Chapter
Licensed
Unlicensed
Requires Authentication
6.4. Uses of Spectral Analysis
-
James Douglas Hamilton
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents v
- Preface xiii
- 1 Difference Equations 1
- 1.1. First-Order Difference Equations 1
- 1.2. pth-Order Difference Equations 7
- APPENDIX I.A. Proofs of Chapter 1 Propositions 21
- Chapter 1 References 24
- 2 Lag Operators 25
- 2.1. Introduction 25
- 2.2. First-Order Difference Equations 27
- 2.3. Second-Order Difference Equations 29
- 2.4. pth-Order Difference Equations 33
- 2.5. Initial Conditions and Unbounded Sequences 36
- Chapter 2 References 42
- 3 Stationary ARMA Processes 43
- 3.1. Expectations, Stationarity, and Ergodicity 43
- 3.2. White Noise 47
- 3.3. Moving Average Processes 48
- 3.4. Autoregressive Processes 53
- 3.5. Mixed Autoregressive Moving Average Processes 59
- 3.6. The Autocovariance-Generating Function 61
- 3.7. Invertibility 64
- APPENDIX 3.A. Convergence Results for Infinite-Order Moving Average Processes 69
- Chapter 3 Exercises 70
- Chapter 3 References 71
- 4 Forecasting 72
- 4.1. Principles of Forecasting 72
- 4.2. Forecasts Based on an Infinite Number of Observations 77
- 4.3. Forecasts Based on a Finite Number of Observations 85
- 4.4. The Triangular Factorization of a Positive Definite Symmetric Matrix 87
- 4.5. Updating a Linear Projection 92
- 4.6. Optimal Forecasts for Gaussian Processes 100
- 4.7. Sums of ARM A Processes 102
- 4.8. Wold's Decomposition and the Box-Jenkins Modeling Philosophy 108
- APPENDIX 4.A. Parallel Between OLS Regression and Linear Projection 113
- APPENDIX 4.B. Triangular Factorization of the Covariance Matrix for an MA(1) Process 114
- Chapter 4 Exercises 115
- Chapter 4 References 116
- 5 Maximum Likelihood Estimation 117
- 5.1. Introduction 117
- 5.2. The Likelihood Function for a Gaussian AR(7J Process 118
- 5.3. The Likelihood Function for a Gaussian AR(p) Process 123
- 5.4. The Likelihood Function for a Gaussian MA(1) Process 127
- 5.5. The Likelihood Function for a Gaussian MA(q) Process 130
- 5.6. The Likelihood Function for a Gaussian ARMA(p, q) Process 132
- 5.7. Numerical Optimization 133
- 5.8. Statistical Inference with Maximum Likelihood Estimation 142
- 5.9. Inequality Constraints 146
- APPENDIX 5. A. Proofs of Chapter 5 Propositions 148
- Chapter 5 Exercises 150
- Chapter 5 References 150
- 6 Spectral Analysis 152
- 6.1. The Population Spectrum 152
- 6.2. The Sample Periodogram 158
- 6.3. Estimating the Population Spectrum 163
- 6.4. Uses of Spectral Analysis 167
- APPENDIX 6. A. Proofs of Chapter 6 Propositions 172
- Chapter 6 Exercises 178
- Chapter 6 References 178
- 7 Asymptotic Distribution Theory 180
- 7.1. Review of Asymptotic Distribution Theory 180
- 7.2. Limit Theorems for Serially Dependent Observations 186
- APPENDIX 7.A. Proofs of Chapter 7 Propositions 195
- Chapter 7 Exercises 198
- Chapter 7 Exercises 199
- 8 Linear Regression Models 200
- 8.1. Review of Ordinary Least Squares with Deterministic Regressors and i.i.d. Gaussian Disturbances 200
- 8.2. Ordinary Least Squares Under More General Conditions 207
- 8.3. Generalized Least Squares 220
- APPENDIX 8. A. Proofs of Chapter 8 Propositions 228
- Chapter 8 Exercises 230
- Chapter 8 References 231
- 9 Linear Systems of Simultaneous Equations 233
- 9.1. Simultaneous Equations Bias 233
- 9.2. Instrumental Variables and Two-Stage Least Squares 238
- 9.3. Identification 243
- 9.4. Full-Information Maximum Likelihood Estimation 247
- 9.5 Estimation Based on the Reduced Form 250
- 9.6. Overview of Simultaneous Equations Bias 252
- APPENDIX 9.A. Proofs of Chapter 9 Proposition 253
- Chapter 9 Exercise 255
