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Abstract
This paper presents a targeted minimum loss based estimator (TMLE) that incorporates known

conditional bounds on a continuous outcome. Subject matter knowledge regarding the bounds of
a continuous outcome within strata defined by a subset of covariates, X, translates into statistical
knowledge that constrains the model space of the true joint distribution of the data. In settings where
there is low Fisher Information in the data for estimating the desired parameter, as is common when
X is high dimensional relative to sample size, incorporating this domain knowledge can improve
the fit of the targeted outcome regression, thereby improving bias and variance of the parameter
estimate. We show that TMLE, a substitution estimator defined as a mapping from a density to
a (possibly d-dimensional) real number, readily incorporates this global knowledge, resulting in
improved finite sample performance.
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1 Introduction
We have previously described the improved performance of the targeted minimum
loss based estimator (TMLE) when known bounds on the observed data distribution
are incorporated into the estimation procedure (Gruber and van der Laan, 2010).
This paper extends that result to known bounds that are conditional on measured
covariates, and demonstrates there is potential for substantial gains in performance.
Subject matter knowledge regarding the bounds of the value of a continuous out-
come within strata defined by a subset of covariates, X , translates into statistical
knowledge that constrains the model space of the true joint distribution of the data
(for example, consider weight for children from birth to age 5, within strata defined
by age and gender). When there is sparsity in the data for estimating the desired
parameter (i.e., low Fisher Information), as commonly encountered when X is high
dimensional relative to sample size, incorporating this domain knowledge may im-
prove the fit of the outcome regression, benefitting precision and accuracy of the
estimated causal effect. This effect can be defined as a mapping, Ψ, that maps a
probability distribution into a (possibly d-dimensional) real number, Ψ(P) 7→ IRd .
TMLE is a double robust estimator that provides consistent parameter estimates
when an outcome regression model or censoring mechanism model is correctly
specified (van der Laan and Rubin, 2006, van der Laan and Rose, 2011). Because
TMLE is a substitution estimator designed to make a bias/variance tradeoff in the
estimate the relevant portion of the true distribution that is favorable with respect to
the parameter of interest, it can readily be made to exploit knowledge that constrains
the model space, M , of possible probability distributions.

The article is organized as follows. Section 2 provides an overview of
TMLE and summarizes previous work on incorporating global bounds in the esti-
mation procedure. Section 3 extends this work to present a TMLE that incorporates
conditional bounds, and introduces two functions of treatment (or exposure) and
covariates, a and b, that are known to bound the outcome. The use of conditional
bounds that can vary among observational units provides an opportunity to improve
accuracy and precision of parameter estimates beyond that achieved using global
bounds. Section 4 presents Monte Carlo simulations that compare performance of
two TMLEs in a point treatment setting, one relying on constant (global) bounds,
and the other that makes use of conditional bounds. When the range of outcome
values varies widely across strata defined by X , the use of conditional bounds is
shown to improve bias and variance. This improvement is most important under
misspecification of the outcome regression model, and has a marked effect on effi-
ciency when there is sparsity in the data. Section 5 presents a data analysis where
conditional bounds are not known, but are estimated using knowledge from external
sources in combination with the data. TMLEs incorporating estimated conditional
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and global bounds are applied to estimate the additive effect of smoking on forced
expiratory volume (FEV) in children using data from a publicly available dataset
(Rosner, 1999b). Incorporating conditional bounds improves the variance of the
estimator in comparison with using global bounds. The extension to incorporating
conditional bounds in the analysis of longitudinal data is described in the discussion
section concluding this article. R code for implementing this TMLE for estimating
a binary point treatment effect is provided in an appendix.

