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Abstract
Age-period-cohort models provide a useful method for modeling incidence and mortality

rates. There is great interest in estimating the rates of disease at given future time-points in order
that plans can be made for the provision of the required future services. In the setting of using
age-period-cohort models incorporating restricted cubic splines, a new technique for projecting
incidence is proposed. The new technique projects the period and cohort terms linearly from 10
years within the range of the available data in order to give projections that are based on recent
trends. The method is validated via a comparison with existing methods in the setting of Finnish
cancer registry data. The reasons for the improvements seen for the newly proposed method are
twofold. Firstly, improvements are seen due to the finer splitting of the timescale to give a more
continuous estimate of the incidence rate. Secondly, the new method uses more recent trends to
dictate the future projections than previously proposed methods.
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1 Introduction

Incidence data of the type collected by cancer registries must be projected
appropriately if we are to obtain an accurate estimate of the future burden of
cancer. This is usually achieved by using Age-Period-Cohort (APC) models
that represent the incidence of disease as a product of three components, one
based on current age, one on the current time period and the other on the
cohort or year of birth (Carstensen (2007)). Unfortunately, the use of these
models is not straightforward as they suffer from an identifiability problem
due to the linear relationship between age, period and cohort (Holford (1983)).
Here we investigate the use of restricted cubic splines for the three terms in the
model and show how the fact that restricted cubic splines are linear beyond
the final knot can be used to provide good projections of cancer incidence.

Cancer incidence is usually reported in five-year intervals of age and
period and consequently it is common practice to fit the age, period and co-
hort terms in an APC as factors (Zheng et al. (1992), Bergstrom et al. (1996),
Gordon et al. (2011), Lee et al. (2011)). However, it has been shown that by
using methods of smoothing, such as splines (Durrelman and Simon (1989)),
it is possible to model the age, period and cohort terms as varying continu-
ously and so to obtain better fitting models (Carstensen (2007), Heuer (1997),
Clements et al. (2005), Holford et al. (2006), Mistry et al. (2011)). Despite
this, the use of factors is still wide-spread in applied research.

Many methods have been proposed for making projections from APC
models (Knorr-Held and Rainer (2001), Clements et al. (2005), Bray and
Møller (2006)) and a large number of them have been used in applied studies
(Bray et al. (2001), Rostgaard et al. (2001), Cleries et al. (2009), Lee et al.
(2011), Mistry et al. (2011)). Møller et al. (2003) compared fifteen of these
methods using data from the Nordic countries. They found that multiplica-
tive APC models tend to over-estimate future incidence and they observed that
linear projections need to be tempered or dampened when making long-term
prediction. Accordingly they advocated the use of an APC with a power link
function together with a linear combination of age, period and cohort terms.

We apply our method based on restricted cubic splines to data from the
Finnish Cancer registry on four of the most common types of cancer (breast,
lung, colon and pancreas). In particular we investigate the quality of the
projections and compare them with those obtained by more standard methods.
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2 Description of the Data

The data used in the illustrations is taken from the Finnish Cancer register.
Lung, colon and pancreatic cancer were analysed separately for males and for
females, while breast cancer is analysed only in females. The incidence data
have been restricted to the population aged between 20 years and 80 years
and cover the period between 1957 and the end of 2007. In order to assess
the quality of the projections, the models were fitted to data from the early
years and the resulting projections were compared with the actual data for the
later years. Thus to assess the quality of 20 year predictions the model was
fitted to data from 1957 to 1987 and the projections were compared with the
remaining data.

Cancer incidence is based on a combination of number of cases reported
by the cancer registry and data on the corresponding population size taken
from Statistics Finland (2012). In practice estimates of the future number
of cases of cancer need to project both the incidence and the population size.
However, since our examples project over a past period we are able to use exact
population sizes for both the fitting of the model and the period of projection
and so concentrate on the accuracy of the APC model.

The Finnish registry reports data that can be categorised into one year
age groups and one year periods. These can be thought of as placing a rect-
angular grid over the Lexis diagram that traces an individual’s history in age
and time. Carstensen (2007) has shown how accurate cohort information can
be derived from grouped data by dividing this grid into triangles based on an
approach suggested by Sverdrup (1967) and we use this method in all of our
examples.

