# **C**ONTENTS

| Preface                                           | xxvii  |
|---------------------------------------------------|--------|
| About the Contributor                             | xxxiii |
| Chapter 1: The Generative AI Landscape            | 1      |
| What is Generative AI?                            | 2      |
| Key Features of Generative AI                     | 2      |
| Popular Techniques in Generative AI               | 2      |
| What Makes Generative AI Unique                   | 3      |
| Conversational AI Versus Generative AI            | 4      |
| Primary Objective                                 | 4      |
| Applications                                      | 4      |
| Technologies Used                                 | 4      |
| Training and Interaction                          | 5      |
| Evaluation                                        | 5      |
| Data Requirements                                 | 5      |
| What are Generative AI Models?                    | 5      |
| Is DALL-E Part of Generative AI?                  | 9      |
| Are ChatGPT-3 and GPT-4 Part of Generative AI?    | 10     |
| Generative AI Versus ML, DL, and NLP              | 11     |
| Which Fields Benefit the Most from Generative AI? | 12     |
| Generative AI for Enterprise                      | 14     |
| The Effect of Generative AI on Jobs               | 16     |
|                                                   |        |

# viii • Contents

| What is Artificial General Intelligence (AGI)?       | 18 |
|------------------------------------------------------|----|
| When Will AGI Arrive?                                | 20 |
| What is the Path to AGI?                             | 21 |
| How Can We Prepare for AGI?                          | 22 |
| Will AGI Control the World?                          | 25 |
| Should Humans Fear AGI?                              | 26 |
| What is Beyond AGI?                                  | 28 |
| Artificial General Intelligence Versus Generative AI | 30 |
| What are LLMs?                                       | 31 |
| What is the Purpose of LLMs?                         | 32 |
| Recent, Powerful LLMs                                | 34 |
| Do LLMs Understand Language?                         | 36 |
| Caveats Regarding LLMs                               | 37 |
| Model Size Versus Training Set Size                  | 38 |
| Memory Requirements for LLMs                         | 38 |
| Memory Types in LLMs                                 | 40 |
| LLMs Versus Deep Learning Models                     | 42 |
| Cost Comparison among LLMs                           | 44 |
| LLMs and Deception                                   | 46 |
| Deceptive Completions in LLMs                        | 47 |
| LLMs and Intentional Deception                       | 48 |
| Selecting an LLM: Factors to Consider                | 50 |
| Pitfalls of Working with LLMs                        | 52 |
| A Brief History of Modern LLMs                       | 54 |
| Aspects of LLM Development                           | 56 |
| LLM Size Versus Performance                          | 58 |
| Emergent Abilities of LLMs                           | 59 |
| Skepticism Regarding Emergent Abilities              | 60 |
| What are Hallucinations?                             | 62 |
| Why do LLMs Hallucinate?                             | 64 |
| Hallucination Types in LLMs                          | 65 |
| Can LLMs Detect Errors in Prompts?                   | 66 |
| Are Intentional Hallucinations Possible?             | 67 |
| Reducing Hallucinations                              | 69 |
| Causes of Hallucinations in LLMs                     | 70 |

| Intrinsic Versus Extrinsic Hallucinations     | 72  |
|-----------------------------------------------|-----|
| Hallucination Detection                       | 74  |
| Model Calibration                             | 76  |
| Kaplan and Under-Trained Models               | 78  |
| Success Stories in Generative AI              | 79  |
| Real-World Use Cases for Generative AI        | 81  |
| Summary                                       | 84  |
| Chapter 2: Prompt Engineering (1)             | 85  |
| LLMs and Context Length                       | 85  |
| Batch Size and Context Length                 | 88  |
| Python Code for Batch Size and Context Length | 89  |
| Common Context Length Values                  | 91  |
| Lost-in-the-Middle Challenge                  | 93  |
| Self-Exploring Language Models (SELMs)        | 94  |
| Overview of Prompt Engineering                | 96  |
| What is a Prompt?                             | 98  |
| The Components of a Prompt                    | 98  |
| The Purpose of Prompt Engineering             | 99  |
| Designing Prompts                             | 100 |
| Prompt Categories                             | 100 |
| Hard Prompts                                  | 101 |
| Prompts and Completions                       | 103 |
| Guidelines for Effective Prompts              | 103 |
| Effective Prompts for ChatGPT                 | 104 |
| Concrete Versus Subjective Words in Prompts   | 105 |
| Prompts and Politeness                        | 106 |
| Negative Prompting                            | 106 |
| Self-Criticism Prompting                      | 108 |
| Using Flattery or a Sense of Urgency          | 110 |
| Unethical or Dishonest Prompts                | 112 |
| Prompts with Confessions of a Crime           | 114 |
| Prompt Hijacking                              | 116 |
| What is Prompt Caching?                       | 119 |
| Python Code for Client-Side Prompt Caching    | 120 |

