
Preface

This book deals with the boundary control of wave partial differential equations
(PDEs) in one dimension, with a moving actuated boundary, or with finite-dimensi-
onal dynamics (modeled as ordinary differential equations; ODEs) at either the
unactuated boundary or in the actuation path. These structures are inspired by
applications involving cables and strings that move mechanical loads.

Cables moving mechanical loads are most conspicuously employed in elevators
(both in buildings, where they may be hundreds of meters long, and in deep min-
ing, where they may be kilometers long), but also in undersea construction, such
as laying telecommunication cables along uneven seafloor or building artificial reefs
that have an environmentally beneficial purpose for the sea life, and in other appli-
cations, including many yet to be revealed in other domains.

In deep-sea drilling, the so-called drill string is not a cable but a kilometers-
long thin cylinder, with a drill bit on its unactuated end, and its dynamics of
rotation (torsional dynamics) are governed by the wave equation; that is, they are
mathematically equivalent to string or cable vibration.

Hence, our book’s overarching title for this multitude of physical configurations,
load types, and operating purposes — PDE Control of String-Actuated Motion.

The actuation of mechanical loads by means of strings (cables) has its advan-
tages over rigid connections. It allows for significant improvements in energy effi-
ciency, weight, size of the operation workspace, operation speed, and maximum
payload, compared with rigid-body mechanisms, due to the string’s properties of
lower weight, resisting relatively large axial loads, and low bending and torsional
stiffness.

However, the distributed parameter nature of a string or cable makes the con-
trol design of the cable-actuated mechanisms more challenging than the traditional
ODE-based control designs for lumped parameter rigid-body mechanisms, giving
rise to many new problems in boundary control of PDEs. The theoretical challenges
and practical significance have led us to carry out research on many topics involv-
ing cables and strings of time-varying length, with moving loads, and with actuator
dynamics. This book presents this collection of methodologies, whose meaning is
predominantly mathematical, but whose inspiration comes entirely from applica-
tions and technology.

Cable elevators and other lifting and depositing tasks, as well as drilling at a high
penetration rate, introduce a heretofore unstudied problem of boundary control of
wave PDEs with moving boundaries—that is, on time-varying domains. This is the
central issue of our book—wave PDE control on one-dimensional domains of time-
varying lengths—that is, vibration suppression in strings of time-varying lengths.
One should note that, as the cable length varies with time, possibly fast, even if
one could be talking about eigenvalues and eigenfunctions (that rapidly change),
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the spectral approaches to control design certainly would not be applicable. We
approach this challenge using time-domain and Lyapunov-based approaches.

The second key challenge is that, at the moving end of a time-varying string, a
load is present, and the motion of this load needs to be controlled with an actuator
on the opposite end of the string. The objective is to suppress the vibration in both
the string of varying length and in the load at the distal end from the actuator.
Using feedback control to add damping artificially, where physical viscous damping
might be absent or insufficient, would be easy at the location of (i.e., proximal
to) the actuator. However, the actuator being at a boundary makes emulating
viscous damping along the entire string, and at the load on the string’s distal end,
challenging.

This challenge is met using the method of PDE backstepping. Backstepping
employs two tools, a Volterra transformation of the infinite-dimensional state, and
feedback, to add damping at locations other than the actuator. But, prior to employ-
ing the backstepping transformation, we usually employ first a transformation of
the state into the Riemann variables, which is a canonical representation for coupled
hyperbolic PDEs, to which backstepping is readily applicable.

However, the actuator in most boundary-controlled cable and string systems
does not act directly and instantly. The actuator, be it hydraulic or electrical, has its
own considerable inertia—namely, its own lumped-parameter dynamics modeled by
an ODE. These dynamics themselves have to be overcome using finite-dimensional
backstepping (the classical integrator backstepping).

Hence, the overall system that arises in string-actuated motion is often a sand-
wiched ODE-PDE-ODE configuration, with an input acting on only one of the two
ODEs at the end of the PDE, and not directly on the PDE.

The reality of applications gives rise to additional effects: nonlinearities, distur-
bances, unknown parameters, input delays, sampled (or event-triggered) sensing,
as well as many more which we deem beyond the page and time limits of this book.