3 Background

3.1 Age-period-cohort models

If the true incidence of disease for people of age a in period p is ln {λ(a, p)},
then the usual multiplicative APC model can be written using a log-link as:

ln {λ(a, p)} = f(a) + g(p) + h(c), (1)

where c = p− a represents the cohort and f , g and h are functions chosen to
represent the pattern in the data.

To overcome the problem of non-identifiability, constraints must be
placed on the functions, f , g and h. The most common way of doing this is
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to place the constraints on the period and cohort terms after first extracting a
linear term that is referred to as drift. We adopt this approach and will often
express the drift as part of the period term. Carstensen (2007) provides a full
discussion of this and other possible parameterisations.

The required constraints are applied by detrending the period and co-
hort functions, where the detrended functions will be denoted by g̃(p) and h̃(c)
respectively. In practice, obtaining the detrended functions that are 0 on av-
erage and have no overall trend is achieved by projecting the relevant columns
of the design matrix onto the orthogonal complement of the space spanned by
the constant and linear term (Holford (1983), Carstensen (2007)). Carstensen
(2007) shows that the drift depends on the way in which orthogonality is de-
fined and highlights the difference between using the usual inner product, and
an inner product with a defined weight. For the analyses conducted in this
paper, the drift is extracted using weights that are proportional to the number
of cases for each combination of age, period and cohort.

If both the cohort and period effects are detrended it is possible to fully
extract the drift term (δ) as a separate parameter and to write the model in
either of the forms:

ln {λ(a, p)} = fp(a) + δp+ g̃(p) + h̃(c)

= fc(a) + δc+ g̃(p) + h̃(c),
(2)

where fp(a) and fc(a) vary depending on whether the age-specific rates are
given relative to period or cohort. Given that c = p− a it follows that:

fp(a) = fc(a)− δa (3)

where g̃ and h̃ are the same under either parameterisation.

3.2 Using Restricted Cubic Splines in an APC setting

Factor models assign different levels to each grouped age, period and cohort in
equation (1) but an alternative is to use smoothing functions, such as splines.
A spline is a collection of piecewise polynomials joined at a pre-defined num-
ber of points; known as the knots. The first and last of these points are often
referred to as the boundary knots. A spline is constrained in order to pro-
duce a smooth overall curve. The function that is fitted is forced to have
continuous 0th, 1st, and 2nd derivatives; that is, the fitted curve is C2 continu-
ous. Restricted splines impose the further condition that at, and beyond, the
boundary knots the fitted function is linear.
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Restricted cubic splines refer to restricted splines that use cubic poly-
nomials between the knots. They have been used in many forms of regression
analysis (Durrelman and Simon (1989)). Cubic polynomials offer sufficient
flexibility to capture the shape of most data, provided that appropriate knots
are chosen. A restricted cubic spline function can be written in terms of K−1
basis functions, where K is the number of knots. The degrees of freedom for
the spline function is therefore K−1. For knots k1, . . . , kK , the spline function
S(x) of a given covariate x can be written as:

S(x) = γ0 +
K−1∑
i=1

γiBi(x), (4)

where B1(x) = x and, for i = 2, . . . , K − 1

Bi(x) = (x− ki)3+ − αi(x− k1)3+ − (1− αi)(x− kK)3+ (5)

where (x − ki)3+ is equal to (x − ki)3 if the value is positive and 0 otherwise.
The α values are defined as:

αi =
kK − ki
kK − k1

. (6)

To avoid high levels of correlation between the basis vectors, it is usual
to orthoganalise the spline basis; here we use Gram-Schmidt orthogonalization
(Golub and van Loan (1996)) and place the knots at the quantiles of the data.
The quantiles are defined by placing the knots equally according to the number
of events. We use restricted cubic splines for each of the three components of
the age-period-cohort models and to ensure identifiability the spline functions
are constrained by extracting the linear trend (the drift) from the period and
cohort terms, which effectively fixes the slope of both curves. In plots this
linear drift is shown as part of the period effect.

