
merge) and searching (linear, binary). Timing code execution. Generating ran-
dom numbers; cryptography; data compression (including Huffman codes and
RLE); hashing.

Chapter 11: Programming for Science. Roots of equations; differentiation
and integration. Optimization (minimum and maximum) and curve fitting (re-
gression). Evolutionary algorithms. Longest common subsequence or edit dis-
tance.

Chapter 12: Writing good code. A walk through two major projects: a word
processor written as procedural code and a breakout game written as object-
oriented code. A collection of effective rules for writing good code.

Preface [xix

Chapter 13: Dealing with real world interfaces, which tend to be defined for
you. Examples are Email (send and receive), FTP, inter-process communication
(client-server), Twitter, calling other languages like C++.

Chapter 14: Parsing. Introduction to grammars and BNF. Parsing data. A
small compiler for a small language.

Chapter 15: Graphical Interaction. Using the mouse in complicated ways.
Drawing, erasing, modifying images.

Chapter Coverage for Different Majors
A computer science introduction could use most chapters, depending on the
background of the students, but Chapters 0, 7, 9, and / or 11 could be omitted.

An introduction to programming for science could omit Chapters 0, 10,
and 12.

Chapter 13 is always optional, but is interesting as it explains how social me-
dia software works under the interface.

Basic introduction to programming for non-science should include Chap-
ters 0, 1,2, 3,4, 5, and 7.

Companion Files (4 disc is included in the physical book or
files are available for downloading from the publisher by writ-
ing to info@merclearning.com.)

The accompanying disc contains useful material for each chapter.

e Selected exercises are solved, including working code when that is a part of
the solution.

e All significant examples are provided as Python code files, which can be
compiled and executed, and can be modified as exercises or class projects.
This includes sample data files when appropriate.

e All figures are available as images, in full color.

Instructor Ancillaries
e Solutions to almost all of the programming exercises given in the text.

e MS PowerPoint lectures provided for an entire semester (35 files) including
some new examples and short videos.

xXx I Preface

All of the Python code that appears in the books has been executed, and
all complete programs are provided as .py files. Some of the numerous pro-
gramming examples (over 100) that are explored in the book and for which
working code is included:

o An interactive breakout game

o The Game of Nim

o A text formatting system

o Plotting histograms and pie charts

o Reading Twitter feeds

o Play Jeopardy Using a CSV Data Set
o Sending and receiving Email

o A simple Latin to English translator
o Cryptography

o Rock-Paper-Scissors

Hundreds of answered multiple choice quiz and sample examination ques-
tions in MS Word files that can be edited and used in various ways.

Dedicated Website

Please consider contributing material to the on-line community at A#tps./sites.
google.com/site/pythonparker/ and do have fun. If you don’t then you’re doing it
wrong.

J. Parker
February 2021

