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Testing the assumptions for the analysis of
survival data arising from a prevalent cohort
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Abstract
In a prevalent cohort study with follow-up subjects identified as prevalent cases are followed

until failure (defined suitably) or censoring. When the dates of the initiating events of these
prevalent cases are ascertainable, each observed datum point consists of a backward recurrence
time and a possibly censored forward recurrence time. Their sum is well known to be the left
truncated lifetime. It is common to term these left truncated lifetimes "length biased" if the initiating
event times of all the incident cases (including those not observed through the prevalent sampling
scheme) follow a stationary Poisson process. Statistical inference is then said to be carried out under
stationarity. Whether or not stationarity holds, a further assumption needed for estimation of the
incident survivor function is the independence of the lifetimes and their accompanying truncation
times. That is, it must be assumed that survival does not depend on the calendar date of the initiating
event. We show how this assumption may be checked under stationarity, even though only the
backward recurrence times and their associated (possibly censored) forward recurrence times are
observed. We prove that independence of the lifetimes and truncation times is equivalent to equality
in distribution of the backward and forward recurrence times, and exploit this equivalence as a
means of testing the former hypothesis. A simulation study is conducted to investigate the power
and Type 1 error rate of our proposed tests, which include a bootstrap procedure that takes into
account the pairwise dependence between the forward and backward recurrence times, as well
as the potential censoring of only one of the members of each pair. We illustrate our methods
using data from the Canadian Study of Health and Aging. We also point out an equivalence of the
problem presented here to a non-standard changepoint problem.

KEYWORDS: prevalent cohort study, left truncation, backward recurrence time, forward
recurrence time, censored mathced pairs
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1 Introduction
In a prevalent cohort study with follow-up subjects identified as prevalent cases are
followed until failure (defined suitably) or censoring. For example, in the Canadian
Study on Health and Aging (CSHA) [1] subjects with prevalent dementia were
followed until death or censoring and the survival data collected provided the basis
for estimation of survival from onset of dementia [2]. Prevalent cohort studies
with follow-up are often carried out in preference to incident cohort studies which
can entail prohibitive costs and lengthy follow-up of very large cohorts of initially
disease-free subjects.

When the dates of the initiating events of the prevalent cases are ascertain-
able, each observed datum vector consists of a backward recurrence time, a possibly
censored forward recurrence time, and a censoring indicator. The sum of the back-
ward and forward recurrence times is well known to be the left truncated lifetime.
It is common to term these left truncated lifetimes “length biased” if the initiating
events of all cases (including those cases not observed in the prevalent cohort) fol-
low a stationary Poisson process. Statistical inference is then said to be carried out
under stationarity. For several formal approaches to the assessment of stationarity,
see [3] and [4], whose methods are based on testing for the equality in distribution
of the backward and forward recurrence times. Whether or not stationarity holds, a
further assumption is almost always made. This is the assumption that the under-
lying, incident, lifetimes are independent of their accompanying truncation times.
See, for example, [5, 6, 7].

Arbitrarily left truncated survival data cannot be used to test for indepen-
dence between failure times and truncation times without further special model
assumptions, for example, about the initiation process. The problem is that only a
biased subset of the lifetimes and truncation times is observed and quantification
of this bias is impossible in a completely general nonparametric setting. We there-
fore make the assumption of stationarity, which is equivalent to the assumption of
a constant incidence rate for the Poisson initiation process. We place no restriction
on the survivor function. In this setting, we show that the observed data consist-
ing of the length biased truncation times (backward recurrence times and, possibly
censored, forward recurrence times), may be used to test the assumption of inde-
pendence. Our work complements that of [8], who discuss a nonparametric test
for quasi-independence between lifetimes and truncation times based on Kendall’s
tau, and that of [4], in that it provides another role for testing the equality of the
backward and forward recurrence time distributions. We also provide an alternative
bootstrap testing procedure.

