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Abstract
Longitudinal data arise frequently in medical studies and it is a common practice to analyze

such complex data with nonlinear mixed-effects (NLME) models, which enable us to account for
between-subject and within-subject variations. To partially explain the variations, time-dependent
covariates are usually introduced to these models. Some covariates, however, may be often
measured with substantial errors and missing observations. It is often the case that model random
error is assumed to be distributed normally, but the normality assumption may not always give
robust and reliable results, particularly if the data exhibit skewness. In the literature, there has been
considerable interest in accommodating either skewed response or covariate measured with error
and missing data in such models, but there has been relatively little study concerning all these
features simultaneously. This article is to address simultaneous impact of skewness in response and
measurement error and missing data in covariate by jointly modeling the response and covariate
processes under a framework of Bayesian semiparametric nonlinear mixed-effects models. In
particular, we aim at exploring how mixed-effects joint models based on one-compartment model
with one phase time-varying decay rate and two-compartment model with two phase time-varying
decay rates contribute to modeling results and inference. The method is illustrated by an AIDS
data example to compare potential models with different distributional specifications and various
scenarios. The findings from this study suggest that the one-compartment model with a skew-
normal distribution may provide more reasonable results if the data exhibit skewness in response
and/or have measurement error and missing observations in covariates.
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1 Introduction

HIV dynamics (by modeling viral load trajectory after initiation of potent
antiviral therapy) is one of the most important areas in AIDS research in the
last two decades. HIV viral dynamic models have provided new understanding
of the pathogenesis of HIV infection and the treatment effects of antiviral
therapies. The viral decay rates, as regression parameters of the viral dynamic
models, reflect the potency (efficacy) of antiviral therapies (Perelson et al.,
1997; Wu and Ding, 1999). A typical feature of the viral load (plasma HIV
RNA copies) trajectories is that the inter-individual variation is large (Wu
and Ding, 1999, Wu and Wu, 2002a) as shown in Figure 1. It is important
to understand the mechanisms of the inter-patient variation in order to make
clinical decisions and provide individualized treatments. Much of the inter-
individual variation may be explained by some (time-dependent) covariates
such as CD4 cell count (the number of CD4+ T lymphocytes per microliter of
blood).

Profiles of log10(RNA)
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Figure 1: Trajectories of longitudinal viral load measured from RNA levels in
plasma (in log10 scale) for 48 patients in an AIDS clinical trial study.

In longitudinal studies, variables, which are called as time-varying (time-
dependent), are measured repeatedly over time. Longitudinal data analysis has
attracted considerable research interest and, as a result, a large number of sta-
tistical modeling and methods have been suggested to analyze such data with
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various features in the literature. However, there have been few studies on
simultaneously accounting for skewness in responses, measurement error and
missing observations in covariates, which are inherent features of longitudinal
data. This article proposes statistical joint models and associated inferential
methods to address virologic response with asymmetric nature, and measure-
ment errors and missing observations in covariate simultaneously.

Firstly, most of the published methods assume that the error terms in
the models for the longitudinal response follow normal distributions due to
the mathematical tractability and computational convenience. This requires
the variables to be “symmetrically” distributed. A violation of the assumption
could lead to misleading inferences. In fact, observed data in AIDS studies
are often far from being “symmetric” and asymmetric patterns of observations
usually occur. Secondly, measurement error in time-varying covariate (CD4
cell count) is a typical feature of longitudinal data, and ignoring this phe-
nomenon may result in unreasonable statistical inference. Finally, the validity
of inference methods relies on an important requirement that variables such
as CD4 cell count are “perfectly” measured. In practice, however, collected
data are often far from “perfect”. Although longitudinal studies are designed
to collect data from every participant in the study at each assessment time,
missing observations in CD4 time-varying covariate are very common because
data may not be always available at each time point, and these missing data
may be nonignorable in the sense that the missingness may be related to the
values being missing.

The majority of the statistical literature for the modeling of longitu-
dinal data has focused on the development of models that aim at captur-
ing only specific aspects of the motivating case studies (Huang and Dagne,
2010; Hughes, 1999; Jara et al., 2008; Wu, 2002, 2004; Wu and Wu, 2002b).
However, it is not clear how response asymmetry, covariate missingness and
measurement error of data may interact and simultaneously influence infer-
ential procedures. Statistical inference and analysis complicate dramatically
when these three features arise. The goal of this article is to investigate the
effects on inference for flexible skew-normal (SN) mixed-effects joint models
when these three typical features exist in a longitudinal case study. Under
this umbrella, we aim at exploring how mixed-effects joint models based on
one-compartment model with one phase time-varying decay rate and two-
compartment model with two phase time-varying decay rates (see Appendix
A in detail) contribute to modeling results and inference. Specifically, we
employed a Bayesian inference approach to jointly investigate the semipara-
metric nonlinear mixed-effects (SNLME) model with an SN distribution for
the viral load response process where viral load trajectories may appear very
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complicated patterns, and the linear mixed-effects (LME) model for the CD4
covariate measurement error process where missing observations are present.
We consider the SN distribution introduced by Sahu et al.(2003), which is
suitable for a Bayesian computation and is briefly discussed in Section 2.2.

The rest of the article is organized as follows. In Section 2, we describe
the data set that motivated this research and investigate specific joint models
for viral load response dynamics and CD4 covariate measurement error process
with missing mechanism. Section 3 presents the associated Bayesian inference
method that simultaneously accounts for skewness in response, and missing
observations and measurement error in covariate. In Section 4, we apply the
proposed method to the real data set described in Section 2 and report the
analysis results. We conclude the article with discussion in Section 5.

2 Data and joint models for HIV dynamics

2.1 Data description

The data set, which motivates this research, is from an AIDS clinical trial study
(Lederman et al., 1998). This study consists of 53 HIV-1 infected patients
who were treated by an antiretroviral regimen. Five patients who dropped out
earlier and never returned to the study were excluded from the data analysis.
The plasma HIV-1 RNA (viral load) is repeatedly quantified on days 0, 2, 7,
10, 14, 21, 28, 56, 84, 168 and 336 of follow-up after initiation of treatment.
The number of measurements for each individual varies from 7 to 11 . The
about 16 percent measurements of viral load are below the limit of detection
(LOD), and the LOD of HIV RNA assay is 100 copies per milliliter in this
study. For simplicity, we imputed a measurement below LOD by 50, the
expected value of those below LOD, which are assumed to take any possible
value in [0, 100]. A more formal handling of this issue may be worthwhile, but
is beyond the scope of this paper (see more detailed discussion in last Section).
CD4 covariate was also measured throughout the study on a similar scheme.
The missing rate of the associated CD4 measures was 15% (75 out of 502)
at viral load measurement times. The exact day of viral load measurement
(not predefined study day) was used to compute study day in our analysis.
A log10-transformation of viral load was used in the analysis. Figure 2 shows
the measurements of HIV viral load in log10 scale and CD4 cell count for
four randomly selected patients. All trajectories of viral load and CD4 cell
count exhibit distinctive and important patterns throughout the time course.
The rate change in viral load appears to vary substantially across patients,
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reflecting both biological variation and systematic associations with subject-
level covariates. The detailed descriptions of the study and data can be found
in Lederman et al.(1998).
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(a): Profiles of viral load in log10 scale
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(b): Profiles of standardized CD4
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Figure 2: Profiles of viral load (response) in log10 scale and standardized CD4
(covariate) for four randomly selected patients. The horizontal line is below
the detectable level of viral load (2=log10(100)).

