Contents

Preface and Acknowledgments	vii
Chapter 1—Introduction	3
Historical Development of the Concept	
of Population Stability	7
What Is Stability?	9
Stability in Metapopulations	12
Why Are We Interested in Stability?	18
Population Extinction	18
Effective Population Size	18
Fitness in Age-Structured Populations	20
Why Conduct Laboratory Experiments?	20
Laboratory Studies of Population Biology	23
Starting Populations	23
Lab Adaptation	25
Replicate Populations	26
Measuring Genetic Differences	28
Evaluating Models in Population Biology	29
General Versus Specific Models	31
Chapter 2—Theory of Population Stability	33
First-Order Nonlinear Difference and Differential	
Equations	34
Stability of First-Order Nonlinear Difference	
and Differential Equations	39
Population Cycles and Chaos	46
Cycles	46
Chaos	48
Second- and Higher-Order Models	52
Age Structure	53
Pre-Adult Density Effects on Adult Reproduction	60
Evolution of Population Stability	65

CONTENTS

Chapter 3—Techniques for Assessing Population	
Stability	71
Linearized Population Dynamics in the Vicinity	
of an Equilibrium	72
Model-Based Estimates of Stability	77
Models Chosen a Priori	7 9
Models Estimated from Data	85
Time-Series Analysis	90
Chaos	97
Time Series	97
Detecting Chaos	99
Chapter 4—Blowflies	110
Life History of Lucilia cuprina in the Laboratory	111
Dynamics of Lucilia cuprina Populations	115
Modeling the Dynamics of Lucilia cuprina	
Populations	126
Chapter 5—Tribolium	132
Life History of Tribolium in the Laboratory	133
Pre-Adult Stages	134
Adult Stage	139
A Model of Tribolium Population Dynamics	143
A Model of Egg-Larva Dynamics	145
The Larva-Pupa-Adult Model	151
Empirical Evaluation of the Larva-Pupa-Adult Model	157
Chapter 6—Drosophila	178
Life History of Drosophila in the Laboratory	17 9
Larvae	180
Adults	183
A Model of Population Dynamics	186
Stability of Large Laboratory Populations	193
Stability of Small Laboratory Populations	196
Assessment of the <i>Drosophila</i> Model	208
Stability in Laboratory Metapopulations	209
Age-Structured Populations	221
Evolution of Population Dynamics	225

CONTENTS

Increased Risk of Population Extinction	
with Inbreeding	230
Evolution of Population Stability	233
Chapter 7—Natural Populations	244
Simple Models	245
Surveys Using Response Surface Methods	246
Detailed Studies of Single Populations	250
Soay Sheep and Red Deer	250
Perennial Grass, Agrostis scabra	252
Lemmings and Voles	253
Red Grouse	257
Why Is Chaos Rare in Natural Populations?	259
Chapter 8—Conclusions	262
A Heuristic Framework for Viewing Population	
Dynamics and Stability	262
Lucilia cuprina, Tribolium, and Drosophila	
Compared	273
Model Systems in Ecology: Where Next?	280
References	287
Author Index	311
Subject Index	316