2 Boundedness of targeted minimum loss-based esti-
mators

TMLE is an efficient semi-parametric substitution estimator that can be used to
estimate any pathwise differentiable parameter at any density p in a class of semi-
parametric statistical models, M , given n i.i.d. observations O1, . . . ,On from an
underlying distribution (P0) belonging to M . The target parameter often only de-
pends on P0 through a relevant part Q0 = Q(P0) of P0, thus Ψ(P0) = Ψ(Q0). An
estimator of P0 optimized with respect to a global loss function may be suboptimal
with respect to the bias/variance trade-off for the desired parameter. TMLE attempts
to improve upon this trade-off by fluctuating the initial estimate of P0. This fluctu-
ation requires specifying a parametric submodel and loss function, L (Q)(O), that
is minimized at the truth: Q0 = argminQ∈Q E0L (Q)(O), where Q = {Q(P) : P ∈
M }. This parametric fluctuation Q0

ng(ε), possibly indexed by nuisance parameter
g0 = g(P0), so that

d
dε

L (Q0
ng(ε))(O)

∣∣∣∣
ε=0

= D∗(Q0
n,g)(O), (1)

where D∗(Q0,g0) is the canonical gradient/efficient influence curve of Ψ : M →
IR at P0. Recall that an estimator is efficient if and only if it is asymptotically
linear with influence curve equal to the efficient influence curve D∗(Q0,g0) (Bickel,
Klaassen, Ritov, and Wellner, 1997). The magnitude of the fluctuation is given by

εn = argmin
ε

n

∑
i=1

L (Q0
ngn

(ε))(Oi),

where gn is an estimator of the unknown nuisance parameter g0. This yields an
update Q1

n = Q0
ngn

(εn). This updating of an initial estimator Q0
n into a next Q1

n is it-
erated until convergence resulting in a final targeted estimate Q∗n. The magnitude of

2

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 21



the fluctuation at each iteration corresponds with the degree of residual confound-
ing. Since at the last step the amount of fluctuation εn ≈ 0, this final Q∗n will solve
the efficient influence curve estimating equation

0 =
n

∑
i=1

D∗(Q∗n,gn)(Oi),

representing a fundamental ingredient for establishing asymptotic efficiency of
Ψ(Q∗n). Finally, the targeted MLE of ψ0 is the substitution estimator Ψ(Q∗n).

Thus we see that the targeted MLE involves constructing a parametric model
Q0

n(ε) through the initial estimator Q0
n with parameter ε representing an amount

of fluctuation of the initial estimator, where the score of this fluctuation model at
ε = 0 equals the efficient influence curve. This local constraint on the behavior at
zero fluctuation can be satisfied by many parametric models. However, it is very
important that the fluctuations stay within the model for the observed data distri-
bution, even if the parameter can be defined on fluctuations that fall outside the
assumed observed data model. In particular, in the context of sparse data (i.e., lit-
tle information in the data for identifying the target parameter), a violation of this
property can heavily affect the performance of the estimator. We have previously
shown that estimator performance suffers when the fluctuation model is not guaran-
teed to stay within the specified observed data model, and defined a TMLE proce-
dure that incorporates constant global bounds on the outcome (Gruber and van der
Laan, 2010). However, these bounds can at times be overly conservative, and as we
demonstrate in the remainder of the paper, in finite samples incorporating less con-
servative bounds that are conditional on measured covariates can lead to improved
bias and variance and robustify the estimator against model misspecification.

3 A targeted minimum loss-based estimator that in-
corporates conditional bounds

We observe n i.i.d. copies of O = (W,A,Y ), where W is a vector of baseline co-
variates, A is a binary treatment or exposure indicator taking on the value 1 when
the subject is treated and 0 when the subject is untreated. Let P0 be its proba-
bility distribution. The likelihood of the data factorizes as P0(Y,A,W ) = P0(Y |
A,W )P0(A |W )P0(W ). In our notation QW (P0) is the marginal distribution of W
and QY (P0) is the conditional distribution of Y given A and W . Let g0 be the con-
ditional probability distribution of A, given W . Let X ≡ (W,A). We assume that
P0(Y ∈ [a(X),b(X)] | X) = 1 for known functions a(X),b(X) with a(X) ≤ b(X).
We also assume that g0 ∈ G for a set of possible conditional distributions G , where
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G could be nonparametric in which case nothing is assumed about g0. We make no
assumptions about the marginal distribution of W . Beyond the support-constraint
above, we make no further assumptions about the conditional distribution of Y ,
given A,W . This defines the statistical model M , i.e., the set of possible probabil-
ity distributions that is known to contain the true probability distribution P0.

Our statistical target parameter Ψ : M → IR is defined as

ψ0 = Ψ(P) = EP{EP(Y | A = 1,W )−EP(Y | A = 0,W )}.