# **x** • Contents

| Common Types of Prompts                                 | 122 |
|---------------------------------------------------------|-----|
| "Shot" Prompts                                          | 123 |
| Instruction Prompts                                     | 123 |
| Reverse Prompts                                         | 124 |
| Sequential Prompt Chaining                              | 124 |
| System Prompts Versus Agent Prompts                     | 124 |
| Prompt Templates                                        | 125 |
| Prompts for Different LLMs                              | 126 |
| Prompt Optimization                                     | 127 |
| Poorly Worded Prompts                                   | 130 |
| Prompts with Slang and Idiomatic English                | 131 |
| Distribution of Users' Prompts                          | 133 |
| Overly Complicated Prompts                              | 135 |
| Prompt Injections                                       | 136 |
| Accidental Prompt Injections                            | 139 |
| How to Refine Prompts                                   | 141 |
| Chain of Thought (CoT) Prompts                          | 143 |
| Self-Consistency and CoT                                | 143 |
| Self-Consistency, CoT, and Unsupervised Datasets (LMSI) | 144 |
| Zero Shot CoT                                           | 144 |
| Python Code for Zero-shot CoT                           | 145 |
| Auto Chain of Thought (AutoCoT)                         | 148 |
| CoT for Financial Forecasts                             | 150 |
| Tree of Thought (ToT) Prompts                           | 150 |
| Python Code Sample for ToT                              | 152 |
| Buffer of Thoughts (BoT) Prompting                      | 155 |
| Python Code Sample for BoT Prompting                    | 156 |
| Re-Reading Prompts: Better Completions?                 | 159 |
| Is Re-Reading Prompts Always Recommended?               | 160 |
| Which Techniques Work Best for Re-Reading Prompts?      | 161 |
| Assigning a Role in a Prompt                            | 163 |
| Assorted Prompts with Roles                             | 166 |
| Roles in CoT Prompts                                    | 168 |
| Prompts with Roles: Better Completions?                 | 170 |

| Assorted Prompt Engineering Techniques       | 172 |
|----------------------------------------------|-----|
| End-Goal Prompting                           | 173 |
| Chain-of-Verification (CoV) Prompting        | 173 |
| Emotionally Expressed Prompting              | 174 |
| Mega-Personas Prompting                      | 174 |
| Flipped Interaction Prompting                | 175 |
| Trust Layers for Prompting                   | 175 |
| Step-Around Prompting Technique              | 176 |
| Summary of Recommendations                   | 176 |
| What is Prompt Compression?                  | 177 |
| Use Cases for Prompt Compression             | 177 |
| Prompt Compression Techniques                | 179 |
| Python Code Sample                           | 180 |
| Anthropic Prompt Generator                   | 182 |
| Summary                                      | 184 |
| <b>Chapter 3: Prompt Engineering (2)</b>     | 185 |
| A Note About Google Collaboratory            | 185 |
| Ranking Prompt Techniques                    | 186 |
| Recommended Prompt Techniques                | 188 |
| Adversarial Prompting                        | 189 |
| Python Code Sample for Adversarial Prompting | 190 |
| Meta Prompting                               | 192 |
| Python Code for Meta Prompting               | 193 |
| Advanced Meta Prompt Engineering             | 196 |
| Python Code for Recursive Meta Prompting     | 196 |
| Useful Links                                 | 199 |
| Prompt Techniques to Avoid                   | 200 |
| GPT-4 and Prompt Samples                     | 202 |
| GPT-4 and Arithmetic Operations              | 203 |
| Algebra and Number Theory                    | 203 |
| The Power of Prompts                         | 203 |
| Language Translation with GPT-4              | 205 |
| Can GPT-4 Write Poetry?                      | 206 |
| GPT-4 and Humor                              | 207 |