The structure of the paper is as follows: In Section 2 we present notation,
and in Section 3 we introduce the assumptions made in our work. In Section 4 we
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state our main theorems, and in Section 5 we describe how these may be invoked
to test for independence. We carry out a simulation study to assess the power and
Type 1 error rate of our proposed tests in Section 6. Section 7 contains the results
obtained from applying our methodology to data collected during the CSHA, in
order to determine whether survival with dementia from onset changed over a pe-
riod before 1991. In Section 8, we discuss the link of the current work to that of a
non-standard changepoint problem, and also to that of testing if there has been “pre-
recruitment censoring”, since another common assumption made in the literature is
that no censoring can occur before recruitment into a prevalent cohort.

2 Notation and preliminaries
Let X1, . . . ,Xm be independent and identically distributed (i.i.d.) positive random
variables representing lifetimes. If the survivor function of X1, . . . ,Xm does not
change with calendar time, we represent the common survivor function as H(x), and
the corresponding probability density function (p.d.f.) as h(x). Let τ1, τ2, . . . ,τm be
the corresponding calendar times of initiation, for convenience, termed onset, which
are assumed to arise from a stationary Poisson process. Also, let τ∗ be the calendar
time of recruitment of prevalent cases into the study. Individual i is observed if Xi≥
τ∗−τi. Thus, the data is left-truncated, with left-truncation time Ti = τ∗−τi. Since
the initiation times arise from a stationary Poisson process, the Ti’s are uniform
random variables, with constant p.d.f. g(t).

Let Y1, . . . ,Yn be the observed left-truncated lifetimes, with n≤m, recalling
that some individuals will go unobserved. That is, for observed lifetime Y , lifetime
X , and truncation time T , P(Y > x) = P(X > x|X ≥ T ).

For an observed individual i, we write Yi = Y bwd
i +Y f wd

i , where Y bwd
i is

the time from onset to recruitment, or the backward recurrence time (i.e. current
lifetime), and Y f wd

i is the time from recruitment to failure, or the forward recurrence
time (i.e. residual lifetime). We let the p.d.f. of Y bwd

i and Y f wd
i be, respectively, fbwd

and f f wd , and note that Y bwd
i and Y f wd

i are negatively correlated conditional on a
fixed value of Yi.

We denote the right-censoring time of subject i by Ci. We have that Ci =
Y bwd

i +C∗i , where C∗i , the residual censoring time, is the time from recruitment until
the subject is censored. Hence, the observed data are (Y bwd

i ,Y obs
i ,δi), i = 1,2, . . . ,n,

where Y obs
i =min(Y f wd

i ,C∗i ), and δi = 1[Y f wd
i ≤C∗i ] is the usual censoring indicator

for subject i.
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3 Independence between lifetimes and truncation
times

The main purpose of this paper is to propose a test of independence between the
lifetimes, X , and the left-truncation times, T , under mild assumptions, by using the
data (Y bwd

i ,Y obs
i ,δi), i = 1,2, . . . ,n. As we have pointed out in the introduction, this

independence cannot be assessed for arbitrarily left-truncated survival data. Our
main result, stated formally in Theorem 2, is that under stationarity and other mild
assumptions, independence of X and T is equivalent to the equality of Y bwd

i and
Y f wd

i in distribution. Let

S(x; t) = P(X > x | T = t) (1)

represent the survivor function for a subject with onset at calendar time (τ∗− t).
Lemma 1 below allows us to transfer statements about independence between X
and T to statements about S(x; t).

Lemma 1. Let X and T represent a lifetime, and left-truncation time, respectively.
Then, X and T are independent if and only if S(x; t) = H(x); that is, the survivor
function is independent of the date of onset (equivalently, the truncation time).

Proof : X ⊥ T ⇔ S(x; t) = P(X > x|T = t) = P(X > x) = H(x) ∀ x, t > 0.

Before formally stating our main theorems, we introduce four assumptions.
These assumptions will be seen to be reasonable in many applications.

Assumption 1 (A1): P(Ci > Ti) = 1 for all i.

Assumption 2 (A2): For all i, the residual censoring times C∗i are independent
of both Y f wd

i and Y bwd
i .

Assumption 3 (A3): The incidence process is stationary.

Assumption 4 (A4): Let X(t) and X(t ′) be lifetimes from the survivor func-
tions S(x; t) and S(x; t ′), respectively, where 0 ≤ t ≤ t ′. Letting ≤st and ≥st

represent the stochastic orderings, then either, X(t) ≤st X(t ′) or X(t) ≥st

X(t ′), ∀ 0≤ t ≤ t ′.