4 Description of Methods

4.1 “Spline Drift” Projection

One option for providing projections of cancer incidence from the model de-
fined in equation (2) is to project forward the overall drift parameter, δ, in
order to provide future estimates of cancer incidence. This drift parameter
is defined by the overall linear trend over the entire follow-up for the range
of observed data. This method is advocated by Møller et al. (2003) as the
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simplest method of using the Age-Period-Cohort models to provide a linear
prediction into the future. The future non-linear period and cohort terms are
set equal to the last estimated effect in the range of the data and the future
age effects are assumed to be the same as those estimated from the existing
data. These terms can then be combined to give unique estimates of the fu-
ture cancer incidence. The estimate of the linear drift is equivalent under any
given parameterisation (Holford (1983)) and consequently the future incidence
estimates are invariant under the choice of parameterisation (see Section 4.3).

4.2 “Spline Restriction” Projection

When g and h in equation (1) are modelled by restricted cubic splines the
functions are forced to be linear beyond the final knot. This constraint can
be used to project the two functions so as to provide model-based projections
of incidence. In this case the linear extension of the period and cohort effects
for projection will be determined by the latter part of the observed data. The
model fitted to the available data is the same as that derived for the standard
drift projection approach (as detailed in equation (2)), with an equivalent
estimate of the overall drift parameter.

In order to make the projection less dependent on a local trend at the
end of the observed data, the final boundary knot can be moved within the
range of the observed data to enforce a linear trend to occur from an earlier
point in time. In the analyses carried out in this paper we will bring the
boundary knot for period and cohort 10 years from the end of the observed
data (shown by the dashed vertical lines in Figure 1). The remaining knots
are placed at equally-spaced quantiles of the number of events across both
period and cohort with the shortened range. For example, for the observed
values for the period term (1953-1987), the boundary knot for the restriction
model would be placed at 1977 and the knots would then be equally spaced
across the range 1953-1977. Figure 1 highlights how the linear constraint can
then be used to project the cohort and period terms into the future to provide
future estimates of cancer incidence. In Figure 1, the drift term has been
included with the period term, which forces the age-effects to have a cross-
sectional intepretation. Equivalent projections are obtained if the drift term is
allocated instead to the cohort term; these two parameterisations can be seen
in equation (2). Allocating the drift to the cohort term will mean that the
effect of age should be interpreted longitudinally relative to a reference cohort
point.
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Figure 1: Example of the graphical representation of the age-period-cohort
model using restricted cubic splines. The data used are for the incidence of
Finnish colon cancer for males. The drift term is attributed to the period
curve, and the age curves are the fitted rates in the reference period (1980 -
indicated by the hollow circle).

4.3 Projection Invariance

It is vital that any projection estimate provides unique estimates of future
cancer incidence irrespective of the chosen parameterisation of the model. In
order for the projections to be unique, the projection technique must provide
equivalent projections when an arbitrary linear trend is assigned to any of the
given terms. This is satisfied if the future period and cohort terms are linear
extensions of the fitted functions (Osmond (1985)).

Consider the “spline drift” method described in Section 4.1 applied to
a future year p∗ and a given value of age, a∗. Let pmax be the maximum
observed value for period and amin be the youngest observed age, then we
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have cmax = pmax − amin as the maximum observed value for cohort. If we
have p∗ − a∗(= c∗) > cmax then it is necessary to consider the projection of
both g and h in order to evaluate the value of ln {λ(a∗, p∗)}. For the future
projections the functions g̃ and h̃ are evaluated at the last observed value, and
the drift term is used to project forward to the future period:

ln {λ(a∗, p∗)} = fp(a
∗) + δp∗ + g̃(pmax) + h̃ (pmax − amin) . (7)

The fact that the drift term can be allocated to the function g̃ to give g simply
involves a projection that is then of a slope δ from g(pmax) (similarly for the
reallocation of the drift to the function h̃). Therefore, we have invariance
under a reallocation of a linear component.

Alternatively, if p∗ − a∗ < cmax then the cohort term can be evaluated
from within the range of the data and the projection will instead be given by:

ln {λ(a∗, p∗)} = fp(a
∗) + δp∗ + g̃(pmax) + h̃(p∗ − a∗). (8)

Using a similar argument to the one given above, the generalisation to other
ages which do not involve a projection of h also follows.