| Question Answering with GPT-4                        | 208 |
|------------------------------------------------------|-----|
| Stock-Related Prompts for GPT-4                      | 209 |
| Philosophical Prompts for GPT-4                      | 210 |
| Mathematical Prompts for GPT-4                       | 210 |
| DSPy and Prompt Engineering                          | 211 |
| DSPy Code Sample                                     | 214 |
| Advanced Prompt Techniques                           | 214 |
| Omni Prompting                                       | 218 |
| Python Code for Omni Prompting                       | 219 |
| Multimodal Prompting                                 | 222 |
| Python Code for Multimodal Prompting                 | 223 |
| Omni Prompting Versus Multimodal Prompting           | 226 |
| Multi-Model Prompting                                | 228 |
| Python Code for Multi-Model Prompting                | 229 |
| Prompt Decomposition                                 | 232 |
| Needle in a Haystack                                 | 234 |
| What are Inference Parameters?                       | 240 |
| Temperature Inference Parameter                      | 241 |
| Temperature and the softmax() Function               | 242 |
| The top-p Inference Parameter                        | 243 |
| Python Code Sample for the top-p Inference Parameter | 244 |
| The top-k Inference Parameter                        | 246 |
| Python Code Sample for the top-k Inference Parameter | 247 |
| Using top-k and top-p in LLMs                        | 249 |
| GPT-40 Overview of Inference Parameters              | 252 |
| GPT-40 and the Temperature Inference Parameter       | 255 |
| Python Code Sample for the Temperature Parameter     | 256 |
| Overview of top-k Algorithms                         | 260 |
| GPT-40 Ranking of top-k Inference Parameters         | 264 |
| Python Code Samples for top-k Algorithms             | 265 |
| TF-IDF (Term Frequency-Inverse Document Frequency)   | 266 |
| BM25 (Best Matching 25)                              | 267 |
| GPT-40 Ranking of top-k Algorithms                   | 269 |
| CPT-40 Ranking of Inference Parameters               | 971 |

| GPT Mini                                            | 273 |
|-----------------------------------------------------|-----|
| SearchGPT                                           | 275 |
| CriticGPT                                           | 276 |
| Important Yet Under-Utilized Prompt Techniques      | 277 |
| Prompt Testing                                      | 279 |
| Python Code Sample for Prompt Testing               | 279 |
| Summary                                             | 282 |
| Chapter 4: Well-Known LLMs and APIs                 | 283 |
| The pytorch_model.bin File                          | 284 |
| The BERT Family                                     | 285 |
| Are BERT Models Also LLMs?                          | 286 |
| ALBERT                                              | 288 |
| The GPT-x Series of Models                          | 288 |
| Are GPT-x Models Also LLMs?                         | 290 |
| Language Models Versus Embedding Models             | 291 |
| Python Code for Language Model and Text Generation  | 292 |
| Python Code for Embedding Model and Text Similarity | 293 |
| OpenAI Models                                       | 295 |
| What is GPT-3?                                      | 297 |
| OpenAI Extensions of GPT-3                          | 299 |
| What is ChatGPT?                                    | 302 |
| ChatGPT : GPT-3 "on steroids"?                      | 303 |
| ChatGPT: Google "Code Red"                          | 303 |
| ChatGPT Versus Google Search                        | 304 |
| ChatGPT Custom Instructions                         | 304 |
| ChatGPT on Mobile Devices and Browsers              | 305 |
| ChatGPT and Prompts                                 | 305 |
| GPTBot                                              | 306 |
| ChatGPT Playground                                  | 306 |
| Let's Chat with ChatGPT                             | 307 |
| A Simple Chat Code Sample                           | 307 |
| Specify Multiple Roles                              | 309 |
| Specify max_tokens and stop Values                  | 311 |
| Specify Multiple Stop Values                        | 314 |

# xiv • Contents

| Specify Temperature Values                           | 314 |
|------------------------------------------------------|-----|
| Working with top-p Values                            | 317 |
| Other Inference Parameters                           | 319 |
| Plugins, Advanced Data Analytics, and Code Whisperer | 321 |
| Plugins                                              | 321 |
| Advanced Data Analytics                              | 323 |
| Code Whisperer                                       | 323 |
| Concerns about ChatGPT                               | 324 |
| Code Generation and Dangerous Topics                 | 324 |
| ChatGPT Strengths and Weaknesses                     | 325 |
| Sample Queries and Completions from ChatGPT          | 326 |
| Detecting Generated Text                             | 328 |
| What is GPT-4?                                       | 329 |
| GPT-4 and Test-Taking Scores                         | 330 |
| GPT-4 Parameters                                     | 330 |
| Main Features of GPT-4                               | 331 |
| Main Features of GPT-40                              | 333 |
| When is GPT-5 Available?                             | 334 |
| What is InstructGPT?                                 | 335 |
| Some Well-Known LLMs                                 | 336 |
| Google Gemini                                        | 336 |
| Copilot (OpenAI/Microsoft)                           | 337 |
| Codex (OpenAI)                                       | 338 |
| Apple GPT                                            | 338 |
| PaLM-2                                               | 338 |
| Claude 3 Sonnet, Opus, and Haiku                     | 339 |
| Grok 2                                               | 340 |
| Llama 3.1 Models                                     | 342 |
| Main Features of Llama 3.1                           | 342 |
| Main Features of Llama 3.1 405B                      | 343 |
| Limitations of Llama 3.1 405B                        | 345 |
| Llama 3.1 Versus Llama 3.1 405B                      | 345 |
| What About Llama 4?                                  | 346 |