A vast literature exists on control of overhead cranes and gantry cables. A good
entry point into this literature, in terms of both the theory and applications, is the
tutorial article [23].

A large portion of the research on this topic justifiably focuses on transverse
motion and employs the techniques of differential flatness, finite-time motion plan-
ning, and finite-horizon optimal control. Many, if not most of these approaches, are
concerned with designing open-loop control signals. While some of our work in this
book is applicable to the transversal motion of overhead cranes and gantry cables,
these problems are not our focus here. Instead, we focus on vibration suppression,
in axial and other directions, cables of varying length, Lyapunov stabilization tech-
niques, and handling of uncertainties.

What Does the Book Cover?

The book comprises three parts. The first part is devoted to various control appli-
cations, as drivers for control design and theoretical study. Control problems for
mining cable elevators are introduced in chapters 2–5, focusing on single-cable ele-
vators in chapter 2, dual-cable elevators in chapter 3, and airflow disturbances and
the influence of flexible guideways in chapter 4 and chapter 5, respectively. In addi-
tion to the mining cable elevator, the deep-sea construction vessel for undersea
moving is also a cable-actuated manipulator to move mechanical loads. Its basic
control design is introduced in chapter 6, and additional real-world effects—that is,
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Table 1. The motion types

Chapter Axial Transversal Torsional

2
√

3
√

4
√

5
√

6
√ √

7
√

8
√

10
√

11
√

13
√

15
√

sensor signal delays occurring in large-distance signal transmission through acoustic
devices and the requirement of reducing changes in the actuator signal considering
the massive ship-mounted crane—are dealt with in chapter 7. Apart from the cable-
actuated mining elevator and the deep-sea construction vessel, another distinct but
kindred application, deep-sea drilling, is tackled in chapter 8.

Inspired by but going beyond the applications in part I, generalized control
problems are dealt with in part II—that is, boundary control of sandwich hyperbolic
PDEs in particular. Control of the sandwich systems is covered in chapters
9–12, with the basic control design presented in chapter 9 and then extended to
a variety of more challenging problems, including control of the sandwich systems
with sensor delay in chapter 10, with event-triggered design in chapter 11, and
with nonlinearities in chapter 12. The general results in part II are justified by
applications in part I.

The last of the three parts presents triggered-type adaptive control of hyper-
bolic PDEs. Three triggered adaptive control schemes (event-triggered control, reg-
ulation-triggered parameter estimation, and a combination of both) for hyperbolic
PDE-ODE systems are developed in chapters 13–15, respectively. The triggered-
type adaptive control results in part III are also verified in the applications in
part I.

The book deals with all of the three possible motions of strings or cables: longitu-
dinal/axial/stretching, lateral/transversal/bending, and angular/rotational/torsi-
onal. However, it is only in one chapter that we deal with more than one of these
three motions. In chapter 6 we deal with coupled longitudinal-lateral vibrations.
Table 1 gives an overview of the motion types that each chapter covers. The sup-
pression of axial vibrations dominates our exposition, with transversal vibrations a
close second.
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Table 2. Configurations

Chapter ODE at distal end of PDE ODE at proximal end of PDE

2
√

3
√

4
√

5
√

6
√

7
√

8
√

9
√ √

10
√ √

11
√ √

12
√ √

13
√

14
√

15
√

All of the problems considered in the book incorporate at least one PDE and
one ODE. Some consider a second ODE as well. The configurations considered
are given in table 2. Those configurations that include ODEs at both distal and
proximal ends in chapters 9–12 (namely, about a third of the book) are sandwich
systems. In addition, chapter 10 contains a sensor delay at the distal end.

We consider both PDE-ODE systems that are fully known and those that con-
tain unknown or unmeasured quantities—such as unmeasured states, unmeasured
disturbances, and unknown parameters. In table 3 we overview the contents of the
book based on the unmeasured and unknown effects. Virtually all of our exposition
is for cables and (drill) strings that are not instrumented with distributed sensing,
as is consistent with reality. Disturbances and unknown parameters occupy a large
share of the book and create some of the most significant challenges for design and
analysis.