To satisfy the property of invariance under projection for the spline
restriction approach (Section 4.2), it is again sufficient to show that the pro-
jection of the functions would be equivalent under a reallocation of a linear
component. Similarly to the justification for the spline drift approach, consider
a future year p∗ and a given age a∗. In the case where we have p∗ − a∗ > cmax

for the spline restriction approach, we can write the projected estimate as:

ln {λ(a∗, p∗)} = fp(a
∗)

+ δp∗ +
(
g̃(pmax) + β1(p

∗)
)

+
(
h̃(cmax) + β2(p

∗ − a∗)
) (9)

where, β1 is the linear slope of the spline term for period beyond the boundary
knot at pmax (or pmax − 10 if the boundary knot is moved 10 years within the
range of the data) and β2 is the linear slope of the spline term for cohort beyond
the boundary knot at cmax (or cmax− 10). For the future projection at (a∗, p∗)
the functions g̃ and h̃ are evaluated at the last observed value and the linear
function of the two spline terms are projected forward. The fact that the drift
term can be allocated to the function g̃ to give g simply involves a projection
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that is then of a slope δ+β1 from g(pmax), similarly for the reallocation of the
drift to the function h̃. Therefore, we have:

ln {λ(a∗, p∗)} = fp(a
∗)

+ δp∗ +
(
g̃(pmax) + β1p

∗)
+
(
h̃(cmax) + β2(p

∗ − a∗)
)

= fp(a
∗)

+
(
g(pmax) + (δ + β1)p

∗)
+
(
h̃(cmax) + β2(p

∗ − a∗)
)

using equation (3)

= fc(a
∗)

+
(
g̃(pmax) + β1p

∗)
+
(
h(cmax) + (δ + β2)(p

∗ − a∗)
)
,

(10)

and consequently invariance under a reallocation of a linear component. For
the case where p∗−a∗ < cmax a similar argument can be undertaken, and there
is no need to project the cohort term in this case.

4.4 Altering the Link Function

The standard link function used for age-period-cohort models is the log, how-
ever Engeland et al. (1993) suggested that the exponential growth that this
introduces for the projections leads to an overestimation in the projected inci-
dence, particularly for long-term follow-up. Consequently, the authors propose
a power link function (with a power of 1

5
) to dampen the exponential growth.

The selection of 1
5

has been evaluated empirically using Nordic data (Engeland
et al. (1993), Møller et al. (2003)).

The model with the alternative link function can be written as;

{λ(a, p)}
1
5 = f(a) + g(p) + h(c), (11)

and this link can be used in conjunction with either of the projection methods
outlined above.

4.5 Comparison of Projection Methods

The spline drift and spline restriction method of projection were used in combi-
nation with both the log and the power link functions. All of the analyses were
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carried out using a user-written command (Rutherford, Lambert, and Thomp-
son (2010)) for the statistical software package, Stata (StataCorp. 2011. Stata
Statistical Software: Release 12. College Station, TX: StataCorp LP (2011)).
The program extracts the drift term and fits the model as a generalised lin-
ear model (GLM) with an appropriate offset and a Poisson error structure.
Both the log link and power link function are applied to the GLM in the
comparisons. We used 8 degrees of freedom (7 internal knots, 9 knots over-
all) for the age and cohort spline terms and 5 degrees of freedom (4 internal
knots, 6 including the boundary knots) for the period spline term for each of
the modelling approaches. The knots were placed at equal quantiles for the
number of events across the relevant variables and at equal quantiles over a
restricted range (for period and cohort) for the spline restriction approach.
The sensitivity to the selection of knots is investigated in Section 5.5.1.

