You are not authenticated through an institution. Should you have institutional access?
Here's how to get it
Chapter
Licensed
Unlicensed
Requires Authentication
22.3. Statistical Analysis of i.i.d. Mixture Distributions
-
James Douglas Hamilton
James Douglas HamiltonSearch for this author in:
You are currently not able to access this content.
Not sure if you should have access? Please log in using an institutional account to see if you have access to view or download this content.
You are currently not able to access this content.
Not sure if you should have access? Please log in using an institutional account to see if you have access to view or download this content.
Chapters in this book
- Frontmatter i
- Contents v
- Preface xiii
- 1 Difference Equations 1
- 1.1. First-Order Difference Equations 1
- 1.2. pth-Order Difference Equations 7
- APPENDIX I.A. Proofs of Chapter 1 Propositions 21
- Chapter 1 References 24
- 2 Lag Operators 25
- 2.1. Introduction 25
- 2.2. First-Order Difference Equations 27
- 2.3. Second-Order Difference Equations 29
- 2.4. pth-Order Difference Equations 33
- 2.5. Initial Conditions and Unbounded Sequences 36
- Chapter 2 References 42
- 3 Stationary ARMA Processes 43
- 3.1. Expectations, Stationarity, and Ergodicity 43
- 3.2. White Noise 47
- 3.3. Moving Average Processes 48
- 3.4. Autoregressive Processes 53
- 3.5. Mixed Autoregressive Moving Average Processes 59
- 3.6. The Autocovariance-Generating Function 61
- 3.7. Invertibility 64
- APPENDIX 3.A. Convergence Results for Infinite-Order Moving Average Processes 69
- Chapter 3 Exercises 70
- Chapter 3 References 71
- 4 Forecasting 72
- 4.1. Principles of Forecasting 72
- 4.2. Forecasts Based on an Infinite Number of Observations 77
- 4.3. Forecasts Based on a Finite Number of Observations 85
- 4.4. The Triangular Factorization of a Positive Definite Symmetric Matrix 87
- 4.5. Updating a Linear Projection 92
- 4.6. Optimal Forecasts for Gaussian Processes 100
- 4.7. Sums of ARM A Processes 102
- 4.8. Wold's Decomposition and the Box-Jenkins Modeling Philosophy 108
- APPENDIX 4.A. Parallel Between OLS Regression and Linear Projection 113
- APPENDIX 4.B. Triangular Factorization of the Covariance Matrix for an MA(1) Process 114
- Chapter 4 Exercises 115
- Chapter 4 References 116
- 5 Maximum Likelihood Estimation 117
- 5.1. Introduction 117
- 5.2. The Likelihood Function for a Gaussian AR(7J Process 118
- 5.3. The Likelihood Function for a Gaussian AR(p) Process 123
- 5.4. The Likelihood Function for a Gaussian MA(1) Process 127
- 5.5. The Likelihood Function for a Gaussian MA(q) Process 130
- 5.6. The Likelihood Function for a Gaussian ARMA(p, q) Process 132
- 5.7. Numerical Optimization 133
- 5.8. Statistical Inference with Maximum Likelihood Estimation 142
- 5.9. Inequality Constraints 146
- APPENDIX 5. A. Proofs of Chapter 5 Propositions 148
- Chapter 5 Exercises 150
- Chapter 5 References 150
- 6 Spectral Analysis 152
- 6.1. The Population Spectrum 152
- 6.2. The Sample Periodogram 158
- 6.3. Estimating the Population Spectrum 163
- 6.4. Uses of Spectral Analysis 167
- APPENDIX 6. A. Proofs of Chapter 6 Propositions 172
- Chapter 6 Exercises 178
- Chapter 6 References 178
- 7 Asymptotic Distribution Theory 180
- 7.1. Review of Asymptotic Distribution Theory 180
- 7.2. Limit Theorems for Serially Dependent Observations 186
- APPENDIX 7.A. Proofs of Chapter 7 Propositions 195
- Chapter 7 Exercises 198
- Chapter 7 Exercises 199
- 8 Linear Regression Models 200
- 8.1. Review of Ordinary Least Squares with Deterministic Regressors and i.i.d. Gaussian Disturbances 200
- 8.2. Ordinary Least Squares Under More General Conditions 207
- 8.3. Generalized Least Squares 220
- APPENDIX 8. A. Proofs of Chapter 8 Propositions 228
- Chapter 8 Exercises 230