Note that Ψ(P) only depends on P through the marginal distribution QW (P) of W
and the conditional mean Q̄(P) of Y , given A,W . Therefore, with abuse of notation,
we will also use the notation Ψ(Q) where Q = (QW , Q̄). This target parameter is
pathwise differentiable and its canonical gradient is given by

D∗(P)(O) = Hg(A,W )(Y − Q̄(A,W ))+ Q̄(1,W )− Q̄(0,W )−Ψ(Q),

where Hg(A,W ) = (2A− 1)/g0(A |W ). This canonical gradient is not affected by
the choice of model G for g0 and the global constraints defined by the functions a
and b.

We wish to construct a TMLE of ψ0, which will yield a substitution esti-
mator Ψ(Q∗n) with Q∗n = (QW,n, Q̄∗n) a targeted estimate of Q0 that fully respects the
statistical model. Firstly, we note that we can parameterize

E(Y | X) = (b(X)−a(X))E(Y # | X)+a(X), where Y # = Y−a(X)
b(X)−a(X) .

The parameter space of Q̄ = (b−a)Q̄# +a can thus be represented as follows:

{(b−a)Q̄# +a : Q̄#maps into(0,1)},

where we are suppressing the dependence of a and b on (A,W ). Y # and Q# are the
result of shifting and scaling operations designed so that Y # and Q# are constrained
to lie in (0,1).

The efficient influence curve can be represented accordingly as a function
of (QW , Q̄#,g):

D∗(Q,g)(O) = Hg(A,W )(b−a)(A,W )(Y #− Q̄#(A,W ))

+(b−a)(1,W )Q̄#(1,W )− (b−a)(0,W )Q̄#(0,W )−Ψ(Q)

≡ DY (g, Q̄#)+DW (Q),

where DY (g, Q̄#) = Hg(A,W )(b− a)(Y #− Q̄#(A,W )) is a score of the conditional
distribution of Y , given A,W , and DW (Q) is a score of marginal distribution of W .
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We define the following loss function for Q̄# = E(Y # | X):

−L (Q̄#)(O) = Y # log Q̄#(X)+(1−Y #) log(1− Q̄#(X)).

Indeed, this is a valid loss function for Q̄#
0:

Q̄#
0 = argmin

Q̄#
P0L (Q̄#),

where we used the notation P0 f ≡
∫

f (o)dP0(o). We can use LW (QW ) =− logQW
as loss-function for QW , which gives us the sum loss function L (Q) = L (Q̄#)+
LW (QW ) for Q = (QW , Q̄). As the least favorable fluctuation of Q̄# we use

LogitQ̄#(ε) = LogitQ̄# + εHg(b−a).

In our notation we suppressed the dependence of these fluctuation models on g.
As the least favorable fluctuation of QW we can use QW (ε) = (1+ εDW (Q))QW .
Indeed,

d
dε

L (Q̄#(ε))

∣∣∣∣
ε=0

= DY (Q,g)

d
dε

LW (QW (ε))

∣∣∣∣
ε=0

= DW (Q),

d
dε

L (Q(ε))

∣∣∣∣
ε=0

= D∗(Q,g).

The TMLE can now be defined as follows.
Let Q̄#,0

n be an initial estimator of Q̄#
0, which could be a loss-based learner

based on loss function L (Q̄#). Let QW,n be the empirical distribution of W1, . . . ,Wn.
Let gn be an estimator of g0. This defines the initial estimator Q0

n of Q0 and gn of
g0. Define

ε1n = argmin
ε

PnL (Q̄#,0
n (ε))

ε2n = argmin
ε

PnLW (QW,n(ε)),

or equivalently, define the two dimensional εn = argminε PnL (Q0
n(ε)).
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Note that ε2n = 0, since QW,n is an NPMLE. The TMLE of Q0 is now defined
by Q∗n = (QW,n, Q̄

#,∗
n = Q̄#,0

n (ε1n)), and, accordingly,

Q̄∗n(A,W ) = (b−a)(A,W )Q̄#,∗
n (A,W )+a(A,W ).

