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Abstract

Detection and estimation of measures of familial aggregation is considered the first step to
establish whether a certain disease has genetic component. Such measures are usually estimated
from observational studies on siblings, parent-offspring, extended pedigrees or twins. When the
trait of interest is quantitative (e.g. Blood pressures, body mass index, blood glucose levels, etc.)
efficient likelihood estimation of such measures is feasible under the assumption of multivariate
normality of the distributions of the traits. In this case the intra-class and inter-class correlations
are used to assess the similarities among family members. When the trail is measured on the binary
scale, we establish a full likelihood inference on such measures among siblings, parents, and parent-
offspring. We illustrate the methodology on nuclear family data where the trait is the presence or
absence of hypertension.
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1. Introduction

Classical epidemiology deals with disease patterns and factors associated with
causation of disease with the ultimate aim of prevention and control. When the
question is whether a disease has a genetic component, the detection and
estimation of familial aggregation (e.g., higher occurrence rates in siblings or
offspring) becomes very important. Fortunately, relevant information on familial
aggregation may already be known from descriptive epidemiology studies. In
particular, results from observational studies on sib-correlations, parent-offspring
correlation, parent-parent correlation, and twin-concordance may suggest a
genetic component in the etiology of a disease or trait. As was noted by Laird and
Lange [1], “The general concepts used in aggregation and heritability analysis are
widely accepted as useful measures of the degree to which traits are inherited;
most researchers would not undertake genetic analysis without evidence of
aggregation or heritability of the trait.”

However familial aggregation of a trait is a necessary but not sufficient
condition for inferring the importance of genetic susceptibility, since
environmental and cultural influences can also play a role in familial clustering
and excess familial risk. Note that in traditional societies the presence of
consanguinity would increase the role of genetic factors in understanding
variability of a trait. That is, when the parents are related, the measure of
similarity would have a significant genetic component. On the other hand in the
absence of consanguinity, as in developed countries, the genetic component of the
measure of similarity will be negligible. For quantitative traits, the biometrical
approach introduced by Morton [2], Rao et al [3], and Morton and McLean [4] to
evaluate the degree of resemblance among family members has relied on the well
developed multivariate normal theory. However in assessing the degree of family
resemblance, clinical epidemiologists often prefer to report the disease status of
individuals on a binary scale. Therefore analytic approaches established under the
multivariate normal model are not useful. However several strategies have been
developed to estimate the degree of familial resemblance in this case. The most
widely used of these is the semi-parametric approach known as Generalized
Estimating Equations (GEE) developed by of Liang and Zeger [5] and Zeger and
Liang [6]. A limitation of this approach is that measures of family resemblance
are treated as nuisance parameters while the modeling strategy focuses on the
estimation of regression coefficients corresponding to the selected risk factors.

The chief objective of this paper is to derive fully efficient estimators of
two sets of measures of family resemblance using maximum likelihood methods.
The first is the set comprising sib-sib correlations, which requires the estimation
of the intraclass correlation coefficient for binary traits. The second set comprises
interclass correlations that provide a measure of resemblance among parents and
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their siblings. We therefore introduce here a model that is suitable for the analysis
of data with a specific structure that is characteristic of nuclear family data. Based
on this model, likelihood inferences are developed that produce correlation
estimates that are fully efficient.

The paper is structured as follows: In Section 2 we introduce the model. In
Section 3 we present likelihood inferences for the model parameters followed by
an illustration using arterial blood pressure data collected from nuclear families.
For the purpose of comparison, we also discuss alternative estimators, and use the
bootstrap method to derive their empirical standard errors.

2. Models

Let ¥, =1(0) denote the presence (absence) of a trait in the j * sibling from the
i" family (j=12,..n;i=12,.k). Similarly, let X, =10) and X, =1(0)
denote the presence (absence) of the condition, respectively in the mother and
father. Let A4, = P(Y; =1|4,) denote the probability that a randomly selected
sibling from the i” family is classified as having the condition, and let
1-4, =P, =0|4,). Moreover let P(X,=1|x,)=P(X,, =1|x,)=r,, and
P(X,=0|xr,)=P(X,, =0|z,)=1-7z,. For the time being we shall assume that
the distribution of offspring scores is conditionally independent of the distribution

of their parents score. To introduce the correlation between parents within the i
family we shall assume that 7, is an element of a random sample from a beta

o

distribution with parameters (e, ) so that u,= E(r,) =—IB, and
o+
var(zr,) = ofs =p u,(1—u,), where p =(1+a+p)" [7, 8,
Yo+ pA+a+p T ’ i

9]. The choice of the beta distribution is also justified in the context of Bayesian
inference as it is the conjugate prior for the event probability in Bernoulli trials.
Therefore the unconditional distribution of the sum X, =X, + X, is that of a

beta binomial distribution with:

1%
E(X;)=2u,, and Var(Xi):zﬂp(l_ﬂ”)[l+l+Z9 1, where J,=p,/(1-p,)

p
and where the parameter p, is in fact the intraclass correlation between
(X,

parents within the same family.

