

CONTENTS

PREFACE	xiii
1 THE COSMOLOGICAL PARAMETERS	1
1.1 INTRODUCTION	1
1.2 WHY MEASURE THE PARAMETERS?	2
1.2.1 <i>Testing the Physics</i>	2
1.2.2 <i>How Will It All End?</i>	7
1.3 THE STATE OF THE MEASUREMENTS	11
1.4 COSMOLOGY FOR THE NEXT GENERATION	17
2 IN THE BEGINNING . . .	25
2.1 THE FUTURE FATE OF COSMOLOGY	25
2.2 TESTING INFLATION	27
2.3 THE POWER OF THE COSMIC MICROWAVE BACKGROUND . . .	28
2.4 COSMIC CONCORDANCE	35
2.5 A NEW AGE?	40
3 UNDERSTANDING DATA BETTER WITH BAYESIAN AND GLOBAL STATISTICAL METHODS	49
3.1 INTRODUCTION	49
3.2 COMBINING EXPERIMENTAL MEASUREMENTS	50
3.3 BAYESIAN COMBINATION OF INCOMPATIBLE MEASUREMENTS	51
3.4 ANOTHER VARIANT OF THE METHOD	56
3.5 RESULTS FOR THE HUBBLE CONSTANT	56
3.6 CONCLUSION	59
4 LARGE-SCALE STRUCTURE IN THE UNIVERSE	61
4.1 INTRODUCTION	61
4.2 CLUSTERING AND LARGE-SCALE STRUCTURE	65
4.2.1 <i>Galaxies and Large-Scale Structure</i>	65
4.2.2 <i>Clusters and Large-Scale Structure</i>	69
4.3 PECULIAR MOTIONS ON LARGE SCALES	74
4.4 DARK MATTER AND BARYONS IN CLUSTERS OF GALAXIES .	79
4.5 Is $\Omega_m < 1$?	81
4.6 THE SDSS AND LARGE-SCALE STRUCTURE	82

4.6.1	<i>The Sloan Digital Sky Survey</i>	82
4.6.2	<i>Clusters of Galaxies</i>	83
4.7	SUMMARY	86
5	UNSOLVED PROBLEMS IN GRAVITATIONAL LENSING	93
5.1	INTRODUCTION	94
5.2	GRAVITATIONAL LENS OPTICS	94
5.3	THE PROBLEMS	98
5.3.1	<i>How Old Is the Universe?</i>	98
5.3.2	<i>What Is the Shape of the Universe?</i>	101
5.3.3	<i>What Is the Large Scale Distribution of Matter?</i>	101
5.3.4	<i>How Are Rich Clusters of Galaxies Formed?</i>	102
5.3.5	<i>When Did Galaxies Form and How Did They Evolve?</i>	105
5.3.6	<i>How Big Are Galaxies?</i>	106
5.3.7	<i>Of What Are Galaxies Made?</i>	107
5.3.8	<i>How Big Are AGN Ultraviolet Emission Regions?</i>	107
5.4	HOW MANY MORE SURPRISES WILL GRAVITATIONAL LENSES PROVIDE?	108
6	WHAT CAN BE LEARNED FROM NUMERICAL SIMULATIONS OF COSMOLOGY	115
6.1	INTRODUCTION	116
6.2	SIMULATION METHODS	119
6.2.1	<i>Specification of Models</i>	119
6.2.2	<i>Physical Processes and Numerical Methods</i>	122
6.3	RESULTS: COMPARISON WITH OBSERVATIONS	126
6.3.1	<i>Hot Components</i>	126
6.3.2	<i>Warm Components</i>	127
6.3.3	<i>Cold Condensed Components</i>	128
6.4	CONCLUSIONS, PROSPECTS, AND MORE QUESTIONS	129
7	THE CENTERS OF ELLIPTICAL GALAXIES	137
7.1	INTRODUCTION	137
7.1.1	<i>Black Holes and Quasars</i>	138
7.1.2	<i>The Sphere of Influence</i>	139
7.1.3	<i>Cores and Cusps</i>	140
7.2	PHOTOMETRY	142
7.2.1	<i>The Peebles-Young Model</i>	145
7.3	KINEMATIC EVIDENCE FOR CENTRAL BLACK HOLES	147
7.4	PHYSICAL PROCESSES	148
7.5	SUMMARY	152