The TMLE of Ψ(Q0) is thus given by

Ψ(Q∗n) =
1
n

n

∑
i=1

{
(b−a)(1,Wi)Q̄#,∗

n (1,Wi)+a(1,Wi)
}

(2)

−1
n

n

∑
i=1

{
(b−a)(0,Wi)Q̄#,∗

n (0,Wi)+a(0,Wi)
}
.

If a(X) only depends on X through W , then a(1,Wi)−a(0,Wi) = 0 cancels out. By
definition of the loss and least favorable submodel, the TMLE solves PnDW (Q∗n) =
PnDY (Q̄∗n,gn) = 0, and thereby the efficient influence curve equation:

0 = PnD∗(Q∗n,gn).

This TMLE is robust since Q̄∗n(X) ∈ [a(X),b(X)] a.e.
Even if there are practical violations of the positivity assumption that P(A =

a|W ) > 0,∀a ∈ A, so that gn(1 |W ) is close to zero or 1, the TMLE update Q̄∗n is
guaranteed to fall between these two known functions a and b. Previously, we
already observed the enormous importance of constructing a TMLE that respects
fixed bounds a,b (Gruber and van der Laan, 2010), and thereby we can expect
that if these known bounds vary as a function of X , further gains in robustness
and finite sample efficiency can be achieved. For example, consider the case where
X = (A,W ), and a and b are increasing functions in W with steep slopes. Under near
violations of the positivity assumption, a TMLE that uses the actual functions (a,b)
would be more stable than a TMLE that used constant bounds am = minx a(x) and
bm = maxx b(x). In addition, consider the case where a(X) ≈ b(X) while bm− am
is large. In this setting X is very predictive of the range of Y , and exploiting this
knowledge should lead to a more precise estimator of Q̄0 in finite samples that
should improve efficiency and bias, even though the asymptotic efficiency is not
affected. Simulation studies presented in the next section demonstrate estimator
performance under these two type of scenarios.

4 Simulation studies
Monte Carlo simulations were carried out to compare the performance of two
TMLEs that differ only in the two methods used to enforce known constraints on
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the model space. The target parameter is the marginal average treatment effect
(ATE) discussed above, ψ0 = EP0{EP0(Y | A = 1,W )−EP0(Y | A = 0,W )}. Data
for the two studies are generated so that the measured continuous outcome falls be-
tween bounds (a(W ),b(W )), independent of treatment assignment. Estimates were
obtained for a TMLE that incorporates fixed bounds, (am,bm), into the estimation
procedure, and a second TMLE that incorporates conditional bounds (a(W ),b(W )),
with a and b known functions of W . Recall that TMLE requires initial estimates
(Q̄0

n(A,W ),gn(1,W )), and is consistent when either one of these is correctly spec-
ified. A correctly specified Q̄0

n(A,W ) implies that bounds are inherently respected,
so we would not expect to see much difference in the performance of these two
TMLEs in this case. However, when Q̄0

n(A,W ) is misspecified but gn(1,W ) is cor-
rect, bounding should make a difference in finite sample performance, particularly
when there is sparsity in the data. We use the term sparsity to refer to a lack of in-
formation in the data to identify the target parameter. Sparsity is signaled by large
variance in the empirical influence curve, and will occur when g0 is close to 0 or 1.
Under dual misspecification, enforcing the constraints imposed by the bounds also
places limits on an estimator’s bias and variance, but the effect this has on the bias
and variance of the parameter estimate will depend on the particular data generating
mechanism.

4.1 Simulation study 1

In the first example a and b are functions that have steep slopes such that (Q̄0(a,Wi)−
Q̄0(a,Wj)) is large relative to the dissimilarity in (Wi,Wj). In this context we would
expect that bounds set at values (am,bm) are overly broad, and that tighter bounds
conforming more closely to the underlying distribution of Y given W will yield es-
timates with lower mean squared error when at least one of Q̄0 and g0 is correctly
specified.