| Accessing OpenAI APIs                                | 346 |
|------------------------------------------------------|-----|
| Accessing Hugging Face APIs                          | 352 |
| What are Small Language Models (SLMs)?               | 357 |
| Top Computations of LLMs                             | 357 |
| GPUs and LLMs                                        | 358 |
| Machine Learning Tasks and LLMs                      | 360 |
| What are LPUs?                                       | 362 |
| LPUs Versus GPUs                                     | 363 |
| What is an NPU?                                      | 364 |
| NLP Tasks and LLMs                                   | 366 |
| Metrics for NLP Tasks and LLMs                       | 367 |
| LLM Benchmarks                                       | 370 |
| Benchmarks for Evaluating LLMs                       | 371 |
| What is Pruning in LLMs?                             | 373 |
| Python Code Sample                                   | 374 |
| LLMs: Underrated, Overrated, Trends, and Performance | 376 |
| Smallest Useful Decoder-Only LLMs                    | 377 |
| Underrated LLMs                                      | 377 |
| Overrated LLMs                                       | 379 |
| Trends in LLMs: Larger or Smaller?                   | 380 |
| Best Performance LLMs                                | 382 |
| The Hugging Face Leaderboard                         | 384 |
| LLM Compressors                                      | 385 |
| Ranking of LLM Compressors                           | 386 |
| Summary                                              | 387 |
| <b>Chapter 5: Fine-Tuning LLMs (1)</b>               | 389 |
| What is Pre-Training?                                | 389 |
| Time and Cost for Pre-Training                       | 391 |
| Pre-training Strategies                              | 393 |
| Additional Pre-training Topics                       | 395 |
| Outliers and Pre-Training LLMs                       | 396 |
| Three Techniques for Detecting Outliers              | 397 |
| Python Code for Detecting Outliers                   | 398 |
| What to Do with Outliers                             | 401 |

| What is Model Collapse in Generative AI?             | 403 |
|------------------------------------------------------|-----|
| Training LLMs on LLM-Generated Data                  | 405 |
| What is Fine-Tuning?                                 | 407 |
| Python Code Sample for Fine-Tuning GPT-2             | 408 |
| Is Fine-Tuning Always Required for Pre-trained LLMs? | 419 |
| Well-Known Fine-Tuning Techniques                    | 421 |
| When is Fine-Tuning Recommended?                     | 426 |
| Fine-Tuning BERT for Sentiment Analysis              | 428 |
| Fine-Tuning GPT-4 Models                             | 434 |
| Python Code Sample                                   | 435 |
| Odds Ratio Preference Optimization (ORPO)            | 438 |
| Python Code Sample                                   | 439 |
| Instruction Fine-Tuning (IFT)                        | 442 |
| An Example of Instruction Fine-Tuning                | 444 |
| Continual Instruction Tuning                         | 447 |
| Python Code for Continual Instruction Tuning         | 449 |
| Fine-Tuning Embeddings                               | 454 |
| Generating Fine-Tuning Datasets                      | 457 |
| Representation Fine-Tuning (REFT) Versus PEFT        | 459 |
| Fine-Tuning LLMs for Specific NLP Tasks              | 461 |
| Preparing a Labeled Dataset for Sentiment Analysis   | 463 |
| Preparing a Labeled Dataset for Text Classification  | 466 |
| Loss Functions for LLMs                              | 469 |
| What is Few-Shot Learning?                           | 473 |
| Few-Shot Learning and Prompts                        | 475 |
| Fine-Tuning Versus Few-Shot Learning                 | 475 |
| In-Context Learning (ICL)                            | 478 |
| ICL Versus Other Prompt Techniques                   | 479 |
| Many-Shot In-Context Learning                        | 481 |
| How Do We Train LLMs with New Data?                  | 483 |
| Python Code with Regular Expressions                 | 484 |
| Disabling Greedy Matching                            | 486 |
| Local Directories for Downloaded LLMs                | 487 |
| Hugging Face Local Cache for Downloaded LLMs         | 487 |