2.2 Multivariate skew-normal distributions

Recently, there has been an increasing interest in finding more flexible methods
to represent features of the data as adequately as possible and to reduce un-
realistic assumptions. One approach for data modeling consists in construct-
ing flexible parametric classes of multivariate distributions that is different
from the normal distribution. The skew-elliptical distribution is an attrac-
tive class of asymmetric thick-tailed parametric structure, which includes the
skew-normal (SN) distribution as a special case. Different versions of the
multivariate SN distributions have been considered and used in the literature
(Arellano-Valle et al., 2005, 2007; Arellano-Valle and Azzalini, 2006; Azzalini
and Capitanio, 1999; Jara et al., 2008; Sahu et al., 2003; and others). These
studies demonstrated that the SN distribution has reasonable flexibility in real
data fitting, while it maintains some convenient formal properties of the nor-
mal density. For more detailed discussions on properties and theories of SN
distribution and its potential applications as well as differences among various
versions of SN distributions, see References listed above.
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In this paper, we consider a multivariate SN distribution introduced
by Sahu et al.(2003), which is suitable for straightforward Bayesian analysis
through hierarchical representations since it is built using conditional method.
In particular, it is relatively easy to implement and provides an interesting
alternative to other computationally challenging parametric or nonparametric
models. For completeness, this section is started by briefly summarizing the
multivariate SN distribution that will be used in this paper. An m-dimensional
random vector Y follows an m variate SN distribution with location vector µ,
m × m positive (diagonal) dispersion matrix Σ and m × m skewness matrix
∆ = diag(δ1, δ2, . . . , δm) with δ = (δ1, δ2, . . . , δm)T being a skewness parameter
vector, if its probability density function (pdf) is given by

f(y|µ,Σ,∆) = 2m|A|−1/2φm[A−1/2ȳ|Im]Φm[∆A−1ȳ|Im − ∆A−1∆], (1)

where ȳ = y − µ, A = Σ + ∆2, φm(y|V ) and Φm(y|V ) denote the pdf
and the cumulative distribution function (cdf), respectively, of Nm(0,V ). We
denote this by Y ∼ SNm(µ,Σ,∆). The mean and covariance matrix are

given by E(Y ) = µ +
√

2/πδ, cov(Y ) = Σ + (1 − 2/π)∆2. An appealing

feature of the pdf f(y|µ,Σ,∆) is that it gives independent marginal when
Σ = diag(σ2

1, σ
2
2, . . . , σ

2
m). This pdf thus reduces to

f(y|µ,Σ,∆) =
∏m

i=1

[
2√

σ2
i +δ2

i

φ
{

yi−µi√
σ2

i +δ2
i

}
Φ

{
δi

σi

yi−µi√
σ2

i +δ2
i

}]
, (2)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution,
respectively. It is noted that when δ = 0, the SN distribution reduces to usual
normal distribution. To better understand the shape of a SN distribution,
plots of the univariate SN density as a function of the skewness parameter can
be found in publication (Huang and Dagne, 2010).

According to Sahu et al.(2003), if Y follows SNm(µ,Σ,∆), it can be
expressed by a convenient stochastic representation as follows.

Y = µ + ∆|X0| + Σ1/2X1, (3)

where X0 and X1 are two independent random vectors with Nm(0, Im). Let
w = |X0|; then, w follows an m-dimensional standard normal distribution
Nm(0, Im) truncated in the space w > 0. Thus, a two-level hierarchical rep-
resentation of (3) is given by

Y |w ∼ Nm(µ + ∆w,Σ), w ∼ Nm(0, Im)I(w > 0). (4)
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2.3 Skew-normal SNLME joint models for HIV dynam-
ics

As discussed in Appendix A, nonlinear mixed-effects models based on the one-
compartment model (A.2) and the two-compartment model (A.3) are powerful
tools for modeling HIV viral dynamics (Wu and Ding, 1999) and they offer
almost equal performance to capture the early segment of viral load trajectory
(Wu and Wu, 2002b). One of our objectives in this paper is to investigate how
the two extended equations (A.4) and (A.5) perform when the complete viral
load data including viral rebound are employed for modeling. We will develop
such model structures and associated inferential methods below.

Denote the number of subjects by n and the number of measurements
on the ith subject by ni. Let yij be the log10-transformation of the viral load
value for individual i at time tij (i = 1, . . . n; j = 1, . . . , ni). Let z∗ij = z∗ij(tij)
be a summary of the true (but unobservable) CD4 covariate value at time
tij (see Section 2.3 in detail). w(t) and hi(t) are unknown nonparametric
smooth fixed-effects and random-effects functions, respectively; hi(t) are iid
realizations of a zero-mean stochastic process. We assume that the vector of

model errors ei = (ei1, . . . , eini
)T iid∼ SNni

(
−

√
2/πδ1ni

, σ2
1Ini

, δIni

)
, which

follows a multivariate SN distribution with unknown scale parameter σ2
1, and

skewness parameter δ. For the viral load response process, we consider the
following two SNLME models with an SN distribution based on equations
(A.4) and (A.5), which incorporate possibly mismeasured time-varying CD4
covariate with missing observations.

Model I (one-compartment model with time-varying decay rate):

yij = log10

{
epi1 + epi2−λij(tij)tij

}
+ eij,

pi1 = β1 + bi1, pi2 = β2 + bi2,
λij(tij) = β3 + β4z

∗
ij + w(tij) + hi(tij),

(5)

where exp(pi1) + exp(pi2) is the baseline viral load, and λij is the viral decay
rate; βij = (pi1, pi2, λij)

T is a vector of individual parameters for the ith subject

at time tij and β† = (β1, β2, β3, β4)
T is a vector of population parameters;

b†
i = (bi1, bi2)

T is a vector of random-effects.

Model II (two-compartment model with time-varying decay rates):

yij = log10

{
epi1−λij1(tij)tij + epi2−λij2(tij)tij

}
+ eij,

pi1 = β1 + bi1, λij1(tij) = β3 + β4z
∗
ij + bi2,

pi2 = β2 + bi3, λij2(tij) = w(tij) + hi(tij),

(6)
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where exp(pi1) + exp(pi2) is the baseline viral load, and λij1 and λij2 are the
first- and second phase viral decay rates, respectively; βij = (pi1, pi2, λij1, λij2)

T

is a vector of individual parameters for the ith subject at time tij and β† =

(β1, β2, β3, β4)
T is a vector of population parameters; b†

i = (bi1, bi2, bi3)
T is a

vector of random-effects.
Models (5) and (6) accommodate not only the skewness nature in viral

load data, but also an unknown nonparametric smooth function and expected
(but unobservable) CD4 covariate z∗ij rather than observed covariate zij, which
may be mismeasured. z∗ij and the unknown nonparametric smooth function are
incorporated into the decay rates to capture long-term viral load trajectories
with different shapes including viral load rebound. These two models are
more flexible than commonly-used NLME models. To fit the SNLME models,
we apply the regression spline method to nonparametric component. The
working principle is briefly described as follows. The main idea of a regression
spline is to approximate w(t) and hi(t) by using a linear combination of spline
basis functions. For instance, w(t) and hi(t) can be approximated by a linear
combination of basis functions Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T and Φq(t) =
{φ0(t), φ1(t), ..., φq−1(t)}T , respectively. That is,

w(t) ≈ wp(t) =
∑p−1

l=0 µlψl(t) = Ψp(t)
T µp,

hi(t) ≈ hiq(t) =
∑q−1

l=0 ξilφl(t) = Φq(t)
T ξiq,

(7)

where µp and ξiq (q ≤ p in order to limit the dimension of random-effects
for easy implementation) are the unknown vectors of fixed and random co-
efficients, respectively. Based on the assumption of hi(t), we can regard ξiq

as iid realizations of a zero-mean random vector. For our model, we consider
natural cubic spline bases with percentile-based knots. To select an optimal
degree of regression spline and numbers of knots, i.e., optimal sizes of p and q,
the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC) is often applied.