4.1.1 Data generation

Baseline covariates (W1,W2) were generated for 1000 datasets of size n = 1000. A
binary treatment indicator A was generated according to treatment mechanism g0
specified below. A two-step procedure was used to generate the observed outcome.
First a continuous variable, Y ∗ bounded by (0,1), was generated conditional on
(A,W1,W2). Next, the observed outcome Y was calculated as Y = Y ∗(bsteep(W )−
asteep(W )) + asteep(W ). This data generating procedure was carried out for two
choices of g0, to generate one collection of 1000 datasets where there is no sparsity
in the data, Onosp = (Ynosp,Anosp,W1,W2), and a corresponding collection of 1000
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datasets where there is sparsity in the data, Osp = (Ysp,Asp,W1,W2). Specifically,
we used the following data generating distributions:

W1 ∈ U(1,2)
W2 ∈ Bern(0.5)

asteep(W ) = 3W1

bsteep(W ) = 5W1 +
√

W1

g0,1 = P(Anosp = 1 |W ) = expit(−0.5+0.4W1 +1.75W2)

Y ∗nosp = (Anosp−0.7W1 +W2 + ε1 +4.6)/9
Ynosp = Y ∗nosp (bsteep(W1)−asteep(W1))+asteep(W1)

g0,2 = P(Asp = 1 |W ) = expit(1.5+0.4W1 +1.75W2)

Y ∗sp = (Asp−0.7W1 +W2 + ε1 +4.6)/9
Ysp = Y ∗sp (bsteep(W1)−asteep(W1))+asteep(W1)

with ε1 and ε2 ∼i.i.d. N(0,1). Anosp refers to the treatment indicator vector gener-
ated according to g0,1, and there are no positivity violations. Asp was generated
according to g0,2, leads to sparsity. Outlying values of Y ∗nosp and Y ∗sp that fell outside
(0,1) were truncated. The true parameter value is ψ0,1 = 0.4686.

4.1.2 Results

When Q0 is correctly specified both estimators perform well regardless of whether
g0 is correctly specified or misspecified as the intercept model (Table 1). As antic-
ipated, when there is sparsity and Q0 is misspecified as the unadjusted regression
of Y on A, the variance is much less when the conditional bounds (a(W ),b(W )) are
used instead of constant bounds (am,bm). The respecting of the conditional bounds
also reduced bias under dual misspecification.

4.2 Simulation study 2

The data generated for this study incorporates functions a and b that are steep, but
also approximately equal. Although (b(W )−a(W )) is small, these functions were
defined specifically to ensure that bm−am is large. In this case bm−am = 20.
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Table 1: Simulation 1 Empirical bias, variance, MSE of 1000 estimates for TMLEs
incorporating global or conditional bounds, n = 1000, ψ0,1 = 0.4686.

Global Bds Cond. Bds
bias var MSE bias var MSE

No sparsity
Q correct

g cor 0.0004 0.0015 0.0015 0.0004 0.0015 0.0015
g mis −0.0043 0.0012 0.0012 0.0001 0.0012 0.0012

Q misspecified
g cor 0.0013 0.0026 0.0026 0.0003 0.0015 0.0015
g mis 0.2949 0.0064 0.0933 0.1769 0.0013 0.0326

Sparsity
Q correct

g cor −0.0013 0.0074 0.0074 −0.0011 0.0075 0.0075
g mis −0.0113 0.0038 0.0039 −0.0008 0.0038 0.0038

Q misspecified
g cor 0.0025 0.0245 0.0245 −0.0035 0.0081 0.0081
g mis 0.2919 0.0252 0.1104 0.1600 0.0043 0.0299

4.2.1 Data generation

The data generation scheme from the first study was modified slightly by re-defining
a(W ) = 20W1 and b(W ) = 1+ 20W1. The other equations remain unchanged, and
estimates are again obtained for two collections of 1000 datasets, first where there
is no sparsity in the data, and second where there is sparsity in the data. Because
the observed outcome is on a different scale than in the first study, the marginal
additive treatment effect is also different, ψ0,2 = 0.0611.

4.2.2 Results

Both TMLEs perform equally well when Q0 is correctly specified, The use of con-
ditional bounds (a(W ),b(W )) greatly improves bias and variance when Q0 is mis-
specified as the unadjusted regression of Y on A, with and without sparsity in the
data (Table 2). Bias and variance are also greatly reduced when both Q0 and g0 are
misspecified (where the misspecified g is the intercept model) .
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Table 2: Simulation 2, Empirical bias, variance, MSE of 1000 estimates for TMLEs
incorporating global or conditional bounds, n = 1000, ψ0,2 = 0.0611.

