Contents

Preface xi
The Ancient Heavens 1
Precursors 9
What Is Trigonometry? 9
The Seqed in Ancient Egypt 10
■ Text 1.1 Finding the Slope of a Pyramid 11
Babylonian Astronomy, Arc Measurement, and the 360° Circle 12
The Geometric Heavens: Spherics in Ancient Greece 18
A Trigonometry of Small Angles? Aristarchus and Archimedes on Astronomical Dimensions 20
■ Text 1.2 Aristarchus, the Ratio of the Distances of the Sun and Moon 24
Alexandrian Greece 33
Convergence 33
Hipparchus 34
A Model for the Motion of the Sun 37
■ Text 2.1 Deriving the Eccentricity of the Sun's Orbit 39
Hipparchus's Chord Table 41
The Emergence of Spherical Trigonometry 46
Theodosius of Bithynia 49
Menelaus of Alexandria 53
The Foundations of Spherical Trigonometry: Book III of Menelaus's <i>Spherics</i> 56
■ Text 2.2 Menelaus, Demonstrating Menelaus's Theorem 57
Spherical Trigonometry before Menelaus? 63
Claudius Ptolemy 68
Ptolemy's Chord Table 70
Ptolemy's Theorem and the Chord Subtraction/Addition Formulas 74
The Chord of 1° 76
The Interpolation Table 77

3

Chords in Geography: Gnomon Shadow Length Tables 77
■ Text 2.3 Ptolemy, Finding Gnomon Shadow Lengths 78
Spherical Astronomy in the <i>Almagest</i> 80
Ptolemy on the Motion of the Sun 82
■ Text 2.4 Ptolemy, Determining the Solar Equation 84
The Motions of the Planets 86
Tabulating Astronomical Functions and the Science of Logistics 88
Trigonometry in Ptolemy's Other Works 90
■ Text 2.5 Ptolemy, Constructing Latitude Arcs on a Map 91
After Ptolemy 93
India 94
Transmission from Babylon and Greece 94
The First Sine Tables 95
Āryabhaṭa's Difference Method of Calculating Sines 99
■ Text 3.1 Āryabhaṭa, Computing Sines 100
Bhāskara I's Rational Approximation to the Sine 102
Improving Sine Tables 105
Other Trigonometric Identities 107
■ Text 3.2 Varāhamihira, a Half-angle Formula 108
■ Text 3.3 Brahmagupta, the Law of Sines in Planetary Theory? 109
Brahmagupta's Second-order Interpolation Scheme for Approximating Sines 111
■ Text 3.4 Brahmagupta, Interpolating Sines 111
Taylor Series for Trigonometric Functions in Mādhava's Kerala School 113
Applying Sines and Cosines to Planetary Equations 121
Spherical Astronomy 124
■ Text 3.5 Varāhamihira, Finding the Right Ascension of a Point on the Ecliptic 125
Using Iterative Schemes to Solve Astronomical Problems 129
■ Text 3.6 Parameśvara, Using Fixed-point Iteration to Compute Sines 131
Conclusion 133

166

4 Islam 135 Foreign Junkets: The Arrival of Astronomy from India Basic Plane Trigonometry 137 Building a Better Sine Table 140 ■ Text 4.1 Al-Samaw'al ibn Yahyā al-Maghribī, Why the Circle Should Have 480 Degrees 146 Introducing the Tangent and Other Trigonometric Functions ■ Text 4.2 Abū'l-Rayhān al-Bīrūnī, Finding the Cardinal Points of the Compass 152 Streamlining Astronomical Calculation ■ Text 4.3 Kūshyār ibn Labbān, Finding the Solar Equation Numerical Techniques: Approximation, Iteration, Interpolation 158 ■ Text 4.4 Ibn Yūnus, Interpolating Sine Values Early Spherical Astronomy: Graphical Methods and Analemmas ■ Text 4.5 Al-Khwārizmī, Determining the Ortive Amplitude Geometrically

Menelaus in Islam 173

■ Text 4.6 Al-Kūhī, Finding Rising Times Using the Transversal Theorem 175

Menelaus's Replacements 179

Systematizing Spherical Trigonometry: Ibn Mu^cādh's Determination of the Magnitudes and Naṣīr al-Dīn al-Ṭūsī's Transversal Figure 186

Applications to Religious Practice: The *Qibla* and Other Ritual Needs

■ Text 4.7 Al-Battānī, a Simple Approximation to the *Qibla* 195

Astronomical Timekeeping: Approximating the Time of Day Using the Height of the Sun

New Functions from Old: Auxiliary Tables

■ Text 4.8 Al-Khalīlī, Using Auxiliary Tables to Find the Hour-angle 207

Trigonometric and Astronomical Instruments

■ Text 4.9 Al-Sijzī (?), On an Application of the Sine Quadrant 213

Trigonometry in Geography 215

Trigonometry in al-Andalus 217

5 The West to 1550 223

Transmission from the Arab World 223

An Example of Transmission: Practical Geometry 224

- Text 5.1 Hugh of St. Victor, Using an Astrolabe to Find the Height of an Object 225
- Text 5.2 Finding the Time of Day from the Altitude of the Sun 227 Consolidation and the Beginnings of Innovation: The Trigonometry of Levi ben Gerson, Richard of Wallingford, and John of Murs 230
 - Text 5.3 Levi ben Gerson, The Best Step Size for a Sine Table 233
 - Text 5.4 Richard of Wallingford, Finding Sin(1°) with Arbitrary Accuracy 237

Interlude: The Marteloio in Navigation 242

■ Text 5.5 Michael of Rhodes, a Navigational Problem from His *Manual* 244

From Ptolemy to Triangles: John of Gmunden, Peurbach, Regiomontanus 247

- Text 5.6 Regiomontanus, Finding the Side of a Rectangle from Its Area and Another Side 254
- Text 5.7 Regiomontanus, the Angle-angle Case of Solving Right Triangles 255

Successors to Regiomontanus: Werner and Copernicus 264

- Text 5.8 Copernicus, the Angle-angle-angle Case of Solving Triangles 267
- Text 5.9 Copernicus, Determining the Solar Eccentricity 270

Breaking the Circle: Rheticus, Otho, Pitiscus and the *Opus Palatinum* 273

Concluding Remarks 284

Bibliography 287

Index 323