- Chapter 8 References 231
- 9 Linear Systems of Simultaneous Equations 233
- 9.1. Simultaneous Equations Bias 233
- 9.2. Instrumental Variables and Two-Stage Least Squares 238
- 9.3. Identification 243
- 9.4. Full-Information Maximum Likelihood Estimation 247
- 9.5 Estimation Based on the Reduced Form 250
- 9.6. Overview of Simultaneous Equations Bias 252
- APPENDIX 9.A. Proofs of Chapter 9 Proposition 253
- Chapter 9 Exercise 255
- Chapter 9 References 256
- 10 Covariance-Stationary Vector Processes 257
- 10.1. Introduction to Vector Autoregressions 257
- 10.2. Autocovariances and Convergence Results for Vector Processes 261
- 10.3. The Autocovariance-Generating Function for Vector Processes 266
- 10.4. The Spectrum for Vector Processes 268
- 10.5. The Sample Mean of a Vector Process 279
- APPENDIX 10.A. Proofs of Chapter 10 Propositions 285
- Chapter 10 Exercises 290
- Chapter 10 References 290
- 11 Vector Autoregressions 291
- 11.1. Maximum Likelihood Estimation and Hypothesis Testing for an Unrestricted Vector Autoregression 291
- 11.2. Bivariate Granger Causality Tests 302
- 11.3. Maximum Likelihood Estimation of Restricted Vector Autoregressions 309
- 11.4. The Impulse-Response Function 318
- 11.5. Variance Decomposition 323
- 11.6. Vector Autoregressions and Structural Econometric Models 324
- 11.7. Standard Errors for Impulse-Response Functions 336
- APPENDIX 11. A. Proofs of Chapter 11 Propositions 340
- APPENDIX 11.B. Calculation of Analytic Derivatives 344
- Chapter 11 Exercises 348
- Chapter 11 References 349
- 12 Bayesian Analysis 351
- 12.1. Introduction to Bayesian Analysis 351
- 12.2. Bayesian Analysis of Vector Autoregressions 360
- 12.3. Numerical Bayesian Methods 362
- APPENDIX 12.A. Proofs of Chapter 12 Propositions 366
- Chapter 12 Exercise 370
- Chapter 12 References 370
- 13 The Kalman Filter 372
- 13.1. The State-Space Representation of a Dynamic System 372
- 13.2. Derivation of the Kalman Filter 377
- 13.3. Forecasts Based on the State-Space Representation 381
- 13.4. Maximum Likelihood Estimation 385
- 13.5. The Steady-State Kalman Filter 389
- 13.6. Smoothing 394
- 13.7. Statistical Inference with the Kalman Filter 397
- 13.8. Time-Varying Parameters 399
- APPENDIX 13. A. Proofs of Chapter 13 Propositions 403
- Chapter 13 Exercises 406
- Chapter 13 References 407
- 14 Generalized Method of Moments 409
- 14.1. Estimation by the Generalized Method of Moments 409
- 14.2. Examples 415
- 14.3. Extensions 424
- 14.4. GMM and Maximum Likelihood Estimation 427
- APPENDIX 14. A. Proof of Chapter 14 Proposition 431
- Chapter 14 Exercise 432
- Chapter 14 References 433
- 15 Models of Nonstationary Time Series 435
- 15.1. Introduction 435
- 15.2. Why Linear Time Trends and Unit Roots? 438
- 15.3. Comparison of Trend-Stationary and Unit Root Processes 438
- 15.4. The Meaning of Tests for Unit Roots 444
- 15.5. Other Approaches to Trended Time Series 447
- APPENDIX 15. A. Derivation of Selected Equations for Chapter 15 451
- Chapter 15 References 452
- 16 Processes with Deterministic Time Trends 454
- 16.1. Asymptotic Distribution of OLS Estimates of the Simple Time Trend Model 454
- 16.2. Hypothesis Testing for the Simple Time Trend Model 461
- 16.3. Asymptotic Inference for an Autoregressive Process Around a Deterministic Time Trend 463
- APPENDIX 16. A. Derivation of Selected Equations for Chapter 16 472
- Chapter 16 Exercises 474
- Chapter 16 References 474
- 17 Univariate Processes with Unit Roots 475
- 17.1. Introduction 475
- 17.2. Brownian Motion 477
- 17.3. The Functional Central Limit Theorem 479
- 17.4. Asymptotic Properties of a First-Order Autoregression when the True Coefficient Is Unity 486
- 17.5. Asymptotic Results for Unit Root Processes with General Serial Correlation 504
- 17.6. Phillips-Perron Tests for Unit Roots 506
