Contents

Preface	xi
Acknowledgments	XV
1. Adaptive Individuals and Population Ecology	1
1.1 Adaptive Trade-Off Behavior and Ecology	1
1.2 Modeling Systems of Adaptive Individuals	4
1.3 Adaptive Behavior in Individual-Based Models	7
1.4 Adaptive Behavior, Physiology, and Neurobiology	10
1.5 What We Need to Link Behavioral and Population Ecology:	
Across-Level Theory	12
1.6 State- and Prediction-Based Theory (SPT)	13
1.7 Monograph Objectives and Overview	14
2. Case Study: Modeling Trout Population Response to River	
Management	17
2.1 Introduction and Model Purpose	17
2.2 Adaptive Behavior in the Trout Model: Habitat Selection	19
2.3 A Second Adaptive Behavior: Activity Selection	24
2.4 Conclusions	27
3. Introduction to State- and Prediction-Based Theory	29
3.1 What Is SPT?	29
3.2 Five Steps for Implementing SPT	30
3.3 A Look Ahead	33
4. A First Example: Forager Patch Selection	35
4.1 Objectives	35
4.2 The Model	35
4.3 Results and Comparison of SPT to Dynamic State Variable	
Modeling	39
4.4 Version 2: Foraging with Competition	44
4.5 Version 3: Continuous Starvation Risk	47
4.6 Conclusions	49

viii CONTENTS

5. A Second Example: Vertical Migration and Reproductive Effort	
in <i>Daphnia</i>	52
5.1 Objectives	52
5.2 The Model	54
5.3 SPT Version 1: Expected Future Reproduction with Current	
Growth and Survival	61
5.4 SPT Version 2: Predicted Offspring	64
5.5 SPT Version 3: Diurnal Prediction	67
5.6 Prediction Complexity and Fitness: Population Simulations	68
5.7 Conclusions	70
6. Example Three: Temporal Patterns in Limpet Foraging	73
6.1 Background and Objectives	73
6.2 The DSVM Model of Limpet Foraging	74
6.3 The Model	75
6.4 SPT Version 1: Maximizing Short-Term Expected Energy Reserves	79
6.5 SPT Version 2: Maximizing Mean Expected Energy Reserves	
until Day's End	81
6.6 Conclusions	83
7. Example Four: Facultative Anadromy in Salmonid Fishes	86
7.1 Introduction and Objectives	86
7.2 The DSVM Model	87
7.3 The IBM Using SPT	88
7.4 SPT Model Results and Applications	91
8. Guidance for Using State- and Prediction-Based Theory	93
8.1 Introduction and Objectives	93
8.2 Step 1: Defining the Decision That SPT Models	94
8.3 Step 2: Selecting Fitness Measures and Time Horizons	97
8.4 Step 3: Modeling Prediction of Environmental Conditions	
and Fitness Elements	102
8.4.1 General Guidance on Modeling Prediction	103
8.4.2 Predicting Growth and Size	108
8.4.3 Predicting Starvation Risk	109
8.4.4 Predicting Predation and Other Risks	114
8.4.5 Predicting Reproductive Success	116
8.5 Step 4: Selecting a Decision Algorithm	117
8.6 Step 5: Implementing and Testing the Theory	118
8.7 Conclusions	119

CONTENTS ix

9. Testing and Refining State- and Prediction-Based Theory	123
9.1 Introduction and Objectives	123
9.2 The Pattern-Oriented Theory Development Cycle	124
9.3 Examples of Theory Development and Testing	127
9.3.1 Literature Examples	127
9.3.2 Trout Habitat Selection	128
9.3.3 Activity Selection in Trout	130
9.3.4 Foraging Habitat Selection in Songbirds	130
9.4 Conclusions	131
10. Building Model Credibility	133
10.1 Introduction and Objectives	133
10.2 Issues in "Validation" of Individual-Based Population Models	134
10.3 Strategies for Building Credibility	136
10.4 Lessons Learned in Field, Laboratory, and Simulation	
Experiments	137
10.5 Conclusions	140
11. Empirical Research on Populations of Adaptive Individuals	141
11.1 Introduction and Objectives	141
11.2 Benefits of Models for Field Studies	142
11.3 Modeling Phase 1: Formulate the Question	144
11.4 Modeling Phase 2: Assemble Hypotheses	144
11.5 Modeling Phase 3: Choose Model Structure	147
11.6 Modeling Phase 5: Analyze the Model	150
11.7 Conclusions	15
12. Conclusions and Outlook	154
12.1 Modeling Populations of Adaptive Individuals	154
12.2 Key Characteristics of the Approach	155
12.3 Conclusions from Example Models	157
12.4 Outlook	158
References	161
Index	17