| Ollama Local Cache for Downloaded LLMs           | 488 |
|--------------------------------------------------|-----|
| List of Downloaded LLMs via Ollama               | 489 |
| Summary                                          | 490 |
| Chapter 6: LLMs and Fine-Tuning (2)              | 491 |
| Steps for Fine-Tuning LLMs                       | 492 |
| Alternatives to Fine-Tuning LLMs                 | 497 |
| Fine-Tuning Versus Prompt Engineering            | 500 |
| Massive Prompts Versus LLM Fine-Tuning           | 503 |
| Synthetic Data and Fine-Tuning                   | 503 |
| What is Prompt Tuning?                           | 505 |
| Parameter Efficient Fine-Tuning (PEFT)           | 508 |
| Sparse Fine-Tuning Versus Supervised Fine-Tuning | 511 |
| Sparse Fine-Tuning (SFT) and PEFT                | 514 |
| Representation Fine-Tuning                       | 515 |
| Python Code Sample                               | 517 |
| Step-by-Step Fine-Tuning                         | 520 |
| Fine-Tuning Tips                                 | 522 |
| What is LoRA?                                    | 525 |
| Python Code Sample with LoRA                     | 525 |
| When is LoRA Recommended for Fine-Tuning?        | 529 |
| LoRA Versus Full Fine-Tuning                     | 532 |
| LoRA-based Algorithms for Fine-Tuning            | 534 |
| LoRA-FA (2023)                                   | 535 |
| AdaLoRA (2023)                                   | 537 |
| Delta-LoRA (2023)                                | 537 |
| LoRA+ (2024)                                     | 538 |
| LoRA-drop (2024)                                 | 539 |
| What is QLoRA?                                   | 539 |
| LoRA Versus QLoRA                                | 541 |
| Best GPU for LoRA, QLoRA, and Inference          | 544 |
| What is DoRA?                                    | 545 |
| The Impact of Fine-Tuning on LLMs                | 548 |
| Fine-Tuned LLMs and General Capability           | 550 |

# xviii • Contents

| Unstructured Fine-Tuning                            | 552         |
|-----------------------------------------------------|-------------|
| Fine-Tuning and Dataset Size                        | <b>55</b> 3 |
| Model Quality and Dataset Size                      | 555         |
| GPT Model Specification for Fine-Tuning Behavior    | 557         |
| What is Ollama?                                     | 559         |
| Starting the Ollama Server and Command Line Options | 560         |
| Downloading and Launching LLMs                      | 561         |
| Working with Phi Models                             | 562         |
| Phi-Based Requests with the Ollama Server           | 563         |
| Phi-Based Prompts in Raw Mode                       | 564         |
| Fine-Tuning Phi-3                                   | 565         |
| Fine-Tuning Llama 2                                 | 569         |
| Python Code Sample                                  | 570         |
| Working with Nvidia Models                          | 573         |
| Working with Qwen2 Models                           | 575         |
| Working with Gemma Models                           | 577         |
| Working with Llama 3.1 (4.7B)                       | 579         |
| Working with Mistral Models                         | 582         |
| Mistral NeMo 12B                                    | 583         |
| Mistral Large 2                                     | 583         |
| Downloading Mistral Large 2                         | 584         |
| Ollama Server Details for mistral-large             | 586         |
| Ollama with Other LLMs                              | 591         |
| Working with Hugging Face Models                    | 592         |
| Downloading Hugging Face Models                     | 592         |
| Managing LLMs with Command Line Tools               | 593         |
| anythingLLM                                         | 594         |
| Gemma.cpp                                           | 595         |
| Jan.ai                                              | 596         |
| llama.cpp                                           | 597         |
| llm                                                 | 598         |
| LMStudio                                            | 598         |
| Ollama                                              | 599         |

| Working with gpt4all                               | 600 |
|----------------------------------------------------|-----|
| Download and Install gpt4all                       | 600 |
| Download Llama-3-8B-Instruct                       | 601 |
| Summary                                            | 603 |
| Chapter 7: What is Tokenization?                   | 605 |
| What is the Transformer Architecture?              | 606 |
| Python Code Sample                                 | 607 |
| Key Components of the Transformer Architecture     | 610 |
| What is Pre-tokenization?                          | 613 |
| What is a Word?                                    | 613 |
| Pre-tokenization Versus Tokenization               | 614 |
| A Python Code Sample for Pre-tokenization          | 616 |
| What is Tokenization?                              | 619 |
| Nuances of Tokenizers                              | 619 |
| A Generic Token-to-Index Mapping Algorithm         | 619 |
| A Python Code Sample for Tokenization              | 622 |
| Tokenization Tasks and Their Challenges            | 624 |
| An Alternative to Tokenization: ByT5 Model         | 626 |
| Word, Character, and Subword Tokenizers            | 627 |
| Word-based Tokenizers                              | 627 |
| Limitations of Word Tokenizers                     | 628 |
| Tokenization for Languages with Multiple Alphabets | 629 |
| Trade-Offs with Character-based Tokenizers         | 630 |
| Limitations of Character-based Tokenizers          | 630 |
| Subword Tokenization                               | 631 |
| A Python Example of a Subword Tokenizer            | 631 |
| Key Points Regarding BERT Tokenization             | 633 |
| Subword Tokenization Algorithms                    | 633 |
| What is BPE?                                       | 634 |
| What is WordPiece?                                 | 635 |
| What is SentencePiece?                             | 636 |
| Hugging Face Tokenizers and Models                 | 637 |
| Loading and Saving Tokenizers                      | 639 |