- 17.7. Asymptotic Properties of a pth-Order Autoregression and the Augmented Dickey-Fuller Tests for Unit Roots 516
- 17.8. Other Approaches to Testing for Unit Roots 531
- 17.9. Bayesian Analysis and Unit Roots 532
- APPENDIX 17.A. Proofs of Chapter 17 Propositions 534
- Chapter 17 Exercises 537
- Chapter 17 References 541
- 18 Unit Roots in Multivariate Time Series 544
- 18.1. Asymptotic Results for Nonstationary Vector Processes 544
- 18.2. Vector Autoregressions Containing Unit Roots 549
- 18.3. Spurious Regressions 557
- APPENDIX 18.A. Proofs of Chapter 18 Propositions 562
- Chapter 18 Exercises 568
- Chapter 18 References 569
- 19 Cointegration 571
- 19.1. Introduction 571
- 19.2. Testing the Null Hypothesis 582
- 19.3. Testing Hypotheses About the Cointegrating Vector 601
- APPENDIX 19. A. Proofs of Chapter 19 Propositions 618
- Chapter 19 Exercises 625
- Chapter 19 References 627
- 20 Full-Information Maximum Likelihood Analysis of Cointegrated Systems 630
- 20.1. Canonical Correlation 630
- 20.2. Maximum Likelihood Estimation 635
- 20.3. Hypothesis Testing 645
- 20.4. Overview of Unit Roots—To Difference or Not to Difference? 651
- APPENDIX 20.A. Proof of Chapter 20 Proposition 653
- Chapter 20 Exercises 655
- Chapter 20 References 655
- 21 Time Series Models of Heteroskedasticity 657
- 21.1. Autoregressive Conditional Heteroskedasticity (ARCH) 657
- 21.2. Extensions 665
- APPENDIX 21. A. Derivation of Selected Equations for Chapter 21 672
- Chapter 21 References 674
- 22 Modeling Time Series with Changes in Regime 677
- 22.1. Introduction 677
- 22.2. Markov Chains 678
- 22.3. Statistical Analysis of i.i.d. Mixture Distributions 685
- 22.4. Time Series Models of Changes in Regime 690
- APPENDIX 22. A. Derivation of Selected Equations for Chapter 22 699
- Chapter 22 Exercise 702
- Chapter 22 Reference 702
- A Mathematical Review 704
- A.1. Trigonometry 704
- A.2. Complex Numbers 708
- A.3. Calculus 711
- A.4. Matrix Algebra 721
- A.5. Probability and Statistics 739
- Appendix A References 750
- B Statistical Tables 751
- C Answers to Selected Exercises 769
- D Greek Letters and Mathematical Symbols Used in the Text 786
- Author Index 789
- Subject Index 792
Readers are also interested in:
Chapters in this book
- Frontmatter i
- Contents v
- Preface xiii
- 1 Difference Equations 1
- 1.1. First-Order Difference Equations 1
- 1.2. pth-Order Difference Equations 7
- APPENDIX I.A. Proofs of Chapter 1 Propositions 21
- Chapter 1 References 24
- 2 Lag Operators 25
- 2.1. Introduction 25
- 2.2. First-Order Difference Equations 27
- 2.3. Second-Order Difference Equations 29
- 2.4. pth-Order Difference Equations 33
- 2.5. Initial Conditions and Unbounded Sequences 36
- Chapter 2 References 42
- 3 Stationary ARMA Processes 43
- 3.1. Expectations, Stationarity, and Ergodicity 43
- 3.2. White Noise 47
- 3.3. Moving Average Processes 48
- 3.4. Autoregressive Processes 53
- 3.5. Mixed Autoregressive Moving Average Processes 59
- 3.6. The Autocovariance-Generating Function 61
- 3.7. Invertibility 64
- APPENDIX 3.A. Convergence Results for Infinite-Order Moving Average Processes 69
- Chapter 3 Exercises 70
- Chapter 3 References 71
- 4 Forecasting 72
- 4.1. Principles of Forecasting 72
- 4.2. Forecasts Based on an Infinite Number of Observations 77
- 4.3. Forecasts Based on a Finite Number of Observations 85
- 4.4. The Triangular Factorization of a Positive Definite Symmetric Matrix 87
- 4.5. Updating a Linear Projection 92
- 4.6. Optimal Forecasts for Gaussian Processes 100
- 4.7. Sums of ARM A Processes 102
- 4.8. Wold's Decomposition and the Box-Jenkins Modeling Philosophy 108
- APPENDIX 4.A. Parallel Between OLS Regression and Linear Projection 113
- APPENDIX 4.B. Triangular Factorization of the Covariance Matrix for an MA(1) Process 114