Let β = (β†T , µT
p )T and bi = (b†T

i , ξT
iq)

T follow a multivariate normal
distribution N(0,Σb), and Σb is an unstructured covariance matrix. Let yi =
(yi1, . . . , yini

)T , z∗
i = (z∗i1, . . . , z

∗
ini

)T , gi(ti,βi) = (g(ti1, βi1), . . . , g(tini
, βini

))T ,
ti = (ti1, . . . , tini

)T , and βi = (βi1, . . . , βini
)T . The randomness of the non-

parametric mixed-effects is transferred to the randomness of the associated
coefficients, whereas the nonparametric feature is represented by the basis
functions. Thus, for given Ψp(t) and Φq(t), substituting w(t) and hi(t) by
their approximations wp(t) and hiq(t), we can rewrite Models I and II as fol-
lows.
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Model I:

yi = gi(ti,βi) + ei, ei
iid∼ SNni

(
−

√
2/πδ1ni

, σ2
1Ini

, δIni

)
,

pi1 = β1 + bi1, pi2 = β2 + bi2,
λij(tij) ≈ β3 + β4z

∗
ij + Ψp(tij)

T µp + Φq(tij)
T ξiq,

(8)

where g(tij,βij) = log10

{
epi1 + epi2−λij(tij)tij

}
.

Model II:

yi = gi(ti,βi) + ei, ei
iid∼ SNni

(
−

√
2/πδ1ni

, σ2
1Ini

, δIni

)
,

pi1 = β1 + bi1, λij1(tij) = β3 + β4z
∗
ij + bi3,

pi2 = β2 + bi2, λij2(tij) ≈ Ψp(tij)
T µp + Φq(tij)

T ξiq,

(9)

where g(tij, βij) = log10

{
epi1−λij1(tij)tij + epi2−λij2(tij)tij

}
. Thus, the SNLME

models (8) and (9) revert to parametric NLME models that are similar to
those discussed by Huang and Dagne (2010) and Wu (2002). We can express
Models I and II in a combined form as follows.

yi = gi(ti,βi) + ei, ei
iid∼ SNni

(
−

√
2/πδ1ni

, σ2
1Ini

, δIni

)
,

βi = d(z∗
i ,Ψp,Φq,β, bi), bi

iid∼ N(0,Σb),
(10)

2.4 Covariate models with missing and mismeasured
data

Various covariate mixed-effects models were investigated in the literature (Car-
rol et al., 2006; Wu, 2002; and others). This section briefly discusses (CD4) co-
variate measurement error models with missing observations. Let zij = zij(tij)
be the observed covariate value for individual i at time tij (i = 1, . . . n; j =
1, . . . , ni). Some CD4 covariate values may be missing because these covariate
values may not be observed at the viral load response measurement time tij.
Let zi = (zmis,i,zobs,i), where zmis,i and zobs,i are the collections of the miss-
ing and observed components of zi, respectively. Let ri = (ri1, . . . , rini

)T be
a vector of missing CD4 covariate indicator such that rij = 1 if zij is missing
and 0 otherwise.

In the presence of covariate measurement errors, we consider the fol-
lowing LME model to quantify the CD4 covariate process.

zij = uT
ijα + vT

ijai + εij (≡ z∗ij + εij), εi
iid∼ Nni

(0, σ2
2Ini

) , (11)

where z∗ij = z∗ij(tij) = uT
ijα + vT

ijai may be viewed as the true (but unobserv-
able) CD4 covariate value at time tij, uij = uij(tij) and vij = vij(tij) are
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l × 1 design vectors, α = (α1, . . . , αl)
T and ai = (ai1, . . . , ail)

T are unknown
population (fixed-effects) and individual-specific (random-effects) parameter
vectors, respectively. The random-effects ai, which are introduced to account
for large inter-individual variations in the CD4 process, follow the multivariate
normal distribution N(0,Σa), where Σa is unrestricted covariance matrix. We
assume ei, bi, εi and ai are independent of each other.

To allow for nonignorable missing mechanism in the CD4 covariate,
we should assume a missing data model for the missing covariate mechanism.
Thus, we focus on the following simple independent missing data model (to
avoid too many nuisance parameters) although more complicated missing co-
variate models can also be considered.

f(r|η) =
n∏

i=1

f(ri|η) =
n∏

i=1

ni∏

j=1

[P (rij = 1|η)]rij [1 − P (rij = 1|η)]1−rij , (12)

where logit[P (rij = 1|η)] = η0 + η1zij, where η = (η0, η1)
T is a vector of

unknown nuisance parameters.
As pointed out previously, the main goal of this article is to compare

performance on how Model I (based on one-compartment model with one phase
time-varying decay rate) and Model II (based on two-compartment model with
two phase time-varying decay rates) contribute to modeling results and param-
eter estimation. It is noticed that Model II discussed in this article is equivalent
to that studied by Huang and Dagne (2012), but the different data features
were considered. In addition, the parametric NLME models investigated by
Huang and Dagne (2010, 2011) were special cases of Model II presented in this
article in the sense that Model II reduces to the models conducted by Huang
and Dagne (2010, 2011) when the following further treatments are made. (i)
The unknown nonparametric smooth function in the model (9) is reverted to
known explicit function, i.e., w(tij) = β5 + β6xij + β7zij, where xij is CD8 val-
ues (Huang and Dagne, 2010) or w(tij) = β5 +β6z

∗
ij (Huang and Dagne, 2011)

and h(tij) = bi4. (ii) The missing covariate data models are not considered in
those models. (iii) The true (but unobserved) time-varying CD4 values z∗ij are
replaced by baseline CD4 value in the first-phase viral decay rate λij1.

3 Simultaneous Bayesian inference method

In a longitudinal study, such as the AIDS study described in Section 2, the
longitudinal response and covariate processes are usually connected physically
or biologically. Although a simultaneous inference method based on a joint
likelihood for the covariate and response data with skewness, incompleteness,
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and measurement error may be favorable, the computation associated with
the joint likelihood inference in such models with the skew distribution for
longitudinal data can be extremely intensive and, particularly, may lead to
convergence problems (Wu, 2002). Here, we propose a fully Bayesian method
for the response model (10) and the covariate model (11) associated with the
missing data model to estimate all parameters simultaneously, and we obtain
numerical approximations to posterior distributions using MCMC procedure.

Following discussion in Sahu et al.(2003), in order to implement an
MCMC procedure to the joint model, it can be shown by introducing an
ni × 1 random vector wei

based on the stochastic representation for the SN
distribution (see Section 2.2 in detail) that yi and zi associated with the
missing data model (12) can be hierarchically formulated as follows.

yi|zi, ai, bi,wei
; α,β, σ2

1, δ ∼ Nni
(gi(ti,βi) + δwei

, σ2
1Ini

) ,
zi|ai, ri; α, σ2

2 ∼ Nni
(z∗

i , σ
2
2Ini

) , rij|η ∼ Bernoulli(Pij),
wei

∼ Nni
(0, Ini

)I(wei
> 0), bi ∼ N(0,Σb), ai ∼ N(0,Σa),

(13)

where I(w > 0) is an indicator function and w = |ς| with ς ∼ Nni
(0, Ini

),
and Pij = P (rij = 1|η). Note that an important advantage of the above rep-
resentations based on the hierarchical models under a Bayesian framework is
that they allow one to easily implement the methods using the freely-available
WinBUGS software (Lunn et al., 2000) and that the computational effort of
the model with an SN distribution is almost equivalent to that with a normal
distribution.

Let θ = {α, β,η, σ2
1, σ

2
2,Σa,Σb, δ} be the collection of unknown popu-

lation parameters in models (10), (11) and (12). Under the Bayesian frame-
work, we next need to specify prior distributions for all the unknown param-
eters in these models as follows.