3.1 Discussion of Assumptions
A1 ensures that there is no “pre-recruitment censoring”, a standard assump-
tion made in the literature. See, however, further discussion on this issue in
Section 8.
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A2 specifies that the forward recurrence times are randomly right censored
by their corresponding residual censoring times. It also specifies that residual
censoring is not influenced by the date of initiation for those that are part of
the prevalent cohort.

A3 ensures (in the presence of the other assumptions) that our methods are ap-
plicable to diseases such as multiple sclerosis and Alzheimer’s disease which
have roughly constant incidence rates over short time intervals - of length,
say, 20 years. Our methods would not be applicable to diseases whose inci-
dence rates change rapidly.

A4 allows survival only to possibly improve or worsen as a function of initi-
ation date. This might be the case, for example, following the introduction of
an effective treatment prior to recruitment. Fluctuations in survival - rare, in
any case - are not permitted.

4 Main theorems
Theorem 1 is concerned with the alternative hypothesis. It gives reasonable alter-
natives in terms of the survivor functions, S(x; t) and S(x; t ′), t < t ′ (see assumption
A4), which is equivalent to the stochastic ordering of the forward and backward re-
currence times. Theorem 2 gives two statements, (a) and (b), which are equivalent
to the null hypothesis, (c), of equality in distribution of the forward and backward
recurrence times. The hypothesis (c) is primarily of interest because it provides a
simple mechanism for testing the hypotheses (a) and (b). The stochastic ordering
of the forward and backward recurrence times is a natural alternative to the null
hypothesis (c) of Theorem 2. Together, Theorems 1 and 2 prepare the way for a
simple test of independence between the truncation time and the failure time.

Theorem 1. Under assumptions A1-A4 the following statements are true:

(a) S(x; t)< S(x; t ′) for t < t ′ and ∀x > 0⇔ S f wd(x)< Sbwd(x) ∀x > 0.

(b) S(x; t)> S(x; t ′) for t < t ′ and ∀x > 0⇔ S f wd(x)> Sbwd(x) ∀x > 0.

Proof. We prove (a). Part (b) is shown in a similar fashion. Letting D be a constant,
it is shown in Section 9.1, in the Appendix, that

S f wd(x) = D
∫

∞

0
S(u+ x;u)du

Sbwd(x) = D
∫

∞

0
S(u+ x;u+ x)du
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(⇒) If S(x; t) < S(x; t ′) ∀ t < t ′ and x > 0, then ∀ u > 0,x > 0, S(u+ x;u+ x) >
S(u+ x;u). Hence S f wd(x)< Sbwd(x).

(⇐)

S f wd(x)< Sbwd(x) (2)

is equivalent to
∫

∞

0 S(u+ x;u)du <
∫

∞

0 S(u+ x;u+ x)du and under A1-A4 the three
options for S(x; t) are that either,

S(x; t) is stochastically increasing in calendar time, or

S(x; t) is constant (= H(x)) in calendar time, or

S(x; t) is stochastically decreasing in calendar time.

Clearly (2) is satisfied only if S(x; t) is stochastically increasing.

Theorem 2. Under assumptions A1-A4, (a), (b), and (c) below are equivalent:

(a) Xi and Ti are independent ∀ i.

(b) S(x; t) = H(x) ∀ t ≥ 0 and ∀ x≥ 0.

(c) f f wd(x) = fbwd(x) ∀ x≥ 0.

Proof : See Section 9.2, in the Appendix.