X,,)- It is therefore a population average measure of similarity between
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The probability distribution of X, =X, + X, , known as the extended

beta-binomial distribution is given by:

im

X;— 1-x;

[Tl + 6, [10-1, + 6,)
o)

=0 =0 x, =0,1,2, (1)

(1+j49p)

1
J=0

-1
with the convention H (0{(1, ) =1. In particular:
j=0

POX, =0)=(1-1,)* +p1,(1-1,)p,
P(X, =1)=p,(1-,)1- p,) and

Similar to the above set-up, we assume that the offspring scores are conditionally
independent. Then due to the exchangeability assumption, the conditional

distribution of Y, = ZYU has a binomial distribution with parameters (n,, p,).
j=1

Note that the above results have been obtained previously within the context of

interrater agreement by Bloch and Kraemer [10]. To model the correlation among

offspring within the same family we assume that A, has a beta distribution with
parameters (0,y). The unconditional distribution of Y, is beta binomial with

mean and variance given respectively as:

EO;) =, and var() = n,, (1= 1+ (n, =)=, where
+ s
M, = 5%}/, O =p, /(1-p,), and p, =(1+5+y)" is the intraclass correlation

between pairs of siblings within the same family. The marginal probability
distribution of Y is given by:
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yi—l ni=)i—
I +76.) T10-1,+6)
P(Y, =yl-)=( ') a — y =0,1,2,...1, Q)
g (1+6.)

J=0

Setting n, =2 in equation (2), we obtain equation (1). In order to obtain

the familial correlations, we follow an approach known as Positive Dependence
by Mixture (PDM) [11, 12]. That is, by mixing the Bernoulli distribution with a
beta distribution we can obtain the intracluster correlation. A different approach
however is needed to construct the bivariate distribution of the parent and
offspring scores, characterized by the interclass correlation. This approach was
developed by Sarmanov [11] and Lancaster [12] and is known as Positive
Dependence by Expansion (PDE). Danaher [13] proposed a simplified and
flexible form of this distribution given by:

P(x[’yi): P(Xi =X )P(Yl =V )[1+p12u1iu25]’ where

=2 -
wy =y, ST Narly,), o, = var(y,), 3)

o, O'sz

and p,, = Corr(x,,y,) is the interclass correlation.
It 1s clear that X, and Y, are statistically independent if and only if
P = Corr(xi’yi): 0.

In Table 1 we depict the data layout, which shows that the data structure is
similar to that obtained under split-cluster sampling.

Table 1: Data layout depicting the hierarchical structure of the family data

Family
Score 1 2 i K
Parents X s Xy Xy Xy
Xim Xom Xim Xiom
Total score of both parents |x, X, X, X,
Offspring i o Y Vi
Y12 Vo Via Yi2
Yin, Yon, Vi, Yin,
Total scores of offspring Y Vs v, Y
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3. Parameters Estimation

In this section we consider two methods of estimation. The first is the commonly
used method of maximum likelihood. The second method is non-parametric in
nature and was proposed by Karlin et al [14]

3.1. Likelihood Representation

Suppose that we have a sample of k randomly selected families, where the i”

family has the scores for both parents and n; children. The likelihood of the
sample may be written as:

P(x,,y,)

iy

L

i=1

Plen) iy, ) @

P(X, =x,)
[P(yi|xi)'P(xi>]:HP(yi |xi)HP(xi):L2'Ll

5»

L

1

Thus it is seen that the likelihood function can be expressed as the product of two
functions, the first, L,, depends on the parameters that characterize the parent

parameters (4,,p,), while the second, L, based on the conditional distribution

of the offspring scores given the parents’ scores. We write the log-likelihood
function as the sum of two components: logL =/, +/,, where

k
Z ogP )and [, = Zlog P(yl|x )
Note that /, can be maximized with respect to 4, and p,, with their maximum

likelihood estimators then obtained in closed forms as :

_ k
i, =x,/2k, and p, =%, where x, =Zx,.,
i=1
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k
2
2%,

: MSB
AﬁWz%%—Eyiam 2w1fz

Once the estimators of the parameters in /, are obtained, we substitute
them in the function /, which is maximized using the Newton-Raphson at the
solutions of the equations:

ol, =0, ol, =0, ol, =0. This approach was proposed by Richards [15].
o, 9P, P,

Briefly, let the parameter vector 6,

6, and 6, have dimensions » and (p —r) respectively. Let él (6,) be the MLE of
6, for fixed values of 6,, and éz be the MLE of 6,.

Solving %: 0, i=12,...r and substituting él (492) for 6, in %, we

i 2

be partitioned so that 6, = (6’1,6’2 )T, where

obtain a modified likelihood function, which is a function of &, only. Using this
modified likelihood function we find the MLE (9 (49 .6 )T by solving

r+1o P
2l(6 .
L):0, i=r+l,...p.