β ∼ N(τ 1,Λ1), σ2
1 ∼ IG(ω1, ω2), Σb ∼ IW (Ω1, ρ1), δ ∼ N(0, γ),

α ∼ N(τ 2,Λ2), σ2
2 ∼ IG(ω3, ω4), Σa ∼ IW (Ω2, ρ2), η ∼ N(τ 3,Λ3),

(14)

where the mutually independent Normal (N), Inverse Gamma (IG), and
Inverse Wishart (IW ) prior distributions are chosen to facilitate computations.
The super-parameter matrices Λ1, Λ2, Λ3, Ω1 and Ω2 can be assumed to be
diagonal for convenient implementation.

Let the observed data D = {(yi,zobs,i, ri), i = 1, . . . , n}. Let f(·), f(·|·)
and π(·) be a generic density function, a conditional density function, and a
prior density function, respectively. We assume that α, β,η, σ2

1, σ
2
2,Σa,Σb and

δ are independent of each other, i.e., π(θ) = π(α)π(β)π(η)π(σ2
1) π(σ2

2)π(Σa)
π(Σb)π(δ). After we specify the models for the observed data and the prior
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distributions for the unknown model parameters, we can make statistical in-
ference for the parameters based on their posterior distributions under the
Bayesian framework. When the missing covariate data are nonignorable, we
need to assume only a possible missing data model and then incorporate it
into likelihood. Thus, the joint posterior density of θ based on the observed
data D can be given by

f(θ|D) ∝ { n∏
i

∫ ∫ ∫
f(yi|zi,ai, bi, wei

; α, β, σ2
1, δ)f(zi|ai, ri; α, σ2

2)

f(wei
|wei

> 0)f(ri|η)f(ai)f(bi)dzmis,idaidbi}π(θ).
(15)

In general, the integrals in (15) are of high dimension and do not have closed
form. Analytic approximations to the integrals may not be sufficiently accu-
rate. Therefore, it is prohibitive to directly calculate the posterior distribution
of θ based on the observed data. As an alternative, the MCMC procedure can
be used to sample from the posterior distributions, based on (15), using the
Gibbs sampler along with the Metropolis-Hastings (M-H) algorithm.

4 Analysis of AIDS clinical data

4.1 Model implementation

Models (8) and (9) in Section 2.2, which specify the viral decay rate non-
parametrically, appear to provide a reasonable fit to the observed data. We
consider linear combinations of natural cubic splines with percentile-based
knots to approximate the nonparametric functions w(t) and hi(t). Following
the study in Wu and Zhang (2006) for likelihood inference, we set ψ0(t) =
φ0(t) ≡ 1 and take the same natural cubic splines in the approximations
(7) with q ≤ p. The values of p and q are determined by the AIC/BIC
criteria. The AIC/BIC values are evaluated by various (p, q) combinations
(p, q) = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}, which suggest the following
function for w(tij) with p = 3 and hi(tij) with q = 1:

w(tij) + hi(tij) ≈ β5 + β6ψ1(tij) + β7ψ2(tij) + ξi0. (16)

Thus, we have population parameter vector β = (β1, β2, . . . , β7)
T and individ-

ual random-effects bi = (bi1, bi2, ξi0)
T in Model I or bi = (bi1, bi2, bi3, ξi0)

T in
Model II follows N(0,Σb).

Figure 2(b) shows the CD4 trajectories of four randomly-selected pa-
tients. It is known that CD4 is often measured with substantial error, so
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it is reasonable to assume that time-varying decay rate in model (10) is re-
lated to the true (but unobserved) CD4 values rather than the observed but
mismeasured CD4 values. To obtain reliable estimates of the viral dynamic
parameters, which can be used to evaluate the anti-HIV treatment, it is im-
portant to simultaneously address measurement errors and missing data in the
CD4 covariate. In the absence of a theoretical rationale for the CD4 trajecto-
ries, we consider empirical polynomial LME models for the CD4 process and
choose the best model based on AIC and BIC values. Specifically, we consider
the covariate model (11) with uij = vij = (1, tij, . . . , t

l−1
ij )T and focus on linear

(l = 2), quadratic (l = 3) and cubic (l = 4) polynomials. The resulting AIC
(BIC) values are 890.0 (931.7), 773.4 (801.3) and 845.2 (887.1), respectively.
Thus, we adopt the following quadratic polynomial LME model for the CD4
process:

zij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t
2
ij + εij, (17)

where z∗ij = (α1 +ai1)+(α2 +ai2)tij +(α3 +ai3)t
2
ij, α = (α1, α2, α3)

T is a vector
of population (fixed-effects) parameters and individual-specific random-effects
ai = (ai1, ai2, ai3)

T ∼ N(0,Σa), and εi = (εi1, . . . , εini
)T ∼ Nni

(0, σ2
2Ini

). In
addition, in order to avoid too small or large estimates that may be unstable,
we standardize the time-varying covariate CD4 cell count (each CD4 value is
subtracted by 258.6 and divided by 100.3) and rescale the original time t (in
days) so that the time scale is between 0 and 1.

We investigated the following four scenarios. First, for modeling HIV
viral dynamics with constant decay rates, the one-compartment model (A.2)
and two-compartment model (A.3) perform similarly at earlier treatment pe-
riod (Wu and Wu, 2002b). In other words, the models were used to fit trun-
cated data only where individual viral load trajectory shows a decrease pat-
tern. We investigated how Models I and II with time-varying decay rates
contribute to modeling results and parameter estimation based on complete
data at whole study period. Second, since a normal distribution is a special
case of an SN distribution when the skewness parameter is zero, we inves-
tigated how an asymmetric (SN) distribution for model error contributes to
modeling results and parameter estimation in comparison with a symmetric
(normal) distribution. Third, we estimated the model parameters by using the
“naive” (denoted by NV) method, which ignores measurement errors in CD4
covariate. That is, the NV method uses the observed CD4 values zij rather
than unobservable CD4 values z∗ij in the response model (10). We used it as a
comparison to the joint modeling (JM) approach proposed in this paper. This
comparison attempted to investigate how the measurement errors in CD4 co-
variate contribute to modeling results. Finally, when covariates are measured
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with errors, a common approach is the so-called two-step (TS) method (Hig-
gins et al., 1997): the first step estimates the ‘true’ covariate value based on
the covariate model (17); at the second step the covariate z∗ij in the response
model (10) is substituted by its estimate from the first step. Thus, the two-step
(TS) method is provided to compare the performance with the JM method.

To carry out the Bayesian inference, we specified the values of the
hyper-parameters in the prior distributions of the population parameters. We
took weakly-informative prior distributions for the parameters in the joint
model. In particular, (i) fixed-effects were taken to be independent normal dis-
tribution N(0, 100) for each component of the population parameter vectors α,
β and η; (ii) for the scale parameters σ2

1 and σ2
2 we assumed a non-informative

inverse gamma prior distribution, IG(0.01, 0.01) so that the distribution has
mean 1 and variance 100; (iii) the priors for the variance-covariance matrices
of the random-effects Σa and Σb were taken to be inverse Wishart distribu-
tions IW (Ω1, ρ1) and IW (Ω2, ρ2), where the diagonal elements for diagonal
covariance matrices Ω1 and Ω2 were 0.01, and ρ1 = ρ2 = 4; and (v) for the
skewness parameter δ, we chose normal distribution N(0, 100).