Global Bds Cond. Bds
bias var MSE bias var MSE

No sparsity
Q correct

g cor 0.0501 0.0001 0.0026 0.0501 0.0001 0.0026
g mis 0.0500 0.0001 0.0026 0.0500 0.0001 0.0026

Q misspecified
g cor 0.0548 0.0261 0.0291 0.0501 0.0001 0.0026
g mis 0.6636 0.1397 0.5801 0.0919 0.0001 0.0085

Sparsity
Q correct

g cor 0.0496 0.0004 0.0029 0.0496 0.0004 0.0029
g mis 0.0498 0.0002 0.0027 0.0498 0.0002 0.0027

Q misspecified
g cor 0.0686 0.4561 0.4608 0.0495 0.0004 0.0029
g mis 0.7423 0.5920 1.1429 0.0880 0.0002 0.0080

5 FEV data analysis
TMLE was applied to assess the marginal additive effect of smoking on forced
expiratory volume (FEV) using data originally introduced in Rosner (1999b) and
discussed in Kahn (2005). The data consists of 654 observations with five variables
recorded for each subject: age (years), fev (liters), ht (height in inches, converted
to centimeters for these analyses), sex (0=female, 1=male), smoke (0=non smoker,
1=smoker) (Rosner, 1999a). FEV is a measure of pulmonary function that is related
to body size and lung capacity. Thus, the relationship between smoking and FEV
is likely to be confounded by age and sex, both of which influence FEV and are
associated with smoking status. Though height does not have an obvious link to
smoking behavior, accounting for covariates predictive of the outcome can improve
efficiency even if they are not confounders (van der Laan and Robins, 2003). The
data are from an observational study of children 3 -19 years old, but because no
children younger than nine years old smoked cigarettes we restrict the analysis to
the subset of data containing observations on subjects ages 9 - 19 (n = 439).
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Hankinson, Odencrantz, and Fedan (1999) constructed parametric regres-
sion models for predicting mean FEV values in children as a function of age, sex,
and height (ht). Their regression model is f ev = β0 +β1age+β2ht +β3ht2, with
coefficients fit separately among boys and girls. The coefficient values they report
are:

girls : β0 =−0.8710, β1 = 0.06537, β2 = 0, β3 = 0.00011496,
boys : β0 =−0.74453, β1 =−0.04106, β2 = 0.004477, β3 = 0.00014098.

These formulas allowed us to estimate subject-specific conditional bounds (a(W ),
b(W )) as 3 standard deviations (SD) above and below the predicted mean value for
each subject. The SD was estimated as the square root of the MSE of the residuals
from the linear regression, ŜD = 0.443. When the conditional bounds were set
to E( f ev | age,sex,ht)± 3SD no measured FEV values in the dataset fell outside
these bounds, however the procedure does not ensure that this will be the case.
It is important to construct estimated bounds that do not contradict the data. For
example, because FEV must be a positive number, any value for a(W ) less than
0 can be reset to 0, or perhaps to the smallest calculated non-zero value of a(W ).
Figure 1 shows the recorded FEV values for each subject in the dataset, sorted by
FEV value. The red dots are the upper and lower conditional bounds, and the blue
dotted lines show the global bounds.

0 100 200 300 400

1
2

3
4

5
6

Observed FEV in Children (9 - 19 yrs)
 with estimated conditional and global bounds

Subject

FE
V

Figure 1: Measured FEV values for each subject. Red dots are subject-specific
estimated upper and lower conditional bounds. Blue dotted lines show the estimated
global bounds.

We obtained three separate estimates of the target parameter: 1) the untar-
geted G-computation estimate based on the initial fit Q0

n from the specified para-
metric regression model (Robins, 1986) , 2) a TMLE incorporating constant global
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bounds that were set to the minimum and maximum values of the conditional
bounds, (a = am,b = bm), and 3) a second TMLE that incorporates conditional
bounds a(X) and b(X). The variance of these estimates was estimated as the vari-
ance of 1000 bootstrap samples.