8 THE MORPHOLOGICAL EVOLUTION OF GALAXIES	159
8.1 INTRODUCTION	159
8.2 EARLY FORMATION OF MASSIVE ELLIPTICALS	161
8.3 SLOW EVOLUTION OF MASSIVE DISK GALAXIES	164
8.4 REDSHIFT SURVEYS AND THE DWARF-DOMINATED UNIVERSE	166
8.5 FAINT GALAXY MORPHOLOGIES FROM HST	170
8.6 CONCLUSIONS	174
9 QUASARS	181
9.1 QUASARS AND THE END OF THE ‘DARK AGE’	181
9.2 THE RELATION OF AGNs TO THE CENTRAL BULGES OF GALAXIES	183
9.3 QUASARS AND THEIR REMNANTS: PROBES OF GENERAL RELATIVITY?	186
9.3.1 <i>Dead Quasars in Nearby Galaxies</i>	186
9.3.2 <i>Do These Holes Have a Kerr Metric?</i>	187
10 SOLAR NEUTRINOS: SOLVED AND UNSOLVED PROBLEMS	195
10.1 WHY STUDY SOLAR NEUTRINOS?	195
10.2 WHAT DOES THE COMBINED STANDARD MODEL TELL US ABOUT SOLAR NEUTRINOS?	198
10.2.1 <i>The Combined Standard Model</i>	198
10.2.2 <i>The Solar Neutrino Spectrum</i>	200
10.3 WHY ARE THE PREDICTED NEUTRINO FLUXES ROBUST? . . .	201
10.4 WHAT ARE THE THREE SOLAR NEUTRINO PROBLEMS? . . .	202
10.4.1 <i>Calculated versus Observed Chlorine Rate</i>	203
10.4.2 <i>Incompatibility of Chlorine and Water (Kamiokande) Ex- periments</i>	204
10.4.3 <i>Gallium Experiments: No Room for ${}^7\text{Be}$ Neutrinos</i>	205
10.5 WHAT HAVE WE LEARNED?	206
10.5.1 <i>About Astronomy</i>	206
10.5.2 <i>About Physics</i>	208
10.6 WHAT NEXT?	209
10.6.1 <i>Solvable Problems in Physics</i>	209
10.6.2 <i>Solvable Problems in Astronomy</i>	212
10.7 SUMMARY	217
11 PARTICLE DARK MATTER	221
11.1 INTRODUCTION: THREE ARGUMENTS FOR NON-BARYONIC DARK MATTER	221
11.2 THE CASE FOR NON-BARYONIC MATTER	222

11.2.1	<i>We've Looked for Baryonic Dark Matter and Failed</i>	222
11.2.2	<i>We Can't Seem To Make the Observed Large-Scale Structure with Baryons</i>	223
11.2.3	<i>Dynamical Mass Is Much Larger than Big Bang Nucleosynthesis Allows</i>	224
11.3	NEUTRINOS AS DARK MATTER	225
11.3.1	<i>Detecting Massive Neutrinos</i>	226
11.4	WIMPs	227
11.4.1	<i>Searching for WIMPs</i>	228
11.4.2	<i>Indirect WIMP Detection</i>	230
11.4.3	<i>What Is To Be Done?</i>	231
11.5	AXIONS	231
11.6	CONCLUSIONS	233
12	STARS IN THE MILKY WAY AND OTHER GALAXIES	241
12.1	INTRODUCTION	241
12.2	RECENT STAR COUNT RESULTS	241
12.3	MICROLENSING AND STAR COUNTS	243
12.4	DISK DARK MATTER: STILL A QUESTION	243
12.5	MYSTERY OF THE LONG EVENTS	244
12.6	PROPER MOTIONS FROM EROS II	245
12.7	PIXEL LENSING: STELLAR MASS FUNCTIONS IN OTHER GALAXIES	246
12.8	STAR FORMATION HISTORY OF THE UNIVERSE	248
12.9	CONCLUSIONS	249
13	SEARCHING FOR MACHOS WITH MICROLENSING	253
13.1	INTRODUCTION	253
13.2	THE GRAVITATIONAL MICROLENS	254
13.3	THE "MACHO FRACTION" IN THE GALACTIC HALO	256
13.4	THE EXPERIMENTAL SITUATION	258
13.5	NEXT GENERATION EXPERIMENTS	260
13.5.1	<i>What Can Be Achieved from the Ground?</i>	260
13.5.2	<i>Observing Macho Parallax</i>	261
13.6	WORKING ON GRAVITATIONAL MICROLENSING	263
13.7	SUMMARY	264
13.7.1	<i>What We Know Now</i>	264
13.7.2	<i>What We Will Learn from Current Experiments</i>	264
13.7.3	<i>Next Generation Experiments</i>	264
13.8	LATE BREAKING NEWS	265