5 Testing
The development thus far has been with the goal of testing for independence be-
tween lifetimes and truncation times. In view of Theorems 1 and 2, testing for
independence reduces to testing,

H0 : Y f wd =D Y bwd (3)

vs. Ha : Y f wd >st Y bwd (or Y f wd <st Y bwd),

under the assumptions A1-A4.
Since the components of each pair (Y bwd

i , Y f wd
i ) are conditionally depen-

dent given the lifetime, a distribution-free matched pairs test is suggested. But, the
allowance for the possible censoring of Y f wd

i prevents a straight application of the
Wilcoxon signed rank test. Wei [9] used the same scoring function as [10] and
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[11] to construct an asymptotically distribution-free test for the null hypothesis of
bivariate symmetry when the data are paired observations where both components
may be right-censored. Wei’s test is a modified two-sample Wilcoxon rank sum
test which makes use of both within pair, and between pair, comparisons [9]. Al-
ternative hypotheses considered in [9] include the class of alternatives induced by
stochastic ordering. We note that, although bivariate symmetry of a joint distribu-
tion function implies equality of the marginal distributions, the converse is not true
in general. When the pairs correspond to backward and forward recurrence times,
however, the two hypotheses are indeed equivalent [3], permitting the application
of Wei’s test to the problem of interest in the current paper. That is, in conjunction
with the characterizations provided by Theorems 1 and 2, one option to test inde-
pendence between lifetimes and truncation times, via the hypotheses in (3), would
be to carry out Wei’s test for censored, paired data [9].

Specifically, we proceed by defining a scoring function which is a natural
generalization of the Mann-Whitney scoring function to the right-censoring case, in
that it assigns non-zero values only to observed pairs where one member is known
to be larger than the other (there may be ambiguity about the ordering of the two
random variables in the presence of censoring). The scoring function, Ψ, is defined
for each of the n2 comparisons as follows:

Ψ(Y bwd
i ,Y obs

j ,δ j) = 1[Y bwd
i > Y obs

j ,δ j = 1] − 1[Y bwd
i < Y obs

j ] (4)

Let Wn = 1
n2 ∑

n
i=1 ∑

n
j=1 Ψ(Y bwd

i ,Y obs
j ,δ j). Under H0, Wei shows that, as n→ ∞,√

nWn converges to a Normal random variable with mean, 0, and variance, σ2, and
proposes an estimator, σ̂2, of σ2 [9]. An asymptotically nonparametric test com-
pares the observed absolute value of

√
nWn
σ̂

with the upper α-quantile of the standard
Normal distribution. Cheng [12] points out that the test in [9] is conservative. He
provides an alternative estimator of σ2 to address this drawback, but it is only ap-
propriate if the censoring distributions of the members of each pair are identical,
which is not the case in our setting. One might thus worry that Wei’s test has insuf-
ficient power to detect dependence between the lifetimes and the truncation times.

An alternative approach to the two sample problem presented in (3) is to use
a logrank test. Another possibility is to compare the distributions of the backward
and forward recurrence times through a Kolmogorov-Smirnov type statistic, based
on the two estimated survival functions. A straight application of either of these op-
tions is not possible, however, due to the within pair correlation that exists between
Y bwd

i and Y f wd
i . We address this issue by proceeding with a bootstrap technique

(described below) to obtain the null distribution of the logrank test statistic.
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Bootstrap Procedure:

1. Sample from the triplets, (Y bwd
i ,Y obs

i ,δi), with replacement to obtain a new
set of n triplets.

2. With the set of resampled triplets, find the nonparametric maximum likeli-
hood estimate of the length-biased distribution [13].

3. From the estimated length-biased distribution, generate n length-biased sur-
vival times. These are “pure” failure times, i.e. they are not subject to cen-
soring.

4. Generate pure backward and forward recurrence times by multiplying each
length-biased failure time from 3. by a uniform(0,1) random variable. This
ensures that the backward and forward recurrence times are generated under
H0.

5. Using the n resampled triples from 1. find the Kaplan-Meier estimate of the
residual censoring distribution by reversing the roles of the censored, and
exact, forward recurrence times. Generate n residual censoring times from
this Kaplan-Meier estimate.

6. Randomly match the n residual censoring times from 5. with the n pure for-
ward recurrence times from 4. and, in each case, record the usual censoring
indicator. Using the corresponding pure backward recurrence times from 4.,
form the n triples generated under H0.

7. From the triplets formed in 6. compute a logrank statistic based on the two
groups: backward recurrence time and (possibly censored) forward recur-
rence time.

8. Repeat steps 1. to 7. many times, recording the logrank statistics, to obtain a
bootstrap null distribution of this test statistic.