- Chapter 9 References 256
- 10 Covariance-Stationary Vector Processes 257
- 10.1. Introduction to Vector Autoregressions 257
- 10.2. Autocovariances and Convergence Results for Vector Processes 261
- 10.3. The Autocovariance-Generating Function for Vector Processes 266
- 10.4. The Spectrum for Vector Processes 268
- 10.5. The Sample Mean of a Vector Process 279
- APPENDIX 10.A. Proofs of Chapter 10 Propositions 285
- Chapter 10 Exercises 290
- Chapter 10 References 290
- 11 Vector Autoregressions 291
- 11.1. Maximum Likelihood Estimation and Hypothesis Testing for an Unrestricted Vector Autoregression 291
- 11.2. Bivariate Granger Causality Tests 302
- 11.3. Maximum Likelihood Estimation of Restricted Vector Autoregressions 309
- 11.4. The Impulse-Response Function 318
- 11.5. Variance Decomposition 323
- 11.6. Vector Autoregressions and Structural Econometric Models 324
- 11.7. Standard Errors for Impulse-Response Functions 336
- APPENDIX 11. A. Proofs of Chapter 11 Propositions 340
- APPENDIX 11.B. Calculation of Analytic Derivatives 344
- Chapter 11 Exercises 348
- Chapter 11 References 349
- 12 Bayesian Analysis 351
- 12.1. Introduction to Bayesian Analysis 351
- 12.2. Bayesian Analysis of Vector Autoregressions 360
- 12.3. Numerical Bayesian Methods 362
- APPENDIX 12.A. Proofs of Chapter 12 Propositions 366
- Chapter 12 Exercise 370
- Chapter 12 References 370
- 13 The Kalman Filter 372
- 13.1. The State-Space Representation of a Dynamic System 372
- 13.2. Derivation of the Kalman Filter 377
- 13.3. Forecasts Based on the State-Space Representation 381
- 13.4. Maximum Likelihood Estimation 385
- 13.5. The Steady-State Kalman Filter 389
- 13.6. Smoothing 394
- 13.7. Statistical Inference with the Kalman Filter 397
- 13.8. Time-Varying Parameters 399
- APPENDIX 13. A. Proofs of Chapter 13 Propositions 403
- Chapter 13 Exercises 406
- Chapter 13 References 407
- 14 Generalized Method of Moments 409
- 14.1. Estimation by the Generalized Method of Moments 409
- 14.2. Examples 415
- 14.3. Extensions 424
- 14.4. GMM and Maximum Likelihood Estimation 427
- APPENDIX 14. A. Proof of Chapter 14 Proposition 431
- Chapter 14 Exercise 432
- Chapter 14 References 433
- 15 Models of Nonstationary Time Series 435
- 15.1. Introduction 435
- 15.2. Why Linear Time Trends and Unit Roots? 438
- 15.3. Comparison of Trend-Stationary and Unit Root Processes 438
- 15.4. The Meaning of Tests for Unit Roots 444
- 15.5. Other Approaches to Trended Time Series 447
- APPENDIX 15. A. Derivation of Selected Equations for Chapter 15 451
- Chapter 15 References 452
- 16 Processes with Deterministic Time Trends 454
- 16.1. Asymptotic Distribution of OLS Estimates of the Simple Time Trend Model 454
- 16.2. Hypothesis Testing for the Simple Time Trend Model 461
- 16.3. Asymptotic Inference for an Autoregressive Process Around a Deterministic Time Trend 463
- APPENDIX 16. A. Derivation of Selected Equations for Chapter 16 472
- Chapter 16 Exercises 474
- Chapter 16 References 474
- 17 Univariate Processes with Unit Roots 475
- 17.1. Introduction 475
- 17.2. Brownian Motion 477
- 17.3. The Functional Central Limit Theorem 479
- 17.4. Asymptotic Properties of a First-Order Autoregression when the True Coefficient Is Unity 486
- 17.5. Asymptotic Results for Unit Root Processes with General Serial Correlation 504
- 17.6. Phillips-Perron Tests for Unit Roots 506
- 17.7. Asymptotic Properties of a pth-Order Autoregression and the Augmented Dickey-Fuller Tests for Unit Roots 516
- 17.8. Other Approaches to Testing for Unit Roots 531
- 17.9. Bayesian Analysis and Unit Roots 532
- APPENDIX 17.A. Proofs of Chapter 17 Propositions 534
- Chapter 17 Exercises 537
