Conventions and Notation

In a definition or when a word is defined in the text, the concept defined is italicized. Italics in the running text is also used for emphasis. definition of a word, phrase, or symbol is to be understood as an "if and only if' statement. Lower-case letters such as x denote vectors, upper-case letters such as A denote matrices, upper-case script letters such as \mathcal{S} denote sets, and lower-case Greek letters such as α denote scalars; however, there are a few exceptions to this convention. The notation $S_1 \subset S_2$ means that \mathcal{S}_1 is a proper subset of \mathcal{S}_2 , whereas $\mathcal{S}_1\subseteq\mathcal{S}_2$ means that either \mathcal{S}_1 is a proper subset of S_2 or S_1 is equal to S_2 . Throughout the book we use two basic types of mathematical statements, namely, existential and universal statements. An existential statement has the form: there exists $x \in \mathcal{X}$ such that a certain condition C is satisfied; whereas a universal statement has the form: condition C holds for all $x \in \mathcal{X}$. For universal statements we often omit the words "for all" and write: condition C holds, $x \in \mathcal{X}$. The notation used in this book is fairly standard. The reader is urged to glance at the notation below before starting to read the book.

$\mathbb Z$	set of integers
$\overline{\mathbb{Z}}_+,\mathbb{Z}_+,\overline{\mathbb{Z}},\mathbb{Z}$	set of nonnegative, positive, nonpositive, negative
	integers
\mathbb{R}	set of real numbers
$\mathbb{R}^{n imes m}$	set of $n \times m$ real matrices
\mathbb{R}^n	$\mathbb{R}^{n\times 1}$ (real column vectors)
$\overline{\mathbb{R}}_+, \mathbb{R}_+, \overline{\mathbb{R}}, \mathbb{R}$	set of nonnegative, positive, nonpositive, negative
	real numbers
\mathbb{C}	set of complex numbers
$\mathbb{C}^{n \times m}$	set of $n \times m$ complex matrices
\mathbb{C}^n	$\mathbb{C}^{n\times 1}$ (complex column vectors)
$\overline{\mathbb{C}}_+,\mathbb{C}_+,\overline{\mathbb{C}},\mathbb{C}$	set of complex numbers with nonnegative,
	positive, nonpositive, negative real parts
$\mathbb{F}, \mathbb{F}^n, \mathbb{F}^{n \times m}$	\mathbb{R} or \mathbb{C} , \mathbb{R}^n or \mathbb{C}^n , $\mathbb{R}^{n \times m}$ or $\mathbb{C}^{n \times m}$
CLHP, OLHP	closed, open left half plane

CRHP, ORHP	closed, open right half plane					
J	$\sqrt{-1}$					
$j\mathbb{R}$	imaginary numbers					
$\operatorname{Re} z, \operatorname{Im} z$	real part; imaginary part of a complex number z					
≜	equals by definition					
Ø	empty set					
$\{\}, \{\}_{\mathrm{m}}$						
\bigcup, \bigcap	set, multiset					
∈, ∉	union, intersection					
C, ¢	is an element of, is not an element of					
\subseteq , \subset \rightarrow	is a subset of, is a proper subset of approaches					
$0, 0_{n \times m}, 0_n$	zero matrix, $n \times m$ zero matrix, $0_{n \times n}$					
I_n, I	$n \times n$ identity matrix					
$\mathcal{R}(A), \mathcal{N}(A)$	range space of A , null space of A					
$x_i, x_{(i)}$	ith component of vector $x \in \mathbb{R}^n$					
. ,	(i,j) entry of A					
$A_{(i,j)}$ $\operatorname{col}_i(A), \operatorname{row}_i(A)$	(i,j) entry of $Aith column of A, ith row of A$					
$\operatorname{col}_i(A), \operatorname{row}_i(A)$						
	$A_{(1,1)}$					
$diag[A_{(1,1)}, \dots, A_{(n,n)}]$	diagonal matrix					
	$\begin{bmatrix} 0 & A_{(n,n)} \end{bmatrix}$					
	$A_1 \qquad 0$					
$block-diag[A_1,\ldots,A_k]$	block-diagonal matrix ; ,					
	$\begin{vmatrix} 0 & A_k \end{vmatrix}$					
	diagonal matrix $\begin{bmatrix} A_{(1,1)} & 0 \\ & \ddots \\ 0 & A_{(n,n)} \end{bmatrix}$ block-diagonal matrix $\begin{bmatrix} A_1 & 0 \\ & \ddots \\ 0 & A_k \end{bmatrix},$ $A_i \in \mathbb{R}^{n_i \times m_i}, \ i = 1, \dots, k$ transpose of A					
A^{T}	transpose of A					
$ar{A}$	complex conjugate of A					
A^*	$ar{A}^{ ext{T}}$					
A^{-1}	inverse of A					
A^{\dagger}						
$A^{\#}$	Moore-Penrose generalized inverse of A					
	group generalized inverse of A					
A^{-T}, A^{-*}	$(A^{\mathrm{T}})^{-1}, (A^*)^{-1}$					
$\operatorname{tr} A$	trace of A					
$\det A$	determinant of A					
rank A	rank of A					
\mathbb{S}^n	set of $n \times n$ symmetric matrices					
\mathbb{N}^n	set of $n \times n$ nonnegative-definite matrices					
\mathbb{P}^n	set of $n \times n$ positive-definite matrices					
$A \ge 0 \ (A >> 0)$	$A_{(i,j)} \ge 0 \ (A_{(i,j)} > 0)$ for all i and j					
$A \ge \ge B \ (A >> B)$	$A_{(i,j)} \ge B_{(i,j)} \ (A_{(i,j)} > B_{(i,j)}), \text{ where } A \text{ and } B$					
	are matrices with identical dimensions					
$A \ge 0 \ (A > 0)$	nonnegative (respectively, positive) definite					
	matrix; that is, symmetric matrix with					