The MCMC sampler was implemented using WinBUGS package (Lunn
et al., 2000), and the WinBUGS program code is available in Appendix B. The
MCMC scheme for drawing samples from the posterior distributions of all pa-
rameters in the joint models was obtained by iterating between the following
two steps: (i) Gibbs sampler is used to update α, β,η, σ2

1, σ
2
2,Σa, Σb, and δ;

(ii) we update bi and ai (i = 1, 2, · · · , n) using the Metroplis-Hastings (M-H)
algorithm. After collecting the final MCMC samples, we drew statistical in-
ference for the unknown parameters. Specifically, we were interested in the
posterior means and quantiles. See Huang et al.(2006) and Lunn et al.(2000)
for detailed discussions of the Bayesian modeling approach and the implemen-
tation of the MCMC procedures, including the choice of the hyper-parameters,
the iterative MCMC algorithm, the choice of proposal density related to M-H
sampling, sensitivity analysis, and convergence diagnostics. When the MCMC
procedure was applied to the actual clinical data, convergence of the generated
samples was assessed using standard tools within WinBUGS package(such as
trace plots). After convergence was achieved, one long chain was run with
the following considerations. We proposed that, after an initial number of
50,000 burn-in iterations, every 20th MCMC sample was retained from the
next 200,000. Thus, we obtained 10,000 samples of targeted posterior distri-
butions of the unknown parameters for statistical inference.

The Bayesian joint modeling approach based on the SNLME models
(10) in conjunction with the approximated nonparamteric component (16)
and the covariate measurement error model (17) associated with missing data
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model (12) was used to fit the viral load data and CD4 data with measure-
ment error and missing observations. In the following sections, we will report
analysis results of the four scenarios proposed in Section 4.1.

Table 1: Summary of estimated posterior means (PM) for population pa-
rameters of fixed-effects, precision and skewness, and corresponding standard
deviation (SD) and lower limit (LCI) and upper limit (UCI) of 95% equal-
tail credible intervals (CI) based on the joint modeling(JM), naive (NV) and
two-step (TS) methods with skew-normal (SN) or normal (N) distributions.

Method Model α1 α2 α2 β1 β2 β3 β4 σ2
1 σ2

2 δ
JM I-SN PM -0.34 3.68 -3.40 6.03 11.3 36.8 -10.6 0.01 0.31 0.91

LCI -0.56 2.83 -4.27 5.57 10.7 22.1 -14.7 0.00 0.26 0.83
UCI -0.13 4.48 -2.54 6.52 11.8 51.9 -2.22 0.04 0.36 0.99
SD 0.11 0.42 0.44 0.23 0.27 7.61 6.00 0.01 0.03 0.04

II-SN PM -0.35 3.76 -3.48 11.1 5.84 69.8 -14.2 0.05 0.31 0.63
LCI -0.58 2.98 -4.30 10.6 5.15 61.9 -22.7 0.02 0.26 0.50
UCI -0.13 4.54 -2.65 11.6 6.53 78.0 -4.52 0.10 0.36 0.75
SD 0.11 0.39 0.42 0.26 0.34 4.08 4.68 0.02 0.03 0.06

I-N PM -0.35 3.67 -3.39 5.22 9.97 34.1 -8.17 0.31 0.31 –
LCI -0.56 2.90 -4.18 4.69 8.50 22.1 -17.7 0.27 0.26 –
UCI -0.12 4.45 -2.58 6.74 11.5 51.7 1.60 0.36 0.36 –
SD 0.11 0.40 0.40 0.27 0.25 7.52 5.98 0.02 0.03 –

NV I-SN PM -0.33 3.62 -3.36 6.02 11.3 40.0 -7.24 0.01 0.30 0.92
LCI -0.54 2.83 -4.16 5.61 10.7 24.3 -13.7 0.00 0.26 0.84
UCI -0.11 4.40 -2.53 6.42 11.8 53.6 -0.24 0.03 0.36 1.00
SD 0.11 0.40 0.42 0.21 0.29 7.21 3.46 0.01 0.02 0.04

TS I-SN PM -0.34 3.63 -3.36 6.04 11.3 37.7 -9.94 0.01 0.30 0.91
LCI -0.56 2.86 -4.16 5.63 10.7 22.3 -20.2 0.00 0.26 0.83
UCI -0.12 4.41 -2.55 6.40 11.8 53.3 -1.42 0.04 0.36 0.99
SD 0.11 0.40 0.41 0.20 0.25 6.98 5.53 0.01 0.03 0.04

4.2 Comparison of results between Models I and II

The posterior mean (PM), the corresponding standard deviation (SD) and
95% credible interval for fixed-effects parameters based on the three methods
(JM, NV and TS methods) are presented in Table 1. The following findings
are observed for estimated results of parameters in Models I and II based on
JM method. (i) In the response model, the findings for the most interested
parameters (β3, β4), which are relative to viral decay rate, show that these
estimates are statistically significant for both Models I and II since the 95%
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credible intervals do not contain zero. Nevertheless, for the estimate of the co-
efficient of CD4 covariate β4, it is shown that CD4 covariate has a significantly
negative effect on the viral decay rate, suggesting that the CD4 covariate may
be an important predictor of the viral decay rate during the treatment. For
the precision parameter σ2

1, the estimated value (0.01) based on Model I is
much smaller than that (0.05) based on Model II. The estimates of the skew-
ness parameter (δ) of Models I and II are, respectively, 0.91 with 95% credible
intervals (0.83, 0.99) and 0.63 with 95% credible intervals (0.50, 0.75). This
finding suggests that there is a significantly positive skewness in the viral load
data and confirms the fact that the distribution of the original data is skewed
even after taking ln-transformation. Thus, incorporating a skewness parame-
ter in the modeling of the data is recommended. (ii) For parameter estimates
of the CD4 covariate model (17), the estimates of the coefficients based on
the two models are comparable but the estimated α2 is significantly positive,
whereas the estimates of α1 and α3 are significantly negative. This finding
suggests that there is a positive linear relation between CD4 cell count and
measurement time. There is an identical estimate (0.31) in the posterior mean
of the scale parameter σ2

2 in Models I and II.
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Figure 3: Goodness-of-fit. (1) Top panel: Observed values versus fitted values
of log10(RNA); (2) Bottom panel: SN and N (normal) Q-Q plots with line.

Note that the nonignorable model (12) is not testable based on the
observed data, so it is important to carry out sensitivity analyses based on
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alternative missing data models. For example, we can consider the following
alternative missing data models: logit[P (rij = 1|η)] = η0 + η1zi,j−1 + η2zij and
logit[P (rij = 1|η)] = η0 + η1z

2
ij. The resulting estimates are similar (results

are not present here), so the results reported in Table 1 are robust against
missing data models.

From the model fitting results, we have seen that, in general, both
Model I and Model II provided a reasonably good fit to the observed data
for most patients in our study, although the fitting for a few patients (<7%)
was not completely satisfactory due to unusual viral load fluctuation patterns
for these patients. To assess the goodness-of-fit of the proposed models, the
diagnosis plots of the observed values versus the fitted values (top panel) and
SN or normal Q-Q plots (bottom panel) from Models I and II are presented
in Figure 3. It can be seen from Figure 3 (top panel) that Model I with SN
distribution provided better fit to observed data, compared with Model II with
SN distribution. This result can be also explained by examining the SN Q-Q
plots of the residuals (bottom panel) that both plots show the existence of
outliers, but it is clearly seen that Model I only has few negative outliers, and
thus, fit observed data better than Model II. This finding is further confirmed
by their residual sums of squares (RSS) summarized in Table 2, which are
6.315 (Model I) and 25.44 (Model II).

Table 2: Summary of DIC value, expected predictive deviance (EPD) and
residual sum of squares (RSS) based on the joint modeling(JM), naive (NV)
and two-step (TS) methods with skew-normal (SN) or normal (N) distribu-
tions.