9. Obtain a bootstrap p-value by computing the observed logrank statistic from
the original data, (Y bwd

i ,Y obs
i ,δi), and finding the proportion of bootstrapped

statistics as large or larger than the observed statistic.

Our bootstrap procedure maintains the negative correlation between the
backward and forward recurrence times, conditional on the value of their sum.
Moreover, it preserves the censoring structure of no possibility of censoring of the
backward recurrence times, and possible right-censoring of the forward recurrence
times.

6 A power study
We carried out a power study of Wei’s test and our bootstrap procedure for detect-
ing whether survival depends on the date of onset. We generated onsets assuming
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stationarity, and a survival time for each onset, in the following fashion: if the onset
date was within x̃ of τ∗ (calendar time of recruitment), for some x̃, then the lifetime
was generated from the p.d.f. h1; otherwise, the lifetime was generated from the
p.d.f. h2, where h1 and h2 satisfy A4. Thus, we allowed survival to change at a sin-
gle point in time, (τ∗− x̃). The observed sample consisted of those lifetimes which
extended beyond τ∗.

6.1 Details of the simulations for Wei’s test
We investigated the power and size of Wei’s test using sample sizes of n = 500 and
n = 1000, and two h2’s: Weibull(γ=2, β2=10) and Lognormal(µ2=1.75, σ=0.4),
where the Weibull and Lognormal are parameterized as follows:

Weibull(γ,β ) :
γ

β
xγ−1e

−xγ

β 1[x > 0] and,

Lognormal(µ,σ) :
e
−(logx−µ)2

2σ2

√
2πσx

1[x > 0] .

In determining how survival changed at (τ∗− x̃), we investigated varying
degrees of improving and worsening survival. For both the Weibull and the Log-
normal cases, six choices of h1 were used: Weibull(γ=2, β1) and Lognormal(µ1,
σ=0.4), where β1 = 13.25, 15, 17, 7.25, 6, 5, and µ1 = 1.89, 1.95, 2.01, 1.59, 1.50,
1.39. The parameter values β1 = 13.25, 15, 17, and µ1 = 1.89, 1.95, 2.01, repre-
sent improvements in survival, and correspond, respectively, to approximately 15%,
22.5%, and 30% increases in mean survival after (τ∗− x̃). The parameter values β1
= 7.25, 6, 5, and µ1 = 1.59, 1.50, 1.39, represent declines in mean survival after
(τ∗− x̃) of approximately 15%, 22.5%, and 30%, respectively. We also investigated
the size of Wei’s test by setting h1 = h2.

We chose the residual censoring time distribution to be Exponential, and
such that approximately 25% or 35% of the forward recurrence times were cen-
sored. The value of x̃ determines how far from recruitment the change in survival
occurred. If x̃ is small it will be difficult to detect this change since few subjects
will be observed who experienced h1. Similarly, if x̃ is large it will be difficult to
detect the change in survival since few individuals who experienced h2 will survive
long enough to be observed. The mean of our choices for h2 were 2.80 (Weibull)
and 6.23 (Lognormal). We thus chose x̃ = 2 or 3, and x̃ = 5 or 7, for the Weibull and
Lognormal cases, respectively.
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The two sample sizes, two censoring percentages, seven choices of h1, and
two values of x̃ led to fifty-six distinct simulation scenarios for both the Weibull and
Lognormal distribution. For each, we recorded the number of two-sided rejections,
at the 5% level, in 200 replicates.

6.2 Details of the simulations for bootstrap procedure

We implemented a more limited power study for the bootstrap procedure presented
in Section 5, as it is considerably more time consuming to carry out. Of the scenar-
ios described in Section 6.1, we focused on the Weibull distribution, with x̃ = 2 and
n = 500. Fourteen simulation scenarios remained, and we recorded the number of
rejections, at the 5% level, in 50 replicates.

6.3 Results of the simulations

The rejection percentages are presented in Tables 1-4 for Wei’s test, and in Table 5
for our bootstrap procedure. The last column in each table is for the case of no
change in survival, that is, the Type 1 error percentages.