| AutoTokenizer, BERTTokenizer, and GPT2Tokenizer       | 640 |
|-------------------------------------------------------|-----|
| What are AutoClasses?                                 | 640 |
| Hugging Face Tokenizers                               | 641 |
| Slow and Fast Tokenizers                              | 641 |
| Token Classification Pipelines                        | 641 |
| Python Code to Tokenize DistilBERT                    | 643 |
| Sentiment Analysis with DistilBERT                    | 647 |
| Sentence Completion with opt-125m                     | 649 |
| Three Types of Parameters                             | 650 |
| Tokenization Methods and Model Performance            | 651 |
| Assorted Python Code Samples for Tokenization         | 654 |
| Token Truncation in LLMs                              | 659 |
| Embedding Sizes of LLMs                               | 660 |
| Types of Embeddings for LLMs                          | 661 |
| Text, Audio, and Video Embeddings                     | 661 |
| Python Code Sample                                    | 662 |
| Token, Positional, and Segment Embeddings             | 663 |
| Word Embeddings for the Transformer Architecture      | 667 |
| Python Code Sample for BERT Embeddings                | 667 |
| Text Encoding Using the text-embedding-3-small LLM    | 670 |
| Positional Encodings for the Transformer Architecture | 672 |
| Python Code Sample for Positional Encodings           | 672 |
| Transformer Architecture Versus Mamba Architecture    | 675 |
| Summary                                               | 678 |
| Chapter 8: Attention Mechanism                        | 679 |
| What is Attention?                                    | 680 |
| The Origin of Attention                               | 680 |
| Self-attention                                        | 681 |
| GAtt (Ghost Attention)                                | 681 |
| Types of Attention and Algorithms                     | 682 |
| Attention in GPT-2 Versus BERT                        | 683 |
| What is FlashAttention-3?                             | 683 |
| Masked Attention                                      | 685 |
| Python Code Sample                                    | 685 |

| What is Tree Attention?                     | 688 |
|---------------------------------------------|-----|
| Calculating Attention with Q, K, and V      | 690 |
| Python Code for Self-Attention              | 691 |
| Python Code for BERT and Attention Values   | 694 |
| Multi-Head Attention (MHA)                  | 696 |
| CNN Filters and Multi-Head Attention        | 697 |
| Sliding Window Attention                    | 698 |
| Python Code Sample                          | 699 |
| Grouped-Query Attention                     | 702 |
| Python Code Sample                          | 702 |
| Paged Attention                             | 705 |
| Python Code Sample                          | 706 |
| Self-Attention and Quadratic Complexity     | 709 |
| List of Attention Techniques for LLMs       | 711 |
| Popular Types of Attention for LLMs         | 714 |
| Self-Attention Code Sample                  | 714 |
| Scaled Dot-Product Attention Code Sample    | 716 |
| Cross Attention Code Sample                 | 718 |
| Multi-Head Attention Code Sample            | 723 |
| Masked Attention Code Sample                | 727 |
| What is FlexAttention?                      | 729 |
| Python Code Sample                          | 730 |
| LLMs and Matrix Multiplication              | 736 |
| Feed Forward Propagation in Neural Networks | 738 |
| LLMs are Often Decoder-only Architectures   | 738 |
| Summary                                     | 741 |
| Chapter 9: LLMs and Quantization (1)        | 743 |
| What is Quantization?                       | 744 |
| Types of Quantization                       | 744 |
| LLM Server Frameworks                       | 747 |
| vllm                                        | 748 |
| CTranslate2                                 | 748 |
| DeepSpeed-MII                               | 749 |