- Chapter 17 References 541
- 18 Unit Roots in Multivariate Time Series 544
- 18.1. Asymptotic Results for Nonstationary Vector Processes 544
- 18.2. Vector Autoregressions Containing Unit Roots 549
- 18.3. Spurious Regressions 557
- APPENDIX 18.A. Proofs of Chapter 18 Propositions 562
- Chapter 18 Exercises 568
- Chapter 18 References 569
- 19 Cointegration 571
- 19.1. Introduction 571
- 19.2. Testing the Null Hypothesis 582
- 19.3. Testing Hypotheses About the Cointegrating Vector 601
- APPENDIX 19. A. Proofs of Chapter 19 Propositions 618
- Chapter 19 Exercises 625
- Chapter 19 References 627
- 20 Full-Information Maximum Likelihood Analysis of Cointegrated Systems 630
- 20.1. Canonical Correlation 630
- 20.2. Maximum Likelihood Estimation 635
- 20.3. Hypothesis Testing 645
- 20.4. Overview of Unit Roots—To Difference or Not to Difference? 651
- APPENDIX 20.A. Proof of Chapter 20 Proposition 653
- Chapter 20 Exercises 655
- Chapter 20 References 655
- 21 Time Series Models of Heteroskedasticity 657
- 21.1. Autoregressive Conditional Heteroskedasticity (ARCH) 657
- 21.2. Extensions 665
- APPENDIX 21. A. Derivation of Selected Equations for Chapter 21 672
- Chapter 21 References 674
- 22 Modeling Time Series with Changes in Regime 677
- 22.1. Introduction 677
- 22.2. Markov Chains 678
- 22.3. Statistical Analysis of i.i.d. Mixture Distributions 685
- 22.4. Time Series Models of Changes in Regime 690
- APPENDIX 22. A. Derivation of Selected Equations for Chapter 22 699
- Chapter 22 Exercise 702
- Chapter 22 Reference 702
- A Mathematical Review 704
- A.1. Trigonometry 704
- A.2. Complex Numbers 708
- A.3. Calculus 711
- A.4. Matrix Algebra 721
- A.5. Probability and Statistics 739
- Appendix A References 750
- B Statistical Tables 751
- C Answers to Selected Exercises 769
- D Greek Letters and Mathematical Symbols Used in the Text 786
- Author Index 789
- Subject Index 792
Chapters in this book
- Frontmatter i
- Contents v
- Preface xiii
- 1 Difference Equations 1
- 1.1. First-Order Difference Equations 1
- 1.2. pth-Order Difference Equations 7
- APPENDIX I.A. Proofs of Chapter 1 Propositions 21
- Chapter 1 References 24
- 2 Lag Operators 25
- 2.1. Introduction 25
- 2.2. First-Order Difference Equations 27
- 2.3. Second-Order Difference Equations 29
- 2.4. pth-Order Difference Equations 33
- 2.5. Initial Conditions and Unbounded Sequences 36
- Chapter 2 References 42
- 3 Stationary ARMA Processes 43
- 3.1. Expectations, Stationarity, and Ergodicity 43
- 3.2. White Noise 47
- 3.3. Moving Average Processes 48
- 3.4. Autoregressive Processes 53
- 3.5. Mixed Autoregressive Moving Average Processes 59
- 3.6. The Autocovariance-Generating Function 61
- 3.7. Invertibility 64
- APPENDIX 3.A. Convergence Results for Infinite-Order Moving Average Processes 69
- Chapter 3 Exercises 70
- Chapter 3 References 71
- 4 Forecasting 72
- 4.1. Principles of Forecasting 72
- 4.2. Forecasts Based on an Infinite Number of Observations 77
- 4.3. Forecasts Based on a Finite Number of Observations 85
- 4.4. The Triangular Factorization of a Positive Definite Symmetric Matrix 87
- 4.5. Updating a Linear Projection 92
- 4.6. Optimal Forecasts for Gaussian Processes 100
- 4.7. Sums of ARM A Processes 102
- 4.8. Wold's Decomposition and the Box-Jenkins Modeling Philosophy 108
- APPENDIX 4.A. Parallel Between OLS Regression and Linear Projection 113
- APPENDIX 4.B. Triangular Factorization of the Covariance Matrix for an MA(1) Process 114
- Chapter 4 Exercises 115
- Chapter 4 References 116
- 5 Maximum Likelihood Estimation 117
- 5.1. Introduction 117
- 5.2. The Likelihood Function for a Gaussian AR(7J Process 118
- 5.3. The Likelihood Function for a Gaussian AR(p) Process 123