Method Model DIC EPD RSS
JM I-SN 1571.8 0.025 6.315

II-SN 2189.1 0.102 25.44
I-N 2113.9 0.625 156.5

NV I-SN 1635.7 0.044 10.68
TS I-SN 1587.9 0.031 6.394

For selecting the best model that fits the data adequately, a Bayesian
selection criterion, known as deviance information criterion (DIC) suggested
by Spiegelhalter et al.(2002), is used. As with other model selection criteria,
we caution that DIC is not intended for identification of the “correct” model,
but rather merely as a method of comparing a collection of alternative formula-
tions. As an alternative, we also evaluate expected predictive deviance (EPD)

formulated by EPD = E
{∑

i,j(yrep,ij − yobs,ij)
2
}

for model comparison, where
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the predictive value yrep,ij is a replicate of the observed yobs,ij and the expec-
tation is taken over the posterior distribution of the model parameters θ (see
Gelman et al., 2003 in detail). This criterion chooses the model where the
discrepancy between predictive values and observed values is the lowest. We
calculate estimated DICs using the joint modeling approach based on Models I
and II, which are 1571.8 and 2189.1, respectively. As mentioned previously, it
is difficult to tell which model is “correct”, only which one fits the data better.
Therefore, based on the DIC, the results indicate that Model I provides better
fit than Model II. This finding is confirmed by the results of the EPD values
(see Table 2). These results are also consistent with those in diagnosis of the
goodness-of-fit displayed in Figure 3, indicating that Model I performs better.
Based on these observations, we will further report our results in detail only
for the better Model I below.

4.3 Results based on Model I

We compare the inferential results between Model I with SN distribution (SN
model) and Model I with normal (N) distribution (N model). To assess the
goodness-of-fit, the diagnosis plots of the observed values versus the fitted
values (top panel), and SN and N Q-Q plots (bottom panel) are presented in
Figure 3. It can be seen from Figure 3 (top panel) that the SN model provided
better fit to observed data, compared with the N model. This result can be
also explained by examining the SN or N Q-Q plots of the residuals (bottom
panel) that both plots show the existence of outliers, but it is clearly seen that
the SN model only has few negative outliers, and thus, fit observed data better
than the N model. This finding is consistently confirmed by the three model
selection criteria (DIC, EPD and RSS).

Figure 4 displays estimates of viral load and standardized CD4 trajec-
tories obtained by using the JM method based on the SN and N models for
two of the four individual subjects shown in Figure 2. The following findings
are observed from joint modeling results. For viral load response (top panel),
(i) the estimated individual trajectories for the SN model fit the originally
observed viral load values more closely than those for the N model. Note
that the lack of smoothness for estimates of individual trajectories in the SN
model is understandable since a random component wei

was incorporated in
the expected function (see (13) for details) according to the stochastic repre-
sentation feature of the SN distribution for “chasing the data” to this extent;
(ii) overall, the 95% credible interval (CI) (the last five CIs are shown in the
plot for each individual subject) associated with predicted value from the N
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model is wider than the corresponding 95% CI from the SN model; (iii) all the
95% CIs from the SN model cover the true (observed) viral load values, while
some of 95% CIs from the N model do not. For example, for patient 31, the
observed value at day 336 is 3.146; the corresponding 95% CI from Model I
with SN distribution is (2.881,3.341) with the fitted value 3.121, but the cor-
responding 95% CI from Model I with N distribution is (1.988,3.014) with the
fitted value 2.753. For CD4 covariate, the plots (bottom panel) indicate that
the quadratic model, which is the best polynomial model based on AIC/BIC
values, may be reasonable for most individual CD4 trajectories. Note that
fitting curves from both the SN and N models are very similar due to the fact
that, in this study, the SN distribution reflects to the response models only
and the normal distribution is assumed for the CD4 covariate model (17).
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Figure 4: The individual fitted curves of viral load and CD4 for the two
representative patients based on the joint models with the normal distribution,
denoted by N (dotted line) or SN distribution (solid line) for response model
error. The respective vertical dotted line (N) ended with ‘◦’ and solid line
(SN) ended with ‘•’ on each fitted value are the 95% credible interval (CI)
associated with the fitted value. The observed values are indicated by sign
crosses (×).

For parameter estimates of the response model, the estimates of β1,
β2 and β3 based on the SN model are significantly larger than those based
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on the N model, while the estimate of β4 based on the SN model, which is
coefficient of true CD4 covariate, is significantly smaller than that based on the
N model. The results indicate that estimated parameters may be substantially
underestimated or overestimated if model distribution ignores skewness. For
the precision parameter σ2

1, the estimated value (0.01) based on the SN model
is much smaller than that (0.31) based on the N model. (ii) For parameter
estimates of the CD4 covariate model, all of the estimated parameters are
almost identical for both the SN and N models. (iii) For the missing data
model, the estimates of η0 and η1 are -1.93 and -0.12, respectively, for both
the SN and N models. The results indicate that the chance of missing data is
decreasing with CD4 counts.

To investigate how the measurement errors with nonignorable missing
observations in CD4 covariate contribute to modeling results, we used the
‘naive’ (NV) method based on Model I, where the true (unobserved) CD4
values z∗ij associated with the viral decay rate λij are substituted by the raw
(observed) CD4 values zij in the response model (8), to estimate the model
parameters. It can be seen from Table 1 that there are important differences
in the estimates of the parameters β3 and β4, which are directly associated
with whether or not ignoring potential CD4 measurement errors with missing
mechanism for inference. The NV method may substantially overestimate the
covariate CD4 effect (β4). The estimated standard deviation for the CD4
effect (β4) using the JM method is almost twice larger than that using the NV
method. The difference of the naive estimates and the JM estimates, due to
whether or not ignoring potential CD4 measurement errors with missing data,
indicates that CD4 measurement errors can not be ignored in the analysis. We
also obtain estimated DIC, EPD and RSS values (see Table 1) based on the
NV method, and the results show that the JM approach provides a better fit
to the data in comparison with the NV method.

Table 1 also presents estimated population parameters using the two-
step (TS) method. We can see the TS estimates and the JM estimates are
somewhat different. There are slight differences in the estimates for the pa-
rameters β3 and β4, which are directly associated CD4 covariate. For the pa-
rameters βk (k = 1, 2, 3, 4), the standard deviations (SD) from the TS method
is smaller than those obtained by the JM method. This is because the usual
TS method ignores the variability due to estimating the parameters in the co-
variate model. So the SD produced by the TS method may be underestimated.

The estimated results based on JM approach (Model I) indicate that the
population CD4 trajectory may be approximated by the quadratic polynomial
ẑ(t) = 100.3(−0.34 + 3.68t− 3.40t2) + 258.6, where ẑ(t) is in the original CD4
scale. The estimated population viral decay rate is λ̂(t) = 36.8 − 10.6ẑ(t) +
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37.0 − 1.80ψ1(t) − 0.24ψ2(t). Thus, the population viral load process may
be approximated by V̂ (t) = exp(6.03) + exp(11.3 − λ̂(t)t). Since the viral
decay rate λ(t) is significantly associated with the true CD4 value (due to
the statistically significant estimate of β4), this suggests that the viral load
change V (t) may be significantly associated with the CD4 covariate. Note
that, although the true association described above may be complicated, the
simple approximation considered here may provide a rough guidance and point
to further research.

The estimated results based on the JM approach (Model I) in Table 1
show that the estimate of skewness parameter (0.91) in viral load is signifi-
cantly positive, which confirms the right tail skewness of the viral load. Thus,
it may suggest that accounting for significant skewness, when the data exhibit
asymmetry, provides a better model fit to the data and gives more reasonable
estimates to the parameters.

5 Discussion

This paper developed a joint modeling approach for the SNLME model with
an SN distribution under a Bayesian framework for longitudinal data with
skewness characteristics of viral response and measurement errors and missing
data in CD4 covariate, that may be preferred over that with a standard normal
distribution. The foregoing results indicate that the one-compartment HIV
dynamic model performed better than the two-compartment HIV dynamic
model. The results also indicate that the JM method outperformed the NV and
TS methods in the sense that the JM method may produce more robust and
reasonable parameter estimates. The proposed JM method is quite general,
and so can be used to other applications. This kind of SN modeling approach is
important in many biostatistical application areas, allowing accurate inference
of parameters while adjusting for the data with skewness. The SN distribution
is shown to provide an alternative to (symmetric) normal distribution that is
often assumed in statistical models.

