Contents

Preface		xiii
Chapter	Some General Remarks on Mathematical Modeling	1
	Bibliographic Remarks	3
PART 1	. BASIC POPULATION GROWTH MODELS	5
Chapter	2. Birth, Death, and Migration	7
2.1	The Fundamental Balance Equation of Population Dynamics	7
2.2	Birth Date Dependent Life Expectancies	9
2.3	The Probability of Lifetime Emigration	11
Chapter	3. Unconstrained Population Growth for Single Species	13
3.1	Closed Populations	13
	3.1.1 The Average Intrinsic Growth Rate for Periodic Environments	14
	3.1.2 The Average Intrinsic Growth Rate for Nonperiodic Environments	17
3.2	Open Populations	19
	3.2.1 Nonzero Average Intrinsic Growth Rate	21
	3.2.2 Zero Average Intrinsic Growth Rate	28
Chapter	4. Von Bertalanffy Growth of Body Size	33
Chapter	Classic Models of Density-Dependent Population Growth for	
	Single Species	37
5.1	The Bernoulli and the Verhulst Equations	37
5.2	The Beverton-Holt and Smith Differential Equation	39
	5.2.1 Derivation from a Resource–Consumer Model	40
	5.2.2 Derivation from Cannibalism of Juveniles by Adults	42
5.3	The Ricker Differential Equation	45
5.4	The Gompertz Equation	47
5.5	A First Comparison of the Various Equations	47
Chapter	6. Sigmoid Growth	51
6.1	General Conditions for Sigmoid Growth	52
6.2	Fitting Sigmoid Population Data	57

viii	CONTENTS

		The Allee Effect	65
7.1 7.2 7.3	Sec	st Model Derivation: Search for a Mate cond Model Derivation: Impact of a Satiating Generalist Predator del Analysis	65 67 69
Chapter	8.	Nonautonomous Population Growth: Asymptotic Equality of Population Sizes	75
Chapter	9.	Discrete-Time Single-Species Models	81
9.1	Bei	e Discrete Analog of the Verhulst (Logistic) and the rnoulli Equation: the Beverton–Holt Difference	
0.2		nation and Its Generalization	81
9.2		e Ricker Difference Equation	83
9.3 9.4		ne Analytic Results for Scalar Difference Equations ne Remarks Concerning the Quadratic Difference Equation	84 99
9.4		liographic Remarks	104
Chapter	10.	Dynamics of an Aquatic Population Interacting with a Polluted Environment	107
10.1	Mo	deling Toxicant and Population Dynamics	108
10.2		en Loop Toxicant Input	114
10.3	Fee	dback Loop Toxicant Input	117
10.4		inction and Persistence Equilibria and a	
		reshold Condition for Population Extinction	120
10.5		bility of Equilibria and Global Behavior of Solutions	125
10.6		ltiple Extinction Equilibria, Bistability and Periodic Oscillations	135
10.7		ear Dose Response liographic Remarks	139 149
Chapter	11.	Population Growth Under Basic Stage Structure	151
11.1	ΑN	Most Basic Stage-Structured Model	151
11.2		Il-Posedness and Dissipativity	153
11.3		uilibria and Reproduction Ratios	155
11.4	Bas	sic Reproduction Ratios and Threshold Conditions for	
	Ext	inction versus Persistence	156
11.5		akly Density-Dependent Stage-Transition Rates and	
		obal Stability of Nontrivial Equilibria	157
11.6		Number and Nature of Possible Multiple Nontrivial Equilibria	160
11.7		ongly Density-Dependent Stage-Transition Rates and	160
11.0		iodic Oscillations Example for Multiple Periodic Orbits and Both	162
11.8		percritical and Subcritical Hopf Bifurcation	166
11.9		ltiple Interior Equilibria, Bistability, and Many Bifurcations for	100
11./		re Intrastage Competition	168
		liographic Remarks	181
		- ·	

CONTENTS	ix
----------	----

PART 2	. STAGE TRANSITIONS AND DEMOGRAPHICS	183
Chapter	12. The Transition Through a Stage	185
12.1	The Sojourn Function	185
12.2	Mean Sojourn Time, Expected Exit Age, and Expectation of Life	187
12.3	The Variance of the Sojourn Time, Moments and Central Moments	189
12.4	Remaining Sojourn Time and Its Expectation	190
12.5	Fixed Stage Durations	197
12.6	Per Capita Exit Rates (Mortality Rates)	199
12.7	Exponentially Distributed Stage Durations	201
12.8	Log-Normally Distributed Stage Durations	202
12.9	A Stochastic Interpretation of Stage Transition	206
	Bibliographic Remarks	209
Chapter	13. Stage Dynamics with Given Input	211
13.1	Input and Stage-Age Density	211
13.2	The Partial Differential Equation Formulation	212
13.3	Stage Content and Average Stage Duration	217
13.4	Average Stage Age	219
13.5	Stage Exit Rates	221
	13.5.1 The Fundamental Balance Equation of Stage Dynamics	222
	13.5.2 Average Age at Stage Exit	224
13.6	Stage Outputs	226
13.7	Which Recruitment Curves Can Be Explained by	
	Cannibalism of Newborns by Adults?	230
	Bibliographic Remarks	237
Chapter	14. Demographics in an Unlimiting Constant Environment	239
14.1	The Renewal Equation	240
14.2	Balanced Exponential Growth	241
14.3	The Renewal Theorem: Approach to Balanced Exponential Growth	244
Chapter	15. Some Demographic Lessons from Balanced Exponential Growth	255
15.1	Inequalities and Estimates for the Malthusian Parameter	255
15.2	Average Age and Average Age at Death in a Population at Balanced	
	Exponential Growth. Average Per Capita Death Rate	262
15.3	Ratio of Population Size and Birth Rate	266
15.4	Consequences of an Abrupt Shift in Maternity:	
	Momentum of Population Growth	267
	Bibliographic Remarks	270
Chapter	16. Some Nonlinear Demographics	273
16.1	A Demographic Model with a Juvenile and an Adult Stage	274
16.2	A Differential Delay Equation	277
	Bibliographic Remarks	279