	nonnegative (respectively, positive) eigenvalues			
$A \ge B$	$A - B \in \mathbb{N}^n$			
A > B	$A - B \in \mathbb{P}^n$			
$\mathbb{R}^n_+, \overline{\mathbb{R}}^n_+$	$\{x \in \mathbb{R}^n : x >> 0\}, \{x \in \mathbb{R}^n : x \ge 0\}$			
\otimes , \oplus	Kronecker product, Kronecker sum			
$x^{[k]}$	$x \otimes \cdots \otimes x \ (k \text{ times})$			
$\overset{\scriptscriptstyle{k}}{\oplus} A$	$A \oplus A \oplus \cdots \oplus A \ (k \ \mathrm{times})$			
$\mathcal{N}^{(k,n)}$	$\{\Psi \in \mathbb{R}^{1 \times n^k} : \Psi x^{[k]} \ge 0, \ x \in \mathbb{R}^n\}$			
vec	column-stacking operator			
$\operatorname{spec}(A)$	spectrum of A including multiplicity			
$\rho(A)$	spectral radius of A			
$\alpha(A)$	spectral abscissa of A			
$ \alpha $	absolute value of α			
$\sigma_i(A)$	ith singular value of A			
$\sigma_{\min}(A), \sigma_{\max}(A)$	minimum, maximum singular value of A			
$\ \cdot\ ,\ \cdot\ $	vector or matrix norm, vector or matrix operator			
	norm			
$ x _2$	Euclidean norm of $x (= \sqrt{x^*x})$			
$ x _p$	Hölder vector norms, $\left[\sum_{i=1}^{n} x_{i} ^{p}\right]^{1/p}, 1 \leq p < \infty$			
$ x _{\infty}$	$\max_i x_{(i)} $			
$ A _p$	Hölder matrix norms, $\left[\sum_{i=1}^{m}\sum_{j=1}^{n} A_{(i,j)} ^{p}\right]^{1/p}$,			
	$1 \le p < \infty$			
$ A _{\infty}$	$\max_{i,j} A_{(i,j)} $			
$ A _{\sigma p}$	$\left[\sum_{i=1}^{r} \sigma_i^p(A)\right]^{1/p}, 1 \le p < \infty, r = \text{rank } A$			
$ A _{\sigma\infty}$	$\sigma_{\max}(A)$			
$ A _{\mathrm{s}}$	spectral norm of $A (= \sigma_{\max}(A))$			
$ A _{\mathrm{F}}$	Frobenius matrix norm of $A = (\operatorname{tr} AA^*)^{1/2}$			
$ A _{q,p}$	induced matrix norm			
$\lambda_i(A)$	<i>i</i> th eigenvalue of $A \in \mathbb{R}^{n \times n}$			
$\lambda_{\min}(A), \lambda_{\max}(A)$	minimum, maximum eigenvalues of the			
	Hermitian matrix A			
He A , Sh A	$\frac{1}{2}(A+A^*), \frac{1}{2}(A-A^*)$			
$E_{(i,j)}$	elementary matrix with unity in the (i, j)			
	entry and zeros elsewhere			
\log_e	logarithm with base $e = 2.71828 \cdots$			
e_i	vector with unity in the <i>i</i> th component and zeros			
	elsewhere			
e	$[1, 1,, 1]^{\mathrm{T}}$			
\mathcal{L}_p	Lebesgue space, $1 \le p \le \infty$			
\mathcal{L}_2	space of square-integrable Lebesgue measurable			
\mathcal{L}_{∞}	functions on $[0, \infty)$			
\mathcal{L}_{∞}	space of bounded Lebesgue measurable functions			