Table 1 illustrates that, when n= 1000, Wei’s test had good power except for
the smallest changes in survival (i.e. β1=13.25, β1=7.25). When n = 500, however,
only the largest decrease in survival was almost always detected. From Table 2,
we see that when n = 500, only the biggest changes in survival were adequately
detected, but increasing the sample size to n = 1000 substantially improved power.
Tables 3 and 4 display similar results. In Table 3, we see adequate power except for
the smallest changes in survival with n = 500. Table 4 shows that Wei’s test had
poor power against the smallest changes in survival (particularly when n = 500),
and generally inadequate power when n = 500. Finally, the size of Wei’s test was
considerably lower than the nominal 5%. This no doubt led to a loss in power as is
demonstrated by the superior power of our bootstrap logrank test which, based on
limited simulations, has a Type 1 error rate slightly larger than 5% (see Table 5).

β1 13.25 15 17 7.25 6 5 10
n = 500 , 25% censoring 17.5 36.5 63.5 29 74 91 0.5
n = 500 , 35% censoring 16.5 41 60.5 24 59.5 95.5 1
n = 1000 , 25% censoring 38 78 95 60 91.5 100 1
n = 1000 , 35% censoring 42 77.5 91.5 57 91 99.5 1

Table 1: Percentage of rejections for Weibull(γ=2, β2=10) with x̃ = 2 using Wei’s
test on 200 generated data sets.
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β1 13.25 15 17 7.25 6 5 10
n = 500 , 25% censoring 22 56.5 83.5 23.5 60.5 84.5 1
n = 500 , 35% censoring 21.5 52.5 77.5 23 52.5 82.5 1.5
n = 1000 , 25% censoring 49 91 99 52 94.5 99.5 1.5
n = 1000 , 35% censoring 46.5 82.5 98.5 45.5 85.5 97 1

Table 2: Percentage of rejections for Weibull(γ=2, β2=10) with x̃ = 3 using Wei’s
test on 200 generated data sets.

µ1 1.89 1.95 2.01 1.59 1.50 1.39 1.75
n = 500 , 25% censoring 30.5 78 92 34.5 75.5 99 2
n = 500 , 35% censoring 32.5 67.5 91 32.5 74.5 92 1

n = 1000 , 25% censoring 65.5 96 100 72 99 100 2
n = 1000 , 35% censoring 67 94.5 100 66 96 99.5 1

Table 3: Percentage of rejections for Lognormal(µ2=1.75, σ=0.4) with x̃ = 5 using
Wei’s test on 200 generated data sets.

µ1 1.89 1.95 2.01 1.59 1.50 1.39 1.75
n = 500 , 25% censoring 20 43.5 83.5 13 37.5 58 1
n = 500 , 35% censoring 20.5 50.5 75.5 13 33.5 50 1.5

n = 1000 , 25% censoring 45.5 85.5 99.5 38 69 90 2
n = 1000 , 35% censoring 43 82.5 99.5 33 59.5 83 1

Table 4: Percentage of rejections for Lognormal(µ2=1.75, σ=0.4) with x̃ = 7 using
Wei’s test on 200 generated data sets.

β1 13.25 15 17 7.25 6 5 10
n = 500 , 25% censoring 56 90 100 70 98 100 4
n = 500 , 35% censoring 60 86 98 66 94 100 10

Table 5: Percentage of rejections for Weibull(γ=2, β2=10) with x̃ = 2 using boot-
strap logrank procedure on 50 generated data sets.

7 The Canadian Study of Health and Aging (CSHA)
We briefly describe the CSHA and show how our approach may be used to test
whether the assumption of independence between onset date and survival time,
prior to 1991, was reasonable. This assumption was crucial in the analysis car-
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ried out by [2] and by [14], with the purpose of estimating survival with dementia,
from onset. Furthermore, the independence assumption is necessary in a general
nonparametric setting if one is to avoid model non-identifiability.