Long (15-20 years into the future) and short-term (5-10 years into the
future) predictions are compared for each of the methods using a similar ap-
proach to that undertaken by Møller et al. (2003) when analysing data from
the Nordic countries. The analysis was conducted for all ages combined,
and the comparison was based on the absolute value of the total relative
difference between the total observed and total predicted number of cases,
(|observed− predicted| ∗ 100%/observed). Møller et al. (2003) compared the
total number of predicted cases over a five-year period to the total number of
observed cases over the same period. This tends to mask the benefit of spline
approaches that give smoothed estimates for each year. Consequently, we used
the same measure of relative difference, but average it over each single year of
the prediction window.

Long term projections were made over the period 2003-2007 using ob-
served rates up to the end of 1987. Two different short term estimates were
calculated for the data; one for the period 1993-1997 for the observed data
until the end of 1987, and the other for the period 2003-2007 for observed
data up to the end of 1997. The comparison of the two short-term predictions
allows for an assessment of the consistency of the estimation approaches over
time.

5 Application

5.1 Short-term Projections

Table 1 A) shows the comparison of the different methods in terms of the
average absolute value of the total relative difference for each of the cancer
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Table 1: A) Observed data until the end of 1987; 10 year prediction for the
period 1993-1997. The values are the average yearly absolute relative difference
(%) between the observed and predicted number of cases for all ages combined.
B) Observed data until the end of 1997; 10 year prediction for the period 2003-
2007.

(A)

Link Function Log Power
Cancer Site Restriction Drift Restriction Drift

Breast (Females) 5.66 2.36 9.93 8.91
Colon (Males) 12.20 4.97 5.64 3.50

Colon (Females) 11.26 13.70 4.05 5.59
Lung (Males) 6.46 14.60 12.29 21.26

Lung (Females) 9.56 7.48 4.62 2.91
Pancreas (Males) 6.23 14.74 6.73 14.80

Pancreas (Females) 5.44 15.27 3.51 11.17
Mean 8.12 10.44 6.68 9.73

(B)

Link Function Log Power
Cancer Site Restriction Drift Restriction Drift

Breast (Females) 8.75 2.60 4.61 4.12
Colon (Males) 5.25 8.43 4.68 4.39

Colon (Females) 8.95 15.77 5.58 8.40
Lung (Males) 9.83 3.20 3.37 15.73

Lung (Females) 10.77 3.83 11.79 7.57
Pancreas (Males) 16.72 10.58 13.98 9.46

Pancreas (Females) 5.44 5.16 5.39 5.32
Mean 9.39 7.08 7.06 7.86

sites for the period from 1993 until the end of 1997. The ‘Spline Restriction”
approach appears to perform particularly well in the case of male lung cancer,
and for pancreatic cancer for both males and females, while in the case of colon
cancer for males the drift approach is better. The reasons for the differences in
performance are assessed in Figures 2 and 3. The power link is not uniformly
better than the standard link.

The reasons for the difference observed in Table 1 A) can be investigated
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Figure 2: Projections from 1987 for male lung cancer patients for the total
number of cases for all ages. GLM fitted with a log link function.

by plotting the historical data together with the projections. Figure 2 gives the
graphical representation of the results for the male lung cancer patients using
a log-link. There is a clear change in the pattern of the lung cancer cases over
time with a substantial decrease in incidence from the 1970s onwards. The
method using the spline restriction, which is dominated by the change in the
last 10 years, outperforms the drift approach that bases the linear projection
on the entire range of the data.

Figure 3 gives the graphical representation of the results for the pan-
creatic cancer data for females. The figure shows the fitted curves for the
two projection methods for the power link function, together with the ob-
served values of the total number of cases. The 10 year window used for the
spline restriction shows a smaller gradient than is observed over the longer
observation window, consequently the spline restriction approach gives better
projections after 1987.

11

Rutherford et al.: Projecting Cancer Incidence using Restricted Cubic Splines

Published by De Gruyter, 2012



100

200

300

400
T

ot
al

 N
um

be
r 

of
 C

as
es

1953 1967 1977 1987 1997 2007
Calendar Time

Observed Total Cases
Spline Drift
Spline Restriction

Figure 3: Projections from 1987 for female pancreatic cancer patients for the
total number of cases for all ages. GLM fitted with a power link function.