PART 3	B. HOST-PARASITE POPULATION GROWTH: EPIDEMIOLOGY OF INFECTIOUS DISEASES	281	
Chapter	17. Background	283	
17.1	Impact of Infectious Diseases in Past and Present Time	284	
17.2	Epidemiological Terms and Principles	289	
	Bibliographic Remarks	291	
Chapter	18. The Simplified Kermack–McKendrick Epidemic Model	293	
18.1	A Model with Mass-Action Incidence	293	
18.2	Phase-Plane Analysis of the Model Equations.		
	The Epidemic Threshold Theorem	295	
18.3	The Final Size of the Epidemic. Alternative Formulation of		
	the Threshold Theorem	297	
Chapter	19. Generalization of the Mass-Action Law of Infection	305	
19.1	Population-Size Dependent Contact Rates	305	
19.2	Model Modification	306	
19.3	The Generalized Epidemic Threshold Theorem	307	
Chapter	20. The Kermack–McKendrick Epidemic Model with Variable Infectivity	311	
20.1	A Stage-Age Structured Model	311	
20.2	Reduction to a Scalar Integral Equation	313	
20.2	Bibliographic Remarks	316	
Chapter	21. SEIR (\rightarrow S) Type Endemic Models for "Childhood Diseases"	317	
21.1	The Model and Its Well-Posedness	318	
21.2	Equilibrium States and the Basic Replacement Ratio	321	
21.3	The Disease Dynamics in the Vicinities of		
	the Disease-Free and the Endemic Equilibrium:		
	Local Stability and the Interepidemic Period	325	
21.4	Some Global Results: Extinction, Persistence of the Disease;		
	Conditions for Attraction to the Endemic Equilibrium	332	
	Bibliographic Remarks	339	
Chapter	22. Age-Structured Models for Endemic Diseases and Optimal Vaccination Strategies	341	
22.1		_	
22.1	A Model with Chronological Age-Structure	341	
22.2 22.3	Disease-Free and Endemic Equilibrium: the Replacement Ratio The Net Replacement Ratio, and Disease Extinction and Persistence	348	
22.3	Cost of Vaccinations and Optimal Age Schedules	351 358	
44.4	Cost of vaccinations and Optimal Age officulies	220	

CONTENTS	х	ί

22.5	Estimating the Net Replacement Ratio: Average Duration of Susceptibility and Average Age at Infection.	
	Optimal Vaccination Schedules Revisited	366
	Bibliographic Remarks	381
Chapter	23. Endemic Models with Multiple Groups or Populations	383
23.1	The Model	384
23.2	Equilibrium Solutions	388
23.3	Local Asymptotic Stability of Strongly Endemic Equilibria	394
23.4	Extinction or Persistence of the Disease?	399
23.5	The Basic Replacement Matrix, Alias Next-Generation Matrix	404
23.6	The Basic Replacement Ratio as Spectral Radius of	
	the Basic Replacement Matrix	406
23.7	Some Special Cases of Mixing	411
	Bibliographic Remarks	416
PART 4	. TOOLBOX	419
	x A Ordinary Differential Equations	421
A.1	Conservation of Positivity and Boundedness	421
A.2	Planar Ordinary Differential Equation Systems	424
A.3	The Method of Fluctuations	428
A.4	Behavior in the Vicinity of an Equilibrium	433
A.5	Elements of Persistence Theory	436
	Bibliographic Remarks	441
A.6	Global Stability of a Compact Minimal Set	442
A.7	Hopf Bifurcation	444
A.8	Perron–Frobenius Theory of Positive Matrices and Associated Linear	4.4.6
	Dynamical Systems	446
	Bibliographic Remarks	451
Appendi	x B Integration, Integral Equations, and Some Convex Analysis	453
B.1	The Stieltjes Integral of Regulated Functions	453
B.2	Some Elements from Measure Theory	465
B.3	Some Elements from Convex Analysis	472
B.4	Lebesgue–Stieltjes Integration	475
B.5	Jensen's Inequality and Related Material	483
B.6	Volterra Integral Equations	486
B.7	Critical and Regular Values of a Function	490
	Bibliographic Remarks	491
	x C Some MAPLE Worksheets with Comments for Part 1	493
C.1 C.2	Fitting the Growth of the World Population (Figure 3.1) Periodic Modulation of Exponential Growth in Closed Populations	493
	(Figures 3.2 and 3.3)	496

		CONTENTS
(Figure	res 6.1 and 6.2)	498
Data of	of Sweden (Figure 6	5.3) 507
4)		510
ting wit	vith a	
		513
		519
		537