- Chapter 4 Exercises 115
- Chapter 4 References 116
- 5 Maximum Likelihood Estimation 117
- 5.1. Introduction 117
- 5.2. The Likelihood Function for a Gaussian AR(7J Process 118
- 5.3. The Likelihood Function for a Gaussian AR(p) Process 123
- 5.4. The Likelihood Function for a Gaussian MA(1) Process 127
- 5.5. The Likelihood Function for a Gaussian MA(q) Process 130
- 5.6. The Likelihood Function for a Gaussian ARMA(p, q) Process 132
- 5.7. Numerical Optimization 133
- 5.8. Statistical Inference with Maximum Likelihood Estimation 142
- 5.9. Inequality Constraints 146
- APPENDIX 5. A. Proofs of Chapter 5 Propositions 148
- Chapter 5 Exercises 150
- Chapter 5 References 150
- 6 Spectral Analysis 152
- 6.1. The Population Spectrum 152
- 6.2. The Sample Periodogram 158
- 6.3. Estimating the Population Spectrum 163
- 6.4. Uses of Spectral Analysis 167
- APPENDIX 6. A. Proofs of Chapter 6 Propositions 172
- Chapter 6 Exercises 178
- Chapter 6 References 178
- 7 Asymptotic Distribution Theory 180
- 7.1. Review of Asymptotic Distribution Theory 180
- 7.2. Limit Theorems for Serially Dependent Observations 186
- APPENDIX 7.A. Proofs of Chapter 7 Propositions 195
- Chapter 7 Exercises 198
- Chapter 7 Exercises 199
- 8 Linear Regression Models 200
- 8.1. Review of Ordinary Least Squares with Deterministic Regressors and i.i.d. Gaussian Disturbances 200
- 8.2. Ordinary Least Squares Under More General Conditions 207
- 8.3. Generalized Least Squares 220
- APPENDIX 8. A. Proofs of Chapter 8 Propositions 228
- Chapter 8 Exercises 230
- Chapter 8 References 231
- 9 Linear Systems of Simultaneous Equations 233
- 9.1. Simultaneous Equations Bias 233
- 9.2. Instrumental Variables and Two-Stage Least Squares 238
- 9.3. Identification 243
- 9.4. Full-Information Maximum Likelihood Estimation 247
- 9.5 Estimation Based on the Reduced Form 250
- 9.6. Overview of Simultaneous Equations Bias 252
- APPENDIX 9.A. Proofs of Chapter 9 Proposition 253
- Chapter 9 Exercise 255
- Chapter 9 References 256
- 10 Covariance-Stationary Vector Processes 257
- 10.1. Introduction to Vector Autoregressions 257
- 10.2. Autocovariances and Convergence Results for Vector Processes 261
- 10.3. The Autocovariance-Generating Function for Vector Processes 266
- 10.4. The Spectrum for Vector Processes 268
- 10.5. The Sample Mean of a Vector Process 279
- APPENDIX 10.A. Proofs of Chapter 10 Propositions 285
- Chapter 10 Exercises 290
- Chapter 10 References 290
- 11 Vector Autoregressions 291
- 11.1. Maximum Likelihood Estimation and Hypothesis Testing for an Unrestricted Vector Autoregression 291
- 11.2. Bivariate Granger Causality Tests 302
- 11.3. Maximum Likelihood Estimation of Restricted Vector Autoregressions 309
- 11.4. The Impulse-Response Function 318
- 11.5. Variance Decomposition 323
- 11.6. Vector Autoregressions and Structural Econometric Models 324
- 11.7. Standard Errors for Impulse-Response Functions 336
- APPENDIX 11. A. Proofs of Chapter 11 Propositions 340
- APPENDIX 11.B. Calculation of Analytic Derivatives 344
- Chapter 11 Exercises 348
- Chapter 11 References 349
- 12 Bayesian Analysis 351
- 12.1. Introduction to Bayesian Analysis 351
- 12.2. Bayesian Analysis of Vector Autoregressions 360
- 12.3. Numerical Bayesian Methods 362
- APPENDIX 12.A. Proofs of Chapter 12 Propositions 366
- Chapter 12 Exercise 370
- Chapter 12 References 370
- 13 The Kalman Filter 372
- 13.1. The State-Space Representation of a Dynamic System 372
- 13.2. Derivation of the Kalman Filter 377
- 13.3. Forecasts Based on the State-Space Representation 381
- 13.4. Maximum Likelihood Estimation 385
- 13.5. The Steady-State Kalman Filter 389
- 13.6. Smoothing 394
- 13.7. Statistical Inference with the Kalman Filter 397
- 13.8. Time-Varying Parameters 399