Figure 4 gives the graphical representation of the results for the colon
cancer data for males using the power link function. The projection method
that uses the drift over the entire observation period performs well as shown in
Tables 1 A) and 2. The ten year window used for the spline restriction method
shows a gradient that is larger than observed over the entire observation win-
dow as a whole. However, this gradient does not continue past 1987 when the
projections are made. This is an example of when taking the “recent” trend
does not give a better projection than the overall “longer” trend.

Table 1 B) contains the projections for data observed until the end of
1997, and projected until the end of the available data in 2007. These are
short-term projections but are using a longer range of data than those given
in Table 1 A). It is clear from the results contained in Table 1 B) that there
is a lack of consistency across time-points for the “best” method of estimation
for any given cancer site. This highlights the need for careful consideration
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Figure 4: Projections from 1987 for male colon cancer patients for the total
number of cases for all ages. GLM fitted with a power link function.

when choosing a method of projection.

5.2 Long-term Projections

Table 2 contains the results for the longer-term predictions for the period from
2003 to 2007. It was expected that for longer-term predictions the exponential
growth that is introduced by the logarithmic link function may lead to over-
estimates of the projected incidence, and that the suggested alternative of the
power link function may well yield better predictions. However, this is not
the case for all of the cancer sites. The estimates for lung cancer for males is
a particular example of the power link giving substantially poorer estimates
than the log link function. Although, in general the power function does give
a better fit, it is not necessarily better in every scenario. Figures 2, 3 and
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Table 2: Observed data until the end of 1987; 20 year prediction for the period
2003-2007. The figures give the average yearly absolute relative difference (%)
between the observed and predicted number of cases for all ages combined.

Link Function Log Power
Cancer Site Restriction Drift Restriction Drift

Breast (Females) 5.04 2.20 15.50 17.24
Colon (Males) 26.34 6.80 12.48 5.57

Colon (Females) 29.44 38.74 11.50 16.81
Lung (Males) 10.41 28.07 26.50 53.74

Lung (Females) 6.28 5.58 4.44 9.26
Pancreas (Males) 12.11 6.70 7.14 8.31

Pancreas (Females) 4.81 19.65 5.37 9.75
Mean 13.49 15.39 11.85 17.24

4 also show the long-term projections for three of the cancer sites from 1987
onwards.

5.3 Age-specific Projections

Figure 5 shows the results for pancreatic cancer for females split by various age
categories. Age is still modelled continuously, but the total number of cases
are summed over the selected age categorisations to evaluate the projections
by age. The youngest age category has fewer total cases due to the strong
association between incidence and age. Therefore, the information for the
older age categories dominates the overall shape. However, it is important that
the projections at specific ages can also be assessed to evaluate the projection
approaches.

5.4 Evaluating Uncertainty

Figure 6 shows the resulting projections with the model-based confidence in-
tervals also shown for both of the projection methods for the lung cancer data.
The confidence intervals can be estimated from the model through use of the
delta method, which makes use of a Taylor series expansion to obtain the
variance-covariance matrix, using the Stata command predictnl (StataCorp.
2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp
LP (2011)). These confidence intervals are purely based on uncertainty in the
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Figure 5: Age-specific projections from 1987 for female pancreatic cancer pa-
tients. GLM fitted with a power link function.

estimated parameters for a particular model choice and do not account for
the uncertainty that is associated with the choice of assumption for the pro-
jection. The plots given in Section 5.5.2 highlight that different projections
will be made under a variety of assumptions for the linearity constraint. A
combination of these two sources of uncertainty is necessary to fully appreciate
the total uncertainty when making projections.

5.5 Sensitivity Analyses

5.5.1 Number of Knots

A common criticism of the use of spline functions is the arbitrary nature of
selecting the number and position of the knots. The results of a sensitivity
analysis carried out in this setting are contained in Table 3. The analysis
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Figure 6: Model-based confidence intervals for projection from 1987 for male
lung cancer patients. GLM fitted with a log link function. A) Shows the
estimates for the spline drift approach. B) shows the estimates for the spline
restriction approach.

for Table 1 A) was performed for each model whilst varying the number of
knots for period (degrees of freedom of 3, 5, 6, and 8) keeping 8 degrees of
freedom for the age and cohort terms. The degrees of freedom used to carry
out the original analysis were 5 degrees of freedom for period, and 8 for the
age and cohort terms. The knots were placed at equally spaced quantiles of
the relevant variables, and over a shorter time-range for the spline restriction
approach as detailed in Section 4.2.