The proposed SNLME joint model with SN distribution can be easily
fitted via MCMC procedure using the publicly-available WinBUGS package
and has a computational cost similar to the normal version of the model due
to the features of its hierarchically stochastic representation. Implementation
via MCMC sampler makes it straightforward to compare the proposed models
and methods with various scenarios for real data analysis in comparison with
symmetric distributions and asymmetric distributions for model errors. This
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makes our approach quite powerful and also accessible to practicing statisti-
cians in the fields. It is noted that Huang and Dagne (2010; 2011) investigated
the NLME model with assuming both the model error and random-effects to
have the SN distribution and found that the modeling results based on the
SN distribution for random-effects are similar to those based on a normal dis-
tribution for random-effects. Thus, the random-effects were assumed to be
normal here. In addition, the CD4 covariate models were assumed to follow
normal distribution since the CD4 cell count data appeared to be normally
distributed in this studies although more robust distributional specification
such as SN distribution can be employed.

In order to examine the sensitivity of parameter estimates to the prior
distributions and initial values, we also conducted a limited sensitivity analysis
using different values of hyper-parameters of prior distributions and different
initial values (data not shown). The results of the sensitivity analysis showed
that the estimated dynamic parameters were not sensitive to changes of both
priors and initial values. Thus, the final results are reasonable and robust, and
the conclusions of our analysis remain unchanged (see Huang et al. (2006) for
more details).

The unreliable observations (actually observed values) below LOD may
be used instead of such values imputed by half of LOD or more advanced sta-
tistical methods may be conducted to evaluate values below LOD for inference,
but results of parameter estimates may be interpreted differently. For exam-
ple, one of approaches to handle left-censoring due to LOD was adopted by
Wu (2002) in which the observed value yij is denoted by (qij; cij), where cij

is the censoring indicator such that yij is observed if cij = 0 and yij is left
censored if cij = 1, i.e. yij = qij if cij = 0, and yij ≤ d if cij = 1, where
d = 100 (e.g. LOD). Thus, the values of LOD can be predicted using Bayesian
modeling approach investigated in this paper.

It is noted that there is the possibility of interactively-jointly modeling
CD4 counts and viral load based on the HIV dynamic models formulated
through a system of ordinary differential equations (ODE)(Guedj et al., 2007;
Huang et al., 2006; Wu and Ding, 1999), rather than treating CD4 counts
as explanatory variable. As discussed in Appendix A, the proposed SNLME
joint models (10) are constructed based on equations (A.4) and (A.5), which
are approximated from biologically-based viral dynamic ODE model (A.1). It
has seen that the SNLME joint models not only perform well, but also offer
the mathematical tractability and computational efficiency. We do not directly
adopt biologically-based viral dynamic ODE model (A.1) with the following
consideration. Although such model can provide more meaningful biological
interpretation for the results, it may involve intensive computational burden
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and cause the difficulty of ODE numerical solution, in particular, when joint
models-based ODE systems for longitudinal data with features of skewness,
and missing and mismeasured covariate are considered.

This article considers two statistical models–SN and normal distributions-
based models. We compared their performance by examining the residual
Q-Q plots and residual sum of squares for the assessment of goodness-of-fit
and by using DIC and EPD for the model selection. It is shown from our
results that all four criteria achieve a consistent conclusion. It is noted that
Celeux et al.(2006) investigated and compared different DIC constructions in
the presence of missing data models. A further study to evaluate these various
extensions to DIC used here may be warranted, but it will require additional
effort due to the nature of the complicated nonlinear models with skew distri-
bution whose associated likelihood function cannot be easily derived. Thus, it
is beyond the scope of this article. We hope to report these results in the near
future.

In summary, for this particular data set based on Model I, which is
preferable to Model II, our data analysis indicates that for reliable estimation
of HIV dynamic parameters, we should simultaneously address longitudinal
data with skewness in viral response, and measurement errors and missing data
in CD4 covariate. We found that it is important to take the CD4 measurement
errors and missing data, and viral load with skewness into account, indicating
that the JM approach may be more appropriate than the NV and TS methods.

Appendices

A. HIV dynamic models

Viral dynamic models can be formulated through a system of ordinary differ-
ential equations (ODE) (Guedj et al., 2007; Huang et al., 2006; Perelson et al.,
1997; Wu and Ding, 1999). Following the notation in Huang et al., (2006) and
Wu and Ding (1999), a mathematical ODE model for HIV dynamics can be
written as follows by considering an infected cell compartment–productively
infected cells (Tp).

d
dt

Tp = kTVI − dpTp,
d
dt

VI = (1 − η)d − cVI ,
d
dt

VNI = ηd + NdpTp − cVNI ,
(A.1)

where VI and VIN are the concentrations of infectious virus and non-infectious
virus, respectively, and T denotes the number of uninfected target cells for
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HIV, which can be assumed to be a constant at the early stage of HIV treat-
ment. To account for compartment where the protease inhibitor drugs cannot
completely block the production, we consider an additional virus production
term with a constant (average) rate d in the model. The parameters dp and c
are the death rates of productively infected cells and free virus, respectively.
Under some reasonable assumptions and simplifications, an analytic solution
for equation (A.1) can be obtained. More details on the notation and simpli-
fications can be found in Wu and Ding (1999). Thus, two useful approximate
solutions, which can be used to capture virus decay, have been proposed as
follows.

V (t) = exp(p0) + exp(p1 − λt) (A.2)
V (t) = exp(p1 − λ1t) + exp(p2 − λ2t) (A.3)

where V (t) = VI(t)+VNI(t) is the total number of HIV-1 RNA copies per mL
of plasma, λ, λ1 and λ2 are the viral decay rates before viral load rebound
(Perelson et al., 1997), exp(pi) (i=0,1,2) reflect the baseline viral load at time
t = 0. It is generally assumed that λ1 > λ2, which assures that the model is
identifiable and is appropriate for empirical studies (Wu and Ding, 1999). It is
of particular interest to estimate these viral decay rates because they quantify
the antiviral effect, and hence, can be used to assess the efficacy of the antiviral
treatments. In estimating these decay rates, only the early segment of the viral
load trajectory data before rebound can be used (Perelson et al., 1997; Wu
and Ding, 1999; Wu and Wu, 2002a, 2002b).

Nonlinear mixed-effects models based on one-compartment model with
one phase decay rate (A.2) and two-compartment model with two phase decay
rates (A.3) are powerful tools for modeling HIV viral dynamics. Wu and Wu
(2002b) have shown that they are approximately equal to capture the viral
load trajectory reasonably well within some time period. Although equations
(A.2) and (A.3) are widely used in HIV dynamic studies, they are only applied
to the early segment of the viral load data since the viral load trajectory may
change to a different shape in later stage; see Figure 1. Thus, it may not be
reasonable to assume that the viral decay rate is a constant during long-term
treatment such as 48 weeks in the study to be considered in this paper. In other
words, equations (A.2) and (A.3) is only short-term HIV dynamic models. To
model the long-term HIV dynamics, a natural extension is to assume that the
viral decay rates change over time, which are either a function of time-varying
covariates such as CD4 cell count or a smooth function to capture the viral load
change including viral rebound. Thus, we introduce two extended function as
follows.

V (t) = exp(p0) + exp[p1 − λ(t)t] (A.4)
V (t) = exp[p1 − λ1(t)t] + exp[p2 − λ2(t)t] (A.5)
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where the decay rates λ(t), λ1(t) and λ2(t) are either a function of time-varying
CD4 cell count (covariate) and/or an unknown smooth function. Intuitively,
these two models are more reasonable because they assume that the viral decay
rates can vary with time as a result of drug resistance, medication adherence
and other relevant clinical factors likely to affect changes in the viral load dur-
ing the treatment. Therefore, all data obtained during whole study period can
be used by fitting these models. We also assume that λ1(t) > λ2(t), for all time
t in order to guarantee that there is the first phase of curve decay. Equations
(A.4) and (A.5) are semiparametric models because of the mechanistic struc-
ture with constant parameters and time-varying parameters to capture the
time-varying effects of the treatment and over a longer period. More impor-
tantly, the semiparametric models are capable of modeling long-term viral load
data of which the trajectory may vary substantially among different patients
(Wu and Zhang, 2006).