The first step of the TMLE procedure that incorporates global bounds was
to obtain an initial fit Q̄#0

n = E(Y # | A,W ) by performing a linear regression of Y # =
(Y −am)/(bm−am) on A and W . An initial estimate of g0 was used to construct the
covariate Hg = (2A−1)/g(A|W ) to fluctuate this initial estimate on the logit scale:

logit(Q̄#∗
n ) = logit(Q̄#0

n )+ εHg(bm−am).

ε was estimated by fitting a logistic regression of Y # on Hg(bm− am) with offset
logit(Q̄#0

n ). The ATE parameter is evaluated as in Eq.(2) above. The procedure for
incorporating conditional bounds is identical, except for substituting a(X) for am
and b(X) for bm.

We ran these analyses using two different regression models for estimating
Q̄0. The first adds the treatment indicator to the model constructed by Hankinson
et. al., a regression of fev on binary smoking indicator A = smoke, age, sex age2,
and ht2. The second is an unadjusted regression of fev on A, presumably a biased
estimator due to confounding. Bias reduction depends upon consistent estimation
of g0. We used the DSA algorithm to select a regression model for estimating
P(A = 1 | sex,ht,age). DSA is a deletion-substitution-addition algorithm for model
selection over a space of polynomials (Sinisi and van der Laan, 2004, Neugebauer
and Bullard, 2010). For this analysis DSA was used to search over a space of
polynomials of order 3, over models that included up to 10 terms. The selected
model included the covariates sex, age, ht, ht2, ht3, age3.

5.1 Results

Table 3 lists the additive treatment effect estimates and bootstrapped variance es-
timates for each estimator. Results in the row labelled Q̄H were based on the re-
gression model of Hankinson, et. al. Though the truth is not known, the agreement
between the point estimates suggests that smoking decreases FEV. Targeting the
initial estimate had a small effect on bias, and greatly increased the variance, how-
ever the variance of the TMLE that used conditional bounds is much smaller than
that of the TMLE incorporating global bounds.

Next consider the results when the outcome regression model is severely
misspecified as the unadjusted regression of fev on A. The unadjusted estimate of
0.3 is quite large, and presumably in the wrong direction, yet the variance is small.
TMLE using global bounds greatly reduced the bias at a cost of increased variance,
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Table 3: Targeted and untargeted estimates of the marginal additive effect of smok-
ing on FEV. Results labelled Q̄H were based on the regression model of Hankinson
et. al., those labelled Q̄unad j are based on the unadjusted regression of fev on treat-
ment. Variance estimates were obtained from 1000 bootstrap samples.

Untargeted Global Bds Cond. Bds
Est Var Est Var Est Var

Q̄H −0.156 0.007 −0.157 0.102 −0.123 0.024
Q̄unad j 0.304 0.011 0.030 0.049 −0.105 0.024

and the point estimate is still positive. TMLE using conditional bounds achieved
greater bias reduction while paying a smaller price in variance.

These results highlight the problems that can arise from model misspecifi-
cation, and illustrate the benefits of double-robust estimation in practice in finite
samples. Smoking is rare in the data. Only 15% of subjects smoke, and among
children 9-10 years old (40% of subjects), the smoking rate is only 3.6%. This
lack of experimentation in the data is the kind of sparsity that poses a challenging
estimation problem. When there is little direct evidence in the data, the untargeted
estimator relies heavily on extrapolation, and its low variance masks the underlying
lack of information. The quality of the fit of the initial estimate of Q̄0 had little
effect on the variance of the untargeted parametric model-based estimator, however
the nominal 95% confidence interval centered around the biased estimate based
on Q̄0

n,unad j is (0.10, 0.51), and almost certainly fails to include the true parameter
value. The higher variance of the TMLEs reflects the true uncertainty inherent in
the data. The use of conditional bounds was shown to improve performance over
the use of global bounds.