- APPENDIX 13. A. Proofs of Chapter 13 Propositions 403
- Chapter 13 Exercises 406
- Chapter 13 References 407
- 14 Generalized Method of Moments 409
- 14.1. Estimation by the Generalized Method of Moments 409
- 14.2. Examples 415
- 14.3. Extensions 424
- 14.4. GMM and Maximum Likelihood Estimation 427
- APPENDIX 14. A. Proof of Chapter 14 Proposition 431
- Chapter 14 Exercise 432
- Chapter 14 References 433
- 15 Models of Nonstationary Time Series 435
- 15.1. Introduction 435
- 15.2. Why Linear Time Trends and Unit Roots? 438
- 15.3. Comparison of Trend-Stationary and Unit Root Processes 438
- 15.4. The Meaning of Tests for Unit Roots 444
- 15.5. Other Approaches to Trended Time Series 447
- APPENDIX 15. A. Derivation of Selected Equations for Chapter 15 451
- Chapter 15 References 452
- 16 Processes with Deterministic Time Trends 454
- 16.1. Asymptotic Distribution of OLS Estimates of the Simple Time Trend Model 454
- 16.2. Hypothesis Testing for the Simple Time Trend Model 461
- 16.3. Asymptotic Inference for an Autoregressive Process Around a Deterministic Time Trend 463
- APPENDIX 16. A. Derivation of Selected Equations for Chapter 16 472
- Chapter 16 Exercises 474
- Chapter 16 References 474
- 17 Univariate Processes with Unit Roots 475
- 17.1. Introduction 475
- 17.2. Brownian Motion 477
- 17.3. The Functional Central Limit Theorem 479
- 17.4. Asymptotic Properties of a First-Order Autoregression when the True Coefficient Is Unity 486
- 17.5. Asymptotic Results for Unit Root Processes with General Serial Correlation 504
- 17.6. Phillips-Perron Tests for Unit Roots 506
- 17.7. Asymptotic Properties of a pth-Order Autoregression and the Augmented Dickey-Fuller Tests for Unit Roots 516
- 17.8. Other Approaches to Testing for Unit Roots 531
- 17.9. Bayesian Analysis and Unit Roots 532
- APPENDIX 17.A. Proofs of Chapter 17 Propositions 534
- Chapter 17 Exercises 537
- Chapter 17 References 541
- 18 Unit Roots in Multivariate Time Series 544
- 18.1. Asymptotic Results for Nonstationary Vector Processes 544
- 18.2. Vector Autoregressions Containing Unit Roots 549
- 18.3. Spurious Regressions 557
- APPENDIX 18.A. Proofs of Chapter 18 Propositions 562
- Chapter 18 Exercises 568
- Chapter 18 References 569
- 19 Cointegration 571
- 19.1. Introduction 571
- 19.2. Testing the Null Hypothesis 582
- 19.3. Testing Hypotheses About the Cointegrating Vector 601
- APPENDIX 19. A. Proofs of Chapter 19 Propositions 618
- Chapter 19 Exercises 625
- Chapter 19 References 627
- 20 Full-Information Maximum Likelihood Analysis of Cointegrated Systems 630
- 20.1. Canonical Correlation 630
- 20.2. Maximum Likelihood Estimation 635
- 20.3. Hypothesis Testing 645
- 20.4. Overview of Unit Roots—To Difference or Not to Difference? 651
- APPENDIX 20.A. Proof of Chapter 20 Proposition 653
- Chapter 20 Exercises 655
- Chapter 20 References 655
- 21 Time Series Models of Heteroskedasticity 657
- 21.1. Autoregressive Conditional Heteroskedasticity (ARCH) 657
- 21.2. Extensions 665
- APPENDIX 21. A. Derivation of Selected Equations for Chapter 21 672
- Chapter 21 References 674
- 22 Modeling Time Series with Changes in Regime 677
- 22.1. Introduction 677
- 22.2. Markov Chains 678
- 22.3. Statistical Analysis of i.i.d. Mixture Distributions 685
- 22.4. Time Series Models of Changes in Regime 690
- APPENDIX 22. A. Derivation of Selected Equations for Chapter 22 699
- Chapter 22 Exercise 702
- Chapter 22 Reference 702
- A Mathematical Review 704
- A.1. Trigonometry 704
- A.2. Complex Numbers 708
- A.3. Calculus 711
- A.4. Matrix Algebra 721
- A.5. Probability and Statistics 739
- Appendix A References 750
- B Statistical Tables 751
- C Answers to Selected Exercises 769
- D Greek Letters and Mathematical Symbols Used in the Text 786
- Author Index 789
- Subject Index 792