- 5.4. The Likelihood Function for a Gaussian MA(1) Process 127
- 5.5. The Likelihood Function for a Gaussian MA(q) Process 130
- 5.6. The Likelihood Function for a Gaussian ARMA(p, q) Process 132
- 5.7. Numerical Optimization 133
- 5.8. Statistical Inference with Maximum Likelihood Estimation 142
- 5.9. Inequality Constraints 146
- APPENDIX 5. A. Proofs of Chapter 5 Propositions 148
- Chapter 5 Exercises 150
- Chapter 5 References 150
- 6 Spectral Analysis 152
- 6.1. The Population Spectrum 152
- 6.2. The Sample Periodogram 158
- 6.3. Estimating the Population Spectrum 163
- 6.4. Uses of Spectral Analysis 167
- APPENDIX 6. A. Proofs of Chapter 6 Propositions 172
- Chapter 6 Exercises 178
- Chapter 6 References 178
- 7 Asymptotic Distribution Theory 180
- 7.1. Review of Asymptotic Distribution Theory 180
- 7.2. Limit Theorems for Serially Dependent Observations 186
- APPENDIX 7.A. Proofs of Chapter 7 Propositions 195
- Chapter 7 Exercises 198
- Chapter 7 Exercises 199
- 8 Linear Regression Models 200
- 8.1. Review of Ordinary Least Squares with Deterministic Regressors and i.i.d. Gaussian Disturbances 200
- 8.2. Ordinary Least Squares Under More General Conditions 207
- 8.3. Generalized Least Squares 220
- APPENDIX 8. A. Proofs of Chapter 8 Propositions 228
- Chapter 8 Exercises 230
- Chapter 8 References 231
- 9 Linear Systems of Simultaneous Equations 233
- 9.1. Simultaneous Equations Bias 233
- 9.2. Instrumental Variables and Two-Stage Least Squares 238
- 9.3. Identification 243
- 9.4. Full-Information Maximum Likelihood Estimation 247
- 9.5 Estimation Based on the Reduced Form 250
- 9.6. Overview of Simultaneous Equations Bias 252
- APPENDIX 9.A. Proofs of Chapter 9 Proposition 253
- Chapter 9 Exercise 255
- Chapter 9 References 256
- 10 Covariance-Stationary Vector Processes 257
- 10.1. Introduction to Vector Autoregressions 257
- 10.2. Autocovariances and Convergence Results for Vector Processes 261
- 10.3. The Autocovariance-Generating Function for Vector Processes 266
- 10.4. The Spectrum for Vector Processes 268
- 10.5. The Sample Mean of a Vector Process 279
- APPENDIX 10.A. Proofs of Chapter 10 Propositions 285
- Chapter 10 Exercises 290
- Chapter 10 References 290
- 11 Vector Autoregressions 291
- 11.1. Maximum Likelihood Estimation and Hypothesis Testing for an Unrestricted Vector Autoregression 291
- 11.2. Bivariate Granger Causality Tests 302
- 11.3. Maximum Likelihood Estimation of Restricted Vector Autoregressions 309
- 11.4. The Impulse-Response Function 318
- 11.5. Variance Decomposition 323
- 11.6. Vector Autoregressions and Structural Econometric Models 324
- 11.7. Standard Errors for Impulse-Response Functions 336
- APPENDIX 11. A. Proofs of Chapter 11 Propositions 340
- APPENDIX 11.B. Calculation of Analytic Derivatives 344
- Chapter 11 Exercises 348
- Chapter 11 References 349
- 12 Bayesian Analysis 351
- 12.1. Introduction to Bayesian Analysis 351
- 12.2. Bayesian Analysis of Vector Autoregressions 360
- 12.3. Numerical Bayesian Methods 362
- APPENDIX 12.A. Proofs of Chapter 12 Propositions 366
- Chapter 12 Exercise 370
- Chapter 12 References 370
- 13 The Kalman Filter 372
- 13.1. The State-Space Representation of a Dynamic System 372
- 13.2. Derivation of the Kalman Filter 377
- 13.3. Forecasts Based on the State-Space Representation 381
- 13.4. Maximum Likelihood Estimation 385
- 13.5. The Steady-State Kalman Filter 389
- 13.6. Smoothing 394
- 13.7. Statistical Inference with the Kalman Filter 397
- 13.8. Time-Varying Parameters 399
- APPENDIX 13. A. Proofs of Chapter 13 Propositions 403
- Chapter 13 Exercises 406
- Chapter 13 References 407