| OpenLLM                                                 | 750 |
|---------------------------------------------------------|-----|
| Ray Serve                                               | 750 |
| mlc-llm                                                 | 751 |
| Frameworks with Quantization Support                    | 751 |
| Quantization Types                                      | 752 |
| 1.58 Quantization                                       | 755 |
| Python Code Sample                                      | 756 |
| List of Quantization Formats for LLMs                   | 758 |
| Non-Uniform Quantization Schemes                        | 759 |
| Python Code Sample                                      | 760 |
| GGUF and GGML Formats for Quantization                  | 763 |
| What is GGUF?                                           | 763 |
| What is GGML?                                           | 765 |
| GGUF Versus GGML Comparison                             | 766 |
| Converting TensorFlow Models to GGUF Format             | 767 |
| Other File Formats for Quantizing LLMs                  | 768 |
| LLM Size Versus GGUF File Size                          | 770 |
| Recommended File Formats                                | 771 |
| Launching GGUF Files from the Command Line              | 772 |
| Manual Calculation of Quantized Values                  | 777 |
| Weight-Based Quantization Techniques                    | 779 |
| Time Estimates for Quantization                         | 781 |
| Quantization Time Estimates in Minutes/Hours/Days       | 783 |
| Fastest and Slowest Quantization Techniques             | 785 |
| CPU/GPU-Intensive Quantization Techniques               | 787 |
| Decrease in Accuracy in Quantization Techniques         | 789 |
| Simple Quantization Code Sample                         | 792 |
| Min-Max Scaling (Normalization)                         | 793 |
| Linear Quantization                                     | 796 |
| Python Code Sample                                      | 797 |
| Uniform Quantization                                    | 799 |
| Python Code Sample                                      | 799 |
| Min-Max, Linear, and Uniform Quantization: A Comparison | 801 |
| Logarithmic Quantization                                | 803 |
| Python Code Sample                                      | 803 |

| Exponential Quantization                        | 806 |
|-------------------------------------------------|-----|
| Python Code Sample                              | 807 |
| K-Means Quantization                            | 809 |
| Python Code Sample                              | 810 |
| Lloyd-Max Quantization                          | 813 |
| Python Code Sample                              | 814 |
| Vector Quantization                             | 816 |
| Python Code Sample                              | 816 |
| Huffman Encoding                                | 820 |
| Python Code Sample                              | 821 |
| Entropy-Coded Quantization                      | 824 |
| Python Code Sample                              | 825 |
| Sigma-Delta Quantization                        | 828 |
| Python Code Sample                              | 829 |
| Companding Quantization                         | 831 |
| Python Code Sample                              | 832 |
| Finite State Vector Quantization                | 834 |
| Python Code Sample                              | 835 |
| Adaptive Weight Quantization (AWQ)              | 839 |
| Python Code Sample                              | 840 |
| Double Quantization                             | 842 |
| Python Code Sample                              | 843 |
| When is Quantization Recommended?               | 845 |
| Significant Loss of Accuracy                    | 846 |
| Minimal Loss of Accuracy                        | 848 |
| Quantized Model Versus Full Model               | 849 |
| Hardware Requirements                           | 849 |
| Naming Conventions for Quantization             | 850 |
| Python Code Sample                              | 851 |
| Acronyms for Quantization Techniques            | 852 |
| Characteristics of Good Quantization Algorithms | 855 |
| Quantization Versus Mixed Precision Training    | 857 |
| Optimizing Model Inferences                     | 859 |
| Python Code with Mixed Precision Inference      | 861 |

#### xxiv • Contents

|    | Calibration Techniques in Quantization                  | 865 |
|----|---------------------------------------------------------|-----|
|    | Types of Calibration Techniques                         | 866 |
|    | Calculating Quantization Errors                         | 868 |
|    | Python Code Sample                                      | 869 |
|    | Extensive List of Quantization Techniques               | 871 |
|    | Quantization Techniques for Neural Network Optimization | 873 |
|    | What are the "Must Know" Quantization Techniques?       | 875 |
|    | Summary                                                 | 875 |
| Cŀ | napter 10: LLMs and Quantization (2)                    | 877 |
|    | Georgi Gerganov Machine Learning Quantization (GGML)    | 878 |
|    | Python Code Sample                                      | 878 |
|    | Generalized Gradient-Based Uncertainty-Aware            |     |
|    | Filter Quantization (GGUF)                              | 881 |
|    | Python Code Sample                                      | 883 |
|    | Intel's AutoRound Quantization                          | 887 |
|    | Python Code Sample                                      | 887 |
|    | AQLM Quantization                                       | 889 |
|    | AQLM 2-bit Quantization                                 | 890 |
|    | Python Code Sample                                      | 891 |
|    | Generalized Precision Tuning Quantization (GPTQ)        | 893 |
|    | When GPTQ Quantization is Recommended                   | 898 |
|    | Post Training Quantization (PTQ)                        | 899 |
|    | Quantization-Aware Training (QAT)                       | 901 |
|    | HQQ Quantization                                        | 903 |
|    | Dynamic Quantization with a Neural Network              | 904 |
|    | Quantized LLMs and Testing                              | 905 |
|    | Fine-Tuning Quantized LLMs for Sentiment Analysis       | 907 |
|    | Practical Examples of Quantization                      | 910 |
|    | Quantization with TensorFlow (PTQ)                      | 910 |
|    | Quantization with TensorFlow (QAT)                      | 912 |
|    | Dynamic Quantization with PyTorch                       | 914 |
|    | Five LLMs and Five Quantization Techniques              | 916 |
|    | Which Criteria are Significant?                         | 918 |