Table 3 shows that for the majority of cancer sites varying the degrees
of freedom for Period makes little difference to the estimated mean value of
the percentage relative difference. However, for colon cancer in males and lung
cancer in females quite substantial difference do occur. Smaller differences are
also evident for pancreatic cancer in females and colon cancer in females when

16

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 33



a low number of knots are used. In the case of colon cancer for males, we
can see that the models with an increasing number of knots for period seem
to be giving poorer estimates than the simplest model. Figure 4 shows that
there seems to be an almost linear growth in the total number of cases over
time suggesting that the models with many knots will overfit the period effect.
This is confirmed by looking at the AIC and BIC (values not shown), which
show that the model with 3 degrees of freedom for period is the best fitting
model for the observed data. For female lung cancer, the opposite seems true;
the simpler models are underfitting the effect of period so that increasing
the degrees of freedom leads to better projections. The degrees of freedom
preferred for period (from the models compared) differ between the AIC (6
degrees of freedom gives the lowest) and the BIC (5 degrees of freedom gives
the lowest). The “best” results for the projection are observed for the model
with 8 degrees of freedom for period for the “Spline Restriction” approach. A
“better” fitting model to the observed data does not necessarily lead to “the
best” projections. In real analyses when projections are actually made into
the future rather than into a period where we know the number of cases, it
will not be possible to compare the models with different degrees of freedom
in this way. It is therefore essential to use care and consider whether the
projections made in any given scenario appear sensible, and that they align
with any external knowledge about the disease of interest.
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Table 3: The compared models relate to the different choice of degrees of
freedom (df) for Period (3, 5, 6 and 8 degrees of freedom were used respectively
for Period, and 8 degrees of freedom were used for Age and Cohort for each
model). The values given are equivalent to the values in Table 1 A). They
relate to average yearly absolute relative difference (%) between the observed
and predicted number of cases for all ages combined for the 10 year projections
from 1987. 5 degrees of freedom for Period were used in the actual analyses.
The knots were placed at equally spaced quantiles of the relevant variables.

Period Restriction Restriction Drift Drift
Cancer Site df (Log) (Power) (Log) (Power)

3 5.30 10.29 6.39 12.63
Breast 5 5.66 9.93 2.36 8.91

(Females) 6 5.96 10.08 1.97 8.04
8 4.69 8.69 1.87 7.36
3 8.96 3.85 5.82 3.41

Colon 5 12.20 5.64 4.97 3.50
(Males) 6 13.73 6.47 4.29 4.04

8 17.81 10.20 3.71 5.70
3 16.81 8.09 14.98 6.23

Colon 5 11.26 4.05 13.70 5.59
(Females) 6 12.68 5.64 13.61 5.28

8 12.18 4.90 11.55 3.73
3 8.18 14.87 15.18 22.53

Lung 5 6.46 12.29 14.60 21.26
(Males) 6 7.16 12.71 14.09 20.80

8 7.76 12.86 16.00 23.21
3 14.88 8.71 9.18 2.63

Lung 5 9.56 4.62 7.48 2.91
(Females) 6 7.24 3.56 9.84 2.72

8 4.38 2.79 12.12 3.87
3 6.69 7.12 11.56 10.69

Pancreas 5 6.23 6.73 14.74 14.80
(Males) 6 8.10 8.75 14.98 14.82

8 5.48 7.26 17.10 17.00
3 12.92 10.26 15.06 10.29

Pancreas 5 5.44 3.51 15.27 11.17
(Females) 6 6.28 3.76 14.21 11.07

8 10.64 7.55 10.32 7.54
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5.5.2 Placement of the Boundary Knot

The new approach using the restriction of the cubic splines has been proposed
with the further condition that the boundary knots for the period and cohort
terms are brought within the range of the data. Moving the boundary knot
further into the observed data will reduce the weight given to the most recent
data for the projection. Moving the boundary knot to the extreme of the
observed data may well lead to more unstable projections. For the analyses
conducted in this paper, the boundary knot was moved in 10 years. However,
it is possible to perform a sensitivity analysis to see how the projections will
vary depending on where the boundary knot is placed.