- 14 Generalized Method of Moments 409
- 14.1. Estimation by the Generalized Method of Moments 409
- 14.2. Examples 415
- 14.3. Extensions 424
- 14.4. GMM and Maximum Likelihood Estimation 427
- APPENDIX 14. A. Proof of Chapter 14 Proposition 431
- Chapter 14 Exercise 432
- Chapter 14 References 433
- 15 Models of Nonstationary Time Series 435
- 15.1. Introduction 435
- 15.2. Why Linear Time Trends and Unit Roots? 438
- 15.3. Comparison of Trend-Stationary and Unit Root Processes 438
- 15.4. The Meaning of Tests for Unit Roots 444
- 15.5. Other Approaches to Trended Time Series 447
- APPENDIX 15. A. Derivation of Selected Equations for Chapter 15 451
- Chapter 15 References 452
- 16 Processes with Deterministic Time Trends 454
- 16.1. Asymptotic Distribution of OLS Estimates of the Simple Time Trend Model 454
- 16.2. Hypothesis Testing for the Simple Time Trend Model 461
- 16.3. Asymptotic Inference for an Autoregressive Process Around a Deterministic Time Trend 463
- APPENDIX 16. A. Derivation of Selected Equations for Chapter 16 472
- Chapter 16 Exercises 474
- Chapter 16 References 474
- 17 Univariate Processes with Unit Roots 475
- 17.1. Introduction 475
- 17.2. Brownian Motion 477
- 17.3. The Functional Central Limit Theorem 479
- 17.4. Asymptotic Properties of a First-Order Autoregression when the True Coefficient Is Unity 486
- 17.5. Asymptotic Results for Unit Root Processes with General Serial Correlation 504
- 17.6. Phillips-Perron Tests for Unit Roots 506
- 17.7. Asymptotic Properties of a pth-Order Autoregression and the Augmented Dickey-Fuller Tests for Unit Roots 516
- 17.8. Other Approaches to Testing for Unit Roots 531
- 17.9. Bayesian Analysis and Unit Roots 532
- APPENDIX 17.A. Proofs of Chapter 17 Propositions 534
- Chapter 17 Exercises 537
- Chapter 17 References 541
- 18 Unit Roots in Multivariate Time Series 544
- 18.1. Asymptotic Results for Nonstationary Vector Processes 544
- 18.2. Vector Autoregressions Containing Unit Roots 549
- 18.3. Spurious Regressions 557
- APPENDIX 18.A. Proofs of Chapter 18 Propositions 562
- Chapter 18 Exercises 568
- Chapter 18 References 569
- 19 Cointegration 571
- 19.1. Introduction 571
- 19.2. Testing the Null Hypothesis 582
- 19.3. Testing Hypotheses About the Cointegrating Vector 601
- APPENDIX 19. A. Proofs of Chapter 19 Propositions 618
- Chapter 19 Exercises 625
- Chapter 19 References 627
- 20 Full-Information Maximum Likelihood Analysis of Cointegrated Systems 630
- 20.1. Canonical Correlation 630
- 20.2. Maximum Likelihood Estimation 635
- 20.3. Hypothesis Testing 645
- 20.4. Overview of Unit Roots—To Difference or Not to Difference? 651
- APPENDIX 20.A. Proof of Chapter 20 Proposition 653
- Chapter 20 Exercises 655
- Chapter 20 References 655
- 21 Time Series Models of Heteroskedasticity 657
- 21.1. Autoregressive Conditional Heteroskedasticity (ARCH) 657
- 21.2. Extensions 665
- APPENDIX 21. A. Derivation of Selected Equations for Chapter 21 672
- Chapter 21 References 674
- 22 Modeling Time Series with Changes in Regime 677
- 22.1. Introduction 677
- 22.2. Markov Chains 678
- 22.3. Statistical Analysis of i.i.d. Mixture Distributions 685
- 22.4. Time Series Models of Changes in Regime 690
- APPENDIX 22. A. Derivation of Selected Equations for Chapter 22 699
- Chapter 22 Exercise 702
- Chapter 22 Reference 702
- A Mathematical Review 704
- A.1. Trigonometry 704
- A.2. Complex Numbers 708
- A.3. Calculus 711
- A.4. Matrix Algebra 721
- A.5. Probability and Statistics 739
- Appendix A References 750
- B Statistical Tables 751
- C Answers to Selected Exercises 769
- D Greek Letters and Mathematical Symbols Used in the Text 786
- Author Index 789
- Subject Index 792