When it comes to adaptive control, a topic dealt with comprehensively for cou-
pled hyperbolic PDEs in [9] (and for parabolic PDEs a decade earlier in [166]) is
tackled in chapters 5, 8, 13, 14, and 15 of this book, as indicated in table 3. Chap-
ters 5 and 8 employ a classical continuous-in-time Lyapunov-based approach. On
the other hand, chapters 13–15 employ novel event-triggered approaches. Chapters
13 and 14 are very different in what event triggering is employed for. An adaptive
controller consists of two components: the control law and the parameter estimator
(update law). Both of these components can employ piecewise-constant values—
the control input and the parameter estimate. And the changes in the piecewise-
constant values in both of these components can be triggered in various ways. In
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Table 3. Unmeasured and unknown effects

Chapter
Unmeasured Unmeasured Unmeasured Unknown

PDE state ODE state disturbance parameters

2
√

3
√

4
√ √

5
√ √ √

6
√ √

7
√ √

8
√ √ √

10
√ √

11
√ √

12
√ √

13
√ √

14
√

15
√

chapter 13 we employ continuous parameter updates and event-triggered control
inputs. Conversely, in chapter 14 we employ continuous control inputs (except for
finite time instants) and event-triggered parameter updates. Because the param-
eter estimator is the more delicate of the two components of an adaptive control
since it is generally not endowed with convergence guarantees, it is chapter 14 that
is considerably more challenging of the two chapters. In chapter 15, simultane-
ous triggering is employed for the parameter update law and the control law, the
result of which is that both the parameter estimates and the control input employ
piecewise-constant values.

For the researcher in coupled hyperbolic PDE systems who is interested in going
beyond the basic 2× 2 case, which is superbly covered in [16] and [9], there are
interesting designs for 4× 4 cases in this book—for example, in chapter 3 and
chapter 6. Chapter 3 deals with axial oscillations in a pair of cables connected by
a payload at the distal boundary. So the 4× 4 system in chapter 3 is a set of two
2× 2 pairs that are coupled not along the domain but at the boundary. In contrast,
chapter 6 deals with a single cable but with axial and lateral oscillations that bring
domain-wide coupling into the plant and, therefore, a fully coupled 4× 4 hyperbolic
system. While in multiphase flows, in both oil drilling and production, as well as
in congested multiclass traffic flow, a larger number of first-order hyperbolic PDEs
arise in the direction toward the actuated end than away from it, this interesting
occurrence of underactuated heterodirectional hyperbolic PDEs does not arise with
cables.
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What Niche in the Literature Does This Book Fill?

The main inspiration for this book comes from the cascade PDE-ODE configura-
tions in [116]. The book [111] develops the cascade ideas from [116] in the parabolic
PDE realm for applications in additive manufacturing.

The present book expands the reach of [116] into cable-operated systems and on
time-varying domains. But this book’s closest cousin may be [77], a major volume
spawned from the classic [132]. While [77, 132] employ collocated static feedbacks
for wave PDEs on static domains, and in the absence of ODEs, our focus is broader
in terms of plant structure (varying domain, ODE included), methodology (back-
stepping controller and observer designs), and the emphasis on applications. We do
not, however, deal with beam systems.

For Whom Is This Book

This book should be valuable to researchers working on control and dynamic
systems—engineers, graduate students, and PDE system specialists in academia.

Mathematicians with interest in control of distributed parameter systems will
find the book stimulating, because it tackles and opens a door for control of sand-
wich PDE systems, which present many stimulating challenges and opportunities
for further research on the stabilization of ever-expanding classes of unstable sand-
wich PDE systems.

Engineers in mechanical, aerospace, and civil/structural engineering, focusing
on vibration or motion control, especially for flexible structures or manipulators,
will learn some new and useful methodologies for designing controller/observer
algorithms, and addressing some problems they have no doubt faced in practice:
time delay, disturbances, uncertainties, and so on.

The background required to read this book includes little beyond the basics
of function spaces and Lyapunov theory for ODEs. We hope that the reader will
regard the book not as a collection of problems that have been solved but as a
collection of tools and techniques that are applicable to open problems, particularly
in interconnected systems of ODEs and PDEs, and to physical problems modeled
by PDE-ODE coupled systems.
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