500

1000

1500

2000

T
ot

al
 N

um
be

r 
of

 C
as

es

1953 1967 1977 1987 1997 2007
Calendar Time

7 years
10 years
13 years
Observed

Figure 7: Projections from 1987 for male lung cancer patients for the total
number of cases for all ages. The different lines correspond to moving the
boundary knot to different points (7, 10 and 13 years) within the range of the
data.

Figure 7 shows the plot for lung cancer where the boundary knot has
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been moved 3 years either side of the 10 year value that was used in the
main analyses. There is not too much sensitivity to the value that is selected
over a small range of years. The projections only seem to diverge towards
the end of the projection period, where there is greater uncertainty about the
continuation of the linear trend.
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Figure 8: Projections from 1987 for male colon cancer patients for the total
number of cases for all ages. The different lines correspond to moving the
boundary knot to different points (7, 10 and 13 years) within the range of the
data.

Figure 8 shows the plot for colon cancer where the boundary knot has
been moved 3 years either side of the 10 year value that was used in the
analyses. Again, there is not too much sensitivity to the placement of the
boundary knot over a small range of values. Moving the boundary knot over
a small range of values within the range of the data will not result in wildly
different projection estimates. Provided that the boundary knot is not placed
at the very edge of the available data, each of the projections made will be
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largely dictated by the linearity in the latter part of the available data. If
the boundary knot is placed too far into the range of the data, this linearity
constraint may be unrealistic and lead to poor projections.

6 Discussion

Cancer incidence projections can be made by using the fact that restricted
cubic splines are linear beyond the boundary knot. The linear projection
beyond the range of the data will be dictated by the shape of the data towards
the end of the observation period ensuring that the projections give increased
weight to more recent trends than standard approaches. Standard projections
using the drift can also be made in the same modelling framework and a direct
comparison between the two approaches has been made using a range of cancer
sites. The difference in assumptions relates to the “recentness” of the trend
that is projected forward.

For the projections made in these analyses, actual population sizes were
used as we used historical data. For future predictions of the number of cases,
further errors will be introduced by the inaccuracies in the forecasting of pop-
ulation data. It is necessary to make assumptions about the birth and death
rates for the populations as well as assumptions about the level of immigra-
tion and emigration. However, for the majority of countries, projections of
population figures are known to be accurate.

It is often proposed that assuming that the rates will stay the same
as the last observation point is a suitable lower/upper bound for the projec-
tions (Verdecchia, Angelis, and Capocaccia (2002), Heinävaara and Hakulinen
(2006)). Of course, calculations can be made for the uncertainty for the pa-
rameters in a given model, and prediction intervals can be put on the estimated
rates (Elkum (2005), Møller, Weedon-Fekjær, and Haldorsen (2005)). How-
ever, these intervals can be very narrow in population-based cancer studies
where lots of information is available (Møller et al. 2007). The proposed pre-
diction intervals do not take into account the bias introduced by making an
untestable assumption about the future rates based on the available data. Em-
pirical evaluations of the prediction intervals have shown that caution should
be taken when interpreting them (Møller et al. (2005)). Further to this, there
have been claims that these intervals should not be reported because they may
be wrongly interpreted (Møller et al. (2007)).

The method using the restriction of the cubic splines is similar in prin-
ciple to using a prediction based on a more recent estimate of the drift. This
is a method that was recommended in the empirical comparison carried out

21

Rutherford et al.: Projecting Cancer Incidence using Restricted Cubic Splines

Published by De Gruyter, 2012



by Møller et al. (2003). In this paper, we put this in a setting that treats the
effects of age, period and cohort continuously. The method proposed here also
allows for a simple comparison between the “recentness” to use for the pro-
jection by simply moving the boundary knots for the restricted cubic splines.
The suggestions of using a power link function, and halving the drift after 10
years (Møller et al. (2003)) can easily be applied to the new approach.
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