B. WinBUGS code for Model I with SN distribution

model {

for (i in 1:m)

{

# Random effects of response model

b2[i,1]<-0

b2[i,2]<-0

b2[i,3]<-0

b[i,1:3]~dmnorm(b2[i,1:3],Omega2[,])

# Random effects of covariate model

a3[i,1]<-0

a3[i,2]<-0

a3[i,3]<-0

a[i,1:3]~dmnorm(a3[i,1:3],Omega3[,])

}

for(j in 1:N)

{

# Modelling nonignorable missing model

logit(mu.r[j])<-psi[1]+psi[2]*y[j,1] #y[j,1]=standardized cd4

mu.r2[j]<-max(0.001,min(mu.r[j],0.999))

y[j,3]~dbern(mu.r2[j]) #y[j,3]=Indicator 0 or 1

# Modelling true CD4 via measurement errors model

z.star[j]<-(alpha[1]+a[y[j,2],1])+(alpha[2]+a[y[j,2],2])*y[j,4]
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+(alpha[3]+a[y[j,2],3])*y[j,4]*y[j,4] #y[j,2]=patid; y[j,4]=time

y[j,1]~dnorm(z.star[j],tau2)

# SNLME response model

p1[j]<-beta[1]+b[y[j,2],1]

p2[j]<-beta[2]+b[y[j,2],2]

lambda1[j]<-beta[3]+beta[4]*z.star[j]

+mu.not[1]+mu.not[2]*Z[j,2]+mu.not[3]*Z[j,3]+b[y[j,2],3]

dm1[j]<-p1[j]

dm2[j]<-p2[j]-lambda1[j]*y[j,4]

dm3[j]<-exp(dm1[j])

dm4[j]<-exp(dm2[j])

dm5[j]<-dm3[j]+dm4[j]

w[j]~dnorm(0,1)I(0,)

mu[j]<-log(dm5[j])/log(10)+delta*(w[j]-0.798) # SN distribution

# mu[j]<-log(dm5[j])/log(10) # Normal distribution

y[j,5]~dnorm(mu[j], tau) # y[j,5]=log10(rna)

Y.pred[j]~dnorm(mu[j],tau) # predict value

# Fitted values and Residuals

fit[j]<-mu[j]

Pred[j]<-Y.pred[j]

resid[j]<-y[j,5]-fit[j]

ssr.r[j]<-pow(resid[j],2)

ssr.Y.obs[j]<-pow((Y.pred[j]-y[j,5]),2)

}

SSR<-sum(ssr.r[]) # Sum of squares of residuals

SSR.p<-mean(ssr.Y.obs[]) # EPD

# Prior distributions of the hyperparameters

#(1) Coefficients

for(k in 1:4){beta[k]~dnorm(0,0.01)}

for(k in 1:3){

alpha[k]~dnorm(0,0.01)

mu.not[k]~dnorm(0,0.01)

}

for (k in 1:2){psi[k]~dnorm(0,0.01)}

#(2) Precision parameters

tau~dgamma(0.01,0.01)

sigma.tau<-1/tau
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tau2~dgamma(0.01,0.01)

sigma.tau2<-1/tau2

#(3) Variance-covariance matrix

Omega2[1:3,1:3]~dwish(R2[,],5)

v2[1:3,1:3]<-inverse(Omega2[,])

Omega3[1:3,1:3]~dwish(R3[,],5)

v3[1:3,1:3]<-inverse(Omega3[,])

#(4) Skewness parameter

delta~dnorm(0,0.01)

}
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Guedj, J., Thiébaut, R., and Commenges, D. (2007). Maximum likelihood
estimation in dynamical models of HIV. Biometrics 63, 1198–1206.

Higgins, M., Davidian, M., and Gilitinan D.M. (1997). A two-step approach to
measurement error in time-dependent covariates in nonlinear mixed-effects
models, with application to IGF-I pharmacokinetics. Journal of the Ameri-
can Statistical association 92, 436–448.

26

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 34



Huang, Y., Liu, D., and Wu, H. (2006). Hierarchical Bayesian methods for
estimation of parameters in a longitudinal HIV dynamic system. Biometrics
62, 413–423.

Huang, Y., and Dagne, G. (2010). Skew-normal Bayesian nonlinear mixed-
effects models with application to AIDS studies. Statistics in Medicine 29,
2384–2398.

Huang, Y., and Dagne, G. (2011). A Bayesian approach to joint mixed-effects
models with a skew-normal distribution and measurement errors in covari-
ates. Biometrics 67, 260–269.

Huang, Y., and Dagne, G. (2012). Bayesian semiparametric nonlinear
mixed-effects joint models for data with skewness, missing responses
and measurement errors in covariates. Biometrics DOI: 10.1111/j.1541-
0420.2011.01719.x

Hughes, J.P. (1999). Mixed effects models with censored data with applications
to HIV RNA levels. Biometrics 55, 625–629.

Jara, A., Quintana, F., and Martin, E.S. (2008). Linear mixed models with
skew-elliptical distributions: A Bayesian approach. Computational Statistics
and Data Analysis 52, 5033–5045.

Lederman, M.M., Connick, E., Landay, A., Kuritzkes, D.R., Spritzler, J.,
Clair, S.M., Kotzin, B.L., Fox, L., Chiozzi, M.H., Leonard, J.M., Rousseau,
F., Wade, M., Roe, J.D., Martinez, A., and Kessler, H. (1998). Immunologic
responses associated with 12 weeks of combination antiretroviral therapy
consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clini-
cal Trials Group Protocol 315. Journal of Infectious Diseases 178, 70–79.

Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS
– a Bayesian modelling framework: concepts, structure, an extensibility.
Statistics and Computing 10, 325–337.

Perelson, A.S., Essunger, P., et al. (1997). Decay characteristics of HIV-1-
infected compartments during combination therapy. Nature 387, 188–191.

Sahu, S.K., Dey, D.K., and Branco, M.D. (2003). A new class of multivari-
ate skew distributions with applications to Bayesian regression models. The
Canadian Journal of Statistics 31, 129–150.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van der Linde, A. (2002).
Bayesian measures of model complexity and fit (with Discussion). Journal
of the Royal Statistical Society, Series B 64, 583–639.

Wu, H., and Ding, A.A. (1999). Population HIV-1 dynamics in vivo: applicable
models and inferential tools for virological data from AIDS clinical trials.
Biometrics 55, 410–418.

Wu, L. (2002). A joint model for nonlinear mixed-effects models with censor-
ing and covariates measured with error. Journal of the American Statistical

27

Huang et al.: Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamics

Published by De Gruyter, 2012



Association 97, 955–964.
Wu, L. (2004). Simultaneous inference for longitudinal data with detection

limits and covariates measured with errors, with application to AIDS studies.
Statistics in Medicine 23, 1715–1731.

Wu, L., and Wu, H. (2002a). Missing time-dependent covariates in human
immunodeficiency virus dynamic models. Applied Statistics 51, 297–318.

Wu, H., and Wu, L. (2002b) Identification of significant host factors for HIV
dynamics modeled by nonlinear mixed-effects models. Statistics in Medicine
21, 753–771.

Wu H, Zhang J-T. (2006). Nonparametric Regression Methods for Longitudinal
Data Analysis. Wiley, New Jersey.

28

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 34


	The International Journal of Biostatistics
	Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate
	Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate
	Abstract