| RAM Requirements for Quantized LLMs              | 920 |
|--------------------------------------------------|-----|
| Largest Quantized LLM for 128GB RAM              | 920 |
| Time Estimates for Quantization                  | 921 |
| Time Estimate for MacBook with M3 Pro Chip       | 922 |
| Suitable Tasks for Quantized 7B and 13B LLMs     | 924 |
| Selecting Models for Available RAM               | 925 |
| Selecting LLMs for Quantization on 16 GB of RAM  | 925 |
| Selecting LLMs for Quantization on 48 GB of RAM  | 927 |
| Selecting LLMs for Quantization on 128 GB of RAM | 928 |
| Setting Up llama.cpp on Your MacBook             | 931 |
| Quick Overview                                   | 931 |
| Software Requirements                            | 932 |
| Installing Conda and lfs                         | 933 |
| Installing llama.cpp                             | 933 |
| Working with the llama.cpp Server                | 934 |
| How to Start the Server                          | 934 |
| How to Stop the Server                           | 935 |
| How to Access the Server via a URL               | 935 |
| How to Access the Server via Python Code         | 935 |
| Further Exploration                              | 938 |
| Download and Quantize Mistral 7B LLM             | 938 |
| Downloading the Mistral 7B LLM                   | 938 |
| Downloading the Mistral Instruct LLM             | 939 |
| Quantizing the Mistral Instruct LLM              | 940 |
| Test the Performance of Quantizations and Models | 940 |
| Llama Models from Meta                           | 940 |
| Llama 3 Models on Hugging Face                   | 941 |
| Download and Run the Llama 3.1 405B Model        | 941 |
| A Quantized LLM: Now What Do I Do?               | 943 |
| Testing Token Generation of a Quantized LLM      | 945 |
| Quantized LLMs and Testing                       | 945 |
| Evaluating a Quantized LLM                       | 947 |
| Testing the Performance of a Quantized LLM       | 947 |
| Measuring the Inference Speed and Memory Usage   | 950 |

# xxvi • Contents

| Python Code to Measure Inference Speed                    | 951 |
|-----------------------------------------------------------|-----|
| Probabilistic Quantization                                | 952 |
| Python Code Sample for PQ                                 | 953 |
| Formulas for PQ                                           | 956 |
| Popular Formulas for PQ                                   | 957 |
| Probability Distributions and PQ                          | 959 |
| Kullback-Leibler Divergence and PQ                        | 960 |
| Probabilistic Quantization Versus Discretization          | 963 |
| Python Code for Discretization                            | 964 |
| Is Discretization Used for Data in Histograms?            | 965 |
| Distillation Versus Quantization                          | 966 |
| A Comparison of 2-bit versus 4-bit Quantization           | 969 |
| Disk Space for 2-bit Quantization of GPT-3                | 971 |
| 2-bit Quantization of GPT-3: Limited Space Reduction      | 973 |
| Recommendations for 1-bit Quantization                    | 975 |
| Time Estimates for 2-bit Versus 4-bit Quantization        | 978 |
| Performing Both 2-bit and 4-bit Quantization for GPT-3    | 980 |
| What is Generative Compression (GC)?                      | 983 |
| Generative Compression Versus Quantization                | 984 |
| Quantization Versus Distillation                          | 985 |
| Clustering Algorithms and Quantization                    | 986 |
| Python Code Samples                                       | 987 |
| Ranking of Clustering-Based Quantization Algorithms       | 990 |
| Usage Frequency of Clustering Algorithms for Quantization | 991 |
| Classification Algorithms and Quantization                | 992 |
| Python Code Samples                                       | 993 |
| Reinforcement Learning and Quantization                   | 996 |
| Summary                                                   | 998 |
| Index                                                     | 999 |