	on $[0,\infty)$
$ f _{p,q}$	$\{\int_0^\infty f(t) _q^p dt\}^{1/p}, \ 1 \le p < \infty$
$ f _{\infty,q}$	$\sup_{t \ge 0} \ f(t)\ _q$
$\langle f,g \rangle$	$\int_0^\infty f^{\mathrm{T}}(t)g(t)\mathrm{d}t$
ℓ_p	sequence space, $1 \le p \le \infty$
$\ell_2^{\scriptscriptstyle P}$	space of square-summable sequences on $\overline{\mathbb{Z}}_+$
ℓ_{∞}	space of bounded sequences on $\overline{\mathbb{Z}}_+$
$\stackrel{\sim}{\mathcal{H}_p}$	analytic function space
$\mathcal{H}_{2}^{^{r}}$	Hardy space of real-rational transfer function
	matrices square-integrable on the imaginary
	axis (unit disk) with analytic continuation
	in the right half plane (outside the unit disk)
\mathcal{H}_{∞}	Hardy space of real-rational transfer function
	matrices bounded on the imaginary axis (unit
	disk) with analytic continuation in
ma i	the right half plane (outside the unit disk)
$\Re \mathcal{H}_2$	real-rational subspace of \mathcal{H}_2
$\Re \mathcal{H}_{\infty} \ [a,b]$	real-rational subspace of \mathcal{H}_{∞} closed interval
(a,b)	open interval
$\mathcal{X} \times \mathcal{Y}$	Cartesian product of \mathcal{X} and \mathcal{Y}
$f: \mathcal{X} \to \mathcal{Y}$	function f with domain \mathcal{X} and codomain \mathcal{Y}
$\frac{\partial f}{\partial x_i}(x_0)$	partial derivative of f with respect to x_i at x_0
$f'(x_0)$	Fréchet derivative of f at x_0
$f^{(k)}(x_0)$	kth Fréchet derivative of f at x_0
$D^+ f(x_0)$	upper right Dini derivative of f at x_0
$D_+f(x_0)$	lower right Dini derivative of f at x_0
$f^{-1}(\mathcal{D})$	inverse image of the set \mathcal{D}
$f_2 \circ f_1$	composition of two functions;
2 [(1)]	$(f_2 \circ f_1)(\cdot) = f_2(f_1(\cdot))$
$\mathcal{L}[z(t)]$	Laplace transform of $z(\cdot)$
$G(s) \sim \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$	state space realization of transfer function
	$G(s) = C(sI - A)^{-1}B + D$
$G(s) \stackrel{\min}{\sim} \left[\begin{array}{c c} A & B \\ \hline C & D \end{array} \right]$	minimal state space realization of $G(s)$
$\mathcal{B}_{arepsilon}(lpha)$	$\{x \in \mathbb{R}^n : \ x - \alpha\ < \varepsilon\}$
$\mathcal{B}_{arepsilon}(lpha)$	$\{x \in \mathbb{R}^n : x - \alpha < \varepsilon\}$ $\{x \in \mathbb{R}^n : x - \alpha \le \varepsilon\}$
$\mathcal{X} \setminus \mathcal{V}$	$\{x \in \mathcal{X} : x \notin \mathcal{Y}\} \text{ for sets } \mathcal{X} \text{ and } \mathcal{Y}$
$\begin{array}{c} \mathcal{X} \backslash \mathcal{Y} \\ \partial \mathcal{S} \\ \frac{\mathcal{S}}{\mathcal{S}} \end{array}$	boundary of the set S
° S	interior of the set S
$\frac{\mathcal{S}}{\mathcal{S}}$	closure of the set \mathcal{S}
\mathcal{S}^{c} or \mathcal{S}^{\sim}	complement of the set \mathcal{S}
	•

inf	infimum; greatest lower bound		
\sup	supremum; least upper bound		
$ \liminf_{n\to\infty} f(x_n) $	limit inferior of $f(x_n)$;		
	$ \liminf_{n \to \infty} f(x_n) = \sup_{n} \inf_{k \ge n} f(x_k) $		
$\lim_{n\to\infty} \sup f(x_n)$	limit superior of $f(x_n)$;		
,	$\lim_{n \to \infty} \sup f(x_n) = \inf_n \sup_{k \ge n} f(x_k)$		
min, max	minimum, maximum		
C_0	continuous functions		
\mathbf{C}^r	functions with r -continuous derivatives		
C^{∞}	infinitely differentiable functions		
$\mathcal{C}[a,b]$	space of continuous functions		
\mathbb{E}^{-}	expectation		
a.e.	almost everywhere		
\triangle	end of example		
	quod erat demonstrandum or end of proof		