14 GLOBALLY ASYMMETRIC SUPERNOVA	269
14.1 INTRODUCTION	269
14.1.1 <i>Preamble</i>	269
14.1.2 <i>Evidence for Asymmetry</i>	270
14.1.3 <i>State of the Art</i>	271
14.2 INSTABILITY DURING CORE COLLAPSE	272
14.2.1 <i>Accomplishments</i>	273
14.2.2 <i>Future Directions</i>	273
14.3 OVERSTABLE CORE <i>G</i> -MODES	274
14.3.1 <i>Accomplishments</i>	275
14.3.2 <i>Future Directions</i>	276
14.3.3 <i>Turbulent Excitation of <i>g</i>-Modes</i>	277
15 IN AND AROUND NEUTRON STARS	281
15.1 INTRODUCTION	281
15.2 SUPERFLUID-SUPERCONDUCTOR INTERACTIONS IN A NEUTRON STAR CORE	284
15.3 THE STELLAR CRUST	288
15.4 SPUN-UP NEUTRON STARS	289
15.5 SPINNING-DOWN RADIOPULSARS	293
15.6 GLITCHES OF RADIOPULSAR SPIN PERIODS	294
16 ACCRETION FLOWS AROUND BLACK HOLES	301
16.1 INTRODUCTION	301
16.2 X-RAYS AND γ -RAYS FROM ACCRETING BLACK HOLES	302
16.3 HOT ACCRETION FLOW MODELS	304
16.3.1 <i>Corona Models</i>	305
16.3.2 <i>SLE Two-Temperature Model</i>	306
16.3.3 <i>Optically-Thin Advection-Dominated Model</i>	306
16.4 DIRECTIONS FOR FUTURE RESEARCH	311
16.4.1 <i>Unresolved Theoretical Issues</i>	311
16.4.2 <i>Clues from Observations of Black Hole XRBs</i>	313
16.4.3 <i>Black Holes versus Neutron Stars</i>	315
16.5 CONCLUSION	316
17 THE HIGHEST ENERGY COSMIC RAYS	325
17.1 INTRODUCTION	325
17.2 REVIEW OF EXISTING DATA ON THE HIGHEST ENERGY COSMIC RAYS	327
17.3 ACCELERATION AND TRANSPORT OF THE COSMIC RAYS $\geq 10^{19}$ EV	329

17.4 THE BIG EVENTS	332
17.5 THE AUGER PROJECT	335
17.6 WHAT CAN WE LEARN FROM TWO LARGE SURFACE ARRAYS?	337
17.7 SHOULD A STUDENT WORK ON THIS PROBLEM?	338
17.8 FINAL REMARK	339
18 TOWARD UNDERSTANDING GAMMA-RAY BURSTS	343
18.1 INTRODUCTION	343
18.2 OBSERVATIONS	344
18.2.1 <i>Observational Open Questions</i>	348
18.3 A BRIEF SUMMARY	348
18.4 WHERE?	349
18.5 HOW?	349
18.5.1 <i>The Compactness Problem</i>	350
18.5.2 <i>Relativistic Motion</i>	351
18.5.3 <i>Slowing Down of Relativistic Particles</i>	354
18.5.4 <i>The Acceleration Mechanism?</i>	362
18.6 WHAT?	364
18.6.1 <i>What Do We Need from the Internal Engine?</i>	364
18.6.2 <i>Coincidences and Other Astronomical Hints</i>	365
18.7 WHY?	367
18.8 CONCLUSIONS	369
18.9 SOME OPEN QUESTIONS	369