6 Discussion
Ensuring that an estimated conditional mean outcome remains within the parameter
space implicitly bounds the estimate of any parameter that is a function of condi-
tional means, such as the average additive treatment effect, odds ratio, and risk ratio.
We demonstrated that a TMLE that respects conditional bounds on the outcome is
easily constructed by incorporating these bounds into the initial estimator and in
the clever covariate used to fluctuate the initial estimate of the conditional mean
outcome (re-scaled to lie between 0 and 1). The simulation studies used a binary
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point treatment example to illustrate how this TMLE can be applied in practice, and
demonstrated the potential for performance gains in finite samples. If the bounds
are unknown, but are known to only depend on a discrete covariate, then one could
estimate the bounds empirically. Since estimates of a minimum and maximum of a
support converge at a rate faster than 1/

√
n, the resulting estimator would asymp-

totically behave as if the bounds were known. Estimating unknown functions of
continuous covariates is a harder problem, and might contribute to uncertainty. In
our earlier article (Gruber and van der Laan, 2010) we demonstrated that the TMLE
using estimated constant bounds indeed performed well in practice. Though we
don’t know the truth in the FEV data analysis, results indicate that when Q̄0 is esti-
mated well little residual bias remains, and all estimators perform well. When the
initial Q̄0

n is misspecified, as is generally the case when analyzing finite samples,
the double-robustness of TMLE provides the opportunity to reduce the bias, and
depending upon the rate at which Q̄0

n converges to the truth, may reduce variance as
well.

We expect this feature will prove valuable in estimating causal effects in a
longitudinal setting, where sparsity is often an issue. Consider a longitudinal data
structure O = (L(0),A(0), . . . ,L(K),A(K),Y = L(K +1)), where L(0) are baseline
covariates, A(t) denotes an exposure or treatment at time t, L(t) denotes covariates
measured between two subsequent treatments A(t− 1) and A(t), and Y is the final
outcome measured after the final treatment. Estimating the effect of a treatment
regime over time requires that there be experimentation within strata defined by the
entire time-dependent and baseline covariate history, a requirement that becomes
increasingly unlikely as a rich covariate history accumulates over time. Stitelman,
Gruttola, and van der Laan (2011) present a TMLE for estimating the causal effect
of treatment on survival in longitudinal data. van der Laan and Gruber (2012) de-
scribe an alternate longitudinal TMLE that builds upon an estimator described by
Bang and Robins (2005) that iteratively estimates a sequence of conditional expec-
tations in order to estimate the mean outcome under a particular treatment regime
a(0), . . .a(K). If it is known that, conditional on L̄(k− 1), Ā(k− 1), L(k) falls be-
tween two known values (i.e., functions of L̄(k−1), Ā(k−1)) with probability one,
then this knowledge can be incorporated in the initial estimators and fluctuations of
these TMLEs, analoguously to the method presented here. One may expect that in-
corporating known bounds is even more important for estimation with longitudinal
data, so that significant gains might be achieved.
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Appendix
The R function tmle bd implements a TMLE for estimating the marginal additive
treatment effect that incorporates either conditional or global bounds on a contin-
uous outcome. Required arguments are Y , a vector of continuous outcomes, A, a
binary treatment vector, W , a matrix of baseline covariates, a, a constant or a vector
of conditional lower bound values, b, a constant or a vector of conditional upper
bound values, g f orm, a regression formula used to estimate the regression of treat-
ment A on covariates W , and Q f orm, a regression formula used to estimate the
initial regression of Y # on A and W .

tmle_bd <- function(Y, A, W, a, b, gform, Qform, family = "gaussian"){

Y.hash <- (Y - a)/(b - a)

m <- glm(Qform, data = data.frame(Y = Y.hash, A, W), family = family)

Qinit <- cbind(QAW = predict(m, type = "response"),

Q1W = predict(m, newdata = data.frame(A = 1, W), type = "response"),

Q0W = predict(m, newdata = data.frame(A = 0, W), type = "response"))

logitQ <- qlogis(bound(Qinit, c(0.001, 0.999)))

g <- glm(gform, data = data.frame(A, W), family = binomial)

g1W <- predict(g, type = "response")

h <- (b - a) * (A/g1W - (1 - A)/(1 - g1W))

eps <- coef(glm(Y.hash ~ -1 + offset(logitQ[ ,"QAW"]) + h,

family = "quasibinomial"))

Q.hash <- plogis(logitQ + eps*cbind(h, (b - a)/g1W, -(b - a)/(1 - g1W)))

return(mean((b-a) * (Q.hash[ ,"Q1W"] - Q.hash[ ,"Q0W"])))

}

bound <- function(x, bounds){

x[x < min(bounds)] <- min(bounds)

x[x > max(bounds)] <- max(bounds)

return(x)

}
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