In 1991, a cohort consisting of 821 prevalent subjects with possible demen-
tia, probable dementia, or vascular dementia was identified (termed CSHA1). Their
onset dates were determined from their caregivers, and the cohort was followed un-
til 1996, termed CSHA2 (see [2] and [14]). The dates of death or censoring, along
with the dates of onset for all cohort members were used to estimate, nonparamet-
rically, survival from onset, of subjects with dementia. In [2], a robust product limit
estimator was used without the assumption of a stationary onset process, but with
the unverifiable assumption of independence between onset date and length of sur-
vival in the general left truncation setting. In [14], stationarity was assumed along
with independence between onset date and length of survival. In this paper, we
assume that the incidence rate of dementia remained roughly constant, say, twenty
years prior to 1991, and test the assumption of independence between onset date
and survival.

Using data obtained on the 821 subjects identified in CSHA1, that is, the
approximate dates of onset of dementia and the dates of death or censoring, we
present in Figure 1 the estimated backward and forward recurrence time distribu-
tions. Since the backward recurrence times are not censored, the non-parametric
maximum likelihood estimator (NPMLE) of the survivor function is the empirical
survivor function, whereas the NPMLE of the forward recurrence time survivor
function is a Kaplan-Meier estimator. The apparent periodicity in the backward
recurrence time empirical survivor function is due to the tendency of caregivers to
remember onset dates only to the nearest year.

Employing our bootstrap procedure, with 1000 bootstrap replicates, we ob-
tained the null distribution of the logrank test statistic from the dependent samples
shown in Figure 2. The observed value of the logrank test statistic was 1.66, and it
is also displayed in Figure 2 with a dashed vertical line. This yielded a bootstrap
p-value of 0.295, consistent with the null hypothesis in (3), or equivalently, with
independence between date of onset and survival.

The results of our bootstrap procedure are consistent with those obtained by
carrying out Wei’s [9] test, which yielded a test statistic of 0.98 (to be compared
with a standard Normal) and a two-sided p-value of 0.33. Thus, our data are con-
sistent with the hypothesis of non-changing survival for dementia patients in the
roughly 20 years prior to 1991.
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Figure 1: Estimated backward (dashed) and forward (solid) survival curves from
the CSHA data.

8 Concluding remarks
A universal assumption made in the analysis of survival data from a prevalent cohort
study with follow-up is that censoring can only occur after subjects are recruited
into the study. Assumption A1 is reasonable since only subjects under follow-up
can be lost to follow-up. Nevertheless, it is possible for a subject to leave the pop-
ulation after onset but before recruitment, for example, due to migration or death
from a competing risk. Interestingly, in these situations, the variable, C, which
after recruitment is a censoring variable, becomes a (random) truncating variable
before the recruitment date; those subjects who migrate after onset but before re-
cruitment cannot be part of the prevalent cohort. Should such an additional layer of
left-truncation occur, an analysis that is based on the stationarity assumption will
not be valid. Therefore, one may wish to test whether there is truncation induced by
C prior to recruitment. It is possible to show that, assuming stationarity and inde-
pendence between X and T , the hypotheses in (3) may be used to test if P(Ci > Ti)
= 1. This observation, along with results of the current paper, and that of [3], lead
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Figure 2: Null distribution using the bootstrap procedure described in Section 5,
with observed test statistic shown as a dashed vertical line.

to the following conclusion: Consider the three assumptions: (i) stationarity, (ii)
independence between X and T , and (iii) P(Ci > Ti) = 1. Fixing any two of these, it
is possible to test the third, using the hypotheses in (3), and the observable data.

Suppose that the change in the distribution of survival times could occur
only at a single point in time, so that subjects would experience different survival
depending on whether they had onset before, or after, the calendar time of this
change. In this case, Lemma 1 shows that the problem of testing for independence
between X and T may be viewed as a changepoint problem with a twist. We wish
to know whether a change has occurred in the survival time distribution before
recruitment, where the changepoint is unknown. The unusual feature is that, unlike
a classical changepoint problem, inference must be drawn from an incomplete set
of (possibly censored) survival times – the incompleteness being induced by the
left-truncation of X by T .
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9 Appendix

9.1 Proof of Theorem 1

First, we find expressions which are proportional to the p.d.f. of Y bwd
i and Y f wd

i ,
respectively, in Lemma 2 below.

