Contents

	Preface	Xi
Ι	Introduction: Relativity Theory	
	and Logical Positivism	3
II	Space-Time Theories	32
	1. General Properties of Space-Time Theories	32
	2. Covariance, Invariance, and Relativity Principles	46
	3. "Absoluteness" and Space-Time Structure	62
Ш	Newtonian Physics	71
	1. Kinematics: Absolute Space	71
	2. Kinematics: Galilean Relativity	87
	3. Gravitation Theory: Gravitational Force	92
	4. Gravitation Theory: Curved Space-Time	95
	5. Classical Electrodynamics	104
	6. Absolute Space and Absolute Time	108
	7. The Laws of Motion	115
	8. Gravitation and Acceleration	121
ΙV	Special Relativity	125
	1. Kinematics	125
	2. Digression on Deriving the Lorentz Transformations	138
	3. Dynamics	142
	4. Electrodynamics	146
	5. The Special Principle of Relativity	149
	6. The Velocity of Light	159
	7. Nonstandard ($\varepsilon \neq \frac{1}{2}$) Simultaneity Relations	165
V	General Relativity	177
	1. The Theory	177
	2. Comparison with Newtonian Theory	183
	3. Comparison with Special Relativity	185
	4. The Principle of Equivalence	191
	5. The General Principle of Relativity	204

Contents

VI	Relationalism	216
	1. Space-Time: Representation or Explanation?	217
	2. The Problem of Motion and the	
	Development of Relativity Theory	223
	3. Theoretical Structure and Theoretical Unification	236
	4. Realism about Space-Time	251
VII	Conventionalism	264
	1. Theoretical Underdetermination and	
	Empirical Equivalence	266
	2. Relativization and "Equivalent Descriptions"	277
	3. Congruence and Physical Geometry	294
	4. Simultaneity	309
	5. Theoretical Inference and	
	the Evolution of Relativity Theory	320
	6. Concluding Remarks	334
	Appendix: Differential Geometry	340
	1. Differentiable Manifolds	340
	2. Vectors on a Manifold	342
	3. Tensors on a Manifold	345
	4. Curves on a Manifold	348
	5. Affine Connections	349
	6. Metric Tensors and Semi-Riemannian Manifolds	353
	7. Differentiable Transformations and	
	Symmetry Groups	358
	Bibliography	368
	Index	377

The use, which we can make in philosophy, of mathematics, consists either in the imitation of its methods or in the real application of its propositions to the objects of philosophy. It is not evident that the first has to date been of much use, however much advantage was originally promised from it.... The second use, on the contrary, has been so much the more advantageous for the parts of philosophy concerned, which, by the fact that they applied the doctrines of mathematics for their purposes, have raised themselves to a height to which otherwise they could make no claim.

Kant, "Attempt to Introduce the Concept of Negative Magnitude into Philosophy" (1763)