Lemma 2. Under assumptions A1-A4 and ∀ x≥ 0, we have

1. fbwd(x) ∝
∫

∞

x f (x0;x)dx0

2. f f wd(x) ∝
∫

∞

x f (x0;x0− x)dx0,

where we define f (x; t) = f (x|T = t), the lifetime density given a left-truncation
time, T = t, i.e. onset at calendar time (τ∗− t).

Proof. Let the random variables X , T , and Y represent a lifetime, a left-truncation
time, and a left-truncated lifetime, respectively. The observed failure time p.d.f. is
given by,

fY (x) =
∫ x

0
fX ,T (x, t|X ≥ T )dt

=
∫ x

0

fX ,T (x, t)
P(X ≥ T )

dt

=

∫ x
0 f (x; t)g(t)dt

P(X ≥ T )

Also, the backwards recurrence time p.d.f., conditional on the observed lifetime
Y = x0, is given by,

fbwd(x|Y = x0) = g(x|Y = x0)

=
fX ,T (x0,x|X ≥ T )

fX(x0|X ≥ T )

=
1[x0 ≥ x] f (x0;x)g(x)∫ x0

0 f (x0; t)g(t)dt
.
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The backwards recurrence time p.d.f. is,

fbwd(x) =
∫

∞

x

[
f (x0;x)g(x)∫ x0

0 f (x0; t)g(t)dt

][∫ x0
0 f (x0; t)g(t)dt

P(X ≥ T )

]
dx0

=

∫
∞

x f (x0;x)g(x)dx0

P(X ≥ T )
.

Thus under stationarity we can write,

fbwd(x) ∝

∫
∞

x
f (x0;x)dx0 .

Since, f f wd(x|Y = x0) = fbwd(x0− x|Y = x0), we easily obtain the forward recur-
rence time p.d.f.:

f f wd(x) =

∫
∞

x f (x0;x0− x)g(x0− x)dx0

P(X ≥ T )

and under stationarity,

f f wd(x) ∝

∫
∞

x
f (x0;x0− x)dx0 .

The proof of Theorem 1 is given in the text. Lemma 3 is required for that proof.

Lemma 3. Under the usual conditions sufficient for the validity of Fubini’s Theo-
rem we have,

S f wd(x) = D
∫

∞

0
S(u+ x;u)du

Sbwd(x) = D
∫

∞

0
S(u+ x;u+ x)du

Proof. Under stationarity g(x) = g(x0− x) = C, a constant. Letting D = C
P(X≥T )

and from Lemma 2 we have,
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S f wd(x) = D
∫

∞

x

∫
∞

x∗
f (x0;x0− x∗)dx0dx∗

Sbwd(x) = D
∫

∞

x

∫
∞

x∗
f (x0;x∗)dx0dx∗

S f wd(x) = D
∫

∞

x

∫
∞

x∗
f (x0;x0− x∗)dx0dx∗

= D
∫

∞

x

∫
∞

0
f (x0 + x∗;x0)dx0dx∗

Using Fubini’s Theorem,

S f wd(x) = D
∫

∞

0

∫
∞

x
f (x0 + x∗;x0)dx∗dx0

= D
∫

∞

0

∫
∞

x0+x
f (x∗;x0)dx∗dx0

= D
∫

∞

0
S(x0 + x;x0)dx0

= D
∫

∞

0
S(u+ x;u)du

Sbwd(x) = D
∫

∞

x

∫
∞

x∗
f (x0;x∗)dx0dx∗

= D
∫

∞

x
S(x∗;x∗)dx∗

= D
∫

∞

0
S(x∗+ x;x∗+ x)dx∗

= D
∫

∞

0
S(u+ x;u+ x)du
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9.2 Proof of Theorem 2

(a)⇔ (b): See Lemma 1.

(b)⇒ (c): This follows immediately from Theorem 1 of [15].

It remains to establish that (c)⇒ (b):

Proof. f f wd(x) = fbwd(x) ∀ x≥ 0 implies that S f wd(x) = Sbwd(x) ∀ x≥ 0. But then
proceeding in a similar fashion as the proof of Theorem 1, it follows that S(x; t) =
S(x; t ′) ∀ t ≥ t ′ and x≥ 0, which implies that part (b) of Theorem 2 holds.
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