06,

The advantage of this approach is that instead of maximizing the full
likelihood function for five parameters, the proposed partition enables us to
perform the calculations with greater accuracy and less time.

The variance-covariance matrix X is obtained by inverting the negative of
the matrix of the second partial derivatives, and then substituting the values of the

estimated parameters.

0’1

S=
06,00, ;

| ]Where 6=u, 6,=p,, 0;=U,, U,=p,, 0;=p,.

3.2. Karlin’s estimators:

Karlin et al. [14] used correlations to assess the similarity among family members.
Although their development was aimed primarily at continuously distributed
traits, the proposed estimators can also be used to assess similarities with respect
to binary outcomes. In this section we introduce alternative moment estimators for
the sib-sib correlation and the parent-offspring correlation.
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a. Sib-sib correlation

Similar to the case of continuous phenotypes, Karlin et al. suggested on ANOVA
type estimator:
k
1 i :
, where n, = N-—-—] and N=) n,,
0 k _ 1 [ N ] z i

i=1

~ _ BSV.-WSV
P BSV +(n, - 1)W.SV

wsSV.= L

_ 1 _
N —k “ (yg/_yi)z’ B'S'V':k_zni(yi_y)za

j=1 -1 i=1

ko n k
=1 j

B PR _ 1l &
V=2V andy=ﬁzzyﬁ-

n; = i=1 j=1

b. Parent — Offspring Correlation

o3 N
Let [, = nx/N, I, :ﬁZZyy-
=1

i=1 j=1

The proposed pairwise estimator of the parent-offspring correlation is
given by:

py=—" s 5)

Since the standard error for p_ is difficult to obtain, we shall use the bootstrap
method to find its standard error.

3.3. Bootstrap standard error and the delta method:

In a recent paper Field and Walsh [16] suggested several approaches to
implementing the bootstrap method with clustered data. In a random sample of &
clusters each of size n, they considered the observations as fixed with inferences

constructed with respect to the random sampling mechanism. In this case their
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main concern was with the accommodation of different forms of cluster sampling.
One of the simplest approaches suggested was the so-called “cluster bootstrap”.
Roberts and Fan [17] implemented a specific form of bootstrap cluster sampling
which they named “nested bootstrap” using the PROC MIXED procedure in SAS
[18]. Note that the PROC MIXED was developed to fit normally hierarchical
data, and is not appropriate for the analysis of binary response data. We therefore
modified the bootstrap macro so that PROC GLM [18] is used to calculate the
between and within mean squares of the appropriate analysis of variance (see
Appendix). F this we obtain the bootstrap replications, and hence the bootstrap
estimator, which we denote by p

ssboot *
4. Regression estimator of parent-sib correlation:
4.1. Least square regression

The bivariate representation given in (3) has an interesting property that can be
used to construct an alternative estimator of the parent-sib correlation. It can be
shown that the regression of Y, on x; is linear in p,,. That is:

Y
E(rfx )=, +po o (5,24, ) or E(n—’lxiJ i+ py o ~2u, )

p i n p

The regression equation may then be written as:

Ve :% = H; +p122i T (6)

i

In equation (6), Z ;=

- (xl. —-24, ), and &, has mean zero and unknown
i~p

variance ¥, whose estimator may be obtained from the mean square of the

regression residuals. Therefore, the parameter p,, can be estimated by the method

of least squares, obtaining

k
ﬁlzzz Vi s ZZ

i=1
The estimated variance of this estimator is given approximately by

var ,012 ZZZ
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With, 7 given by

. 1 Gy - =v - .

V= L (yi» _p12Zi) , where Y. =Y. — M.
— 4=l

24

A (1-a)100% confidence interval for p,, can be constructed using either

the standard Wald formulation p,, +¢,,, , \var(p,, ), or alternatively, using the
well-known Fisher’s Z transformation for the Pearson correlation coefficient.

4.2. The Generalized Estimating Equations (GEE)

The (GEE) approach may be used to estimate both the sib-sib correlation and a
measure of parent-sib similarity, such as the odds ratio. The GEE approach
requires only correct specification of the mean and variance of the response, with
the sib-sib correlation estimated using a “working correlation”. When we model
the sibling binary response as a function of the total parent score, we obtain an
estimate of the log-odds ratio and a robust sandwich estimator of its standard
error. The estimated odds ratio, which has a population-averaged estimate
interpretation, can be used as a measure of parent-sib similarity in place of the
interclass correlation, while the standard error is obtained using the delta method.

5. Example: Mial and Oldham’s blood pressures data

The data used for illustration here are obtained from a survey that aimed at
assessing the levels of similarity in systolic and diastolic blood pressure among
family members living within 25 miles of Rhonda Fach Valley in South Wales
and published by Miall and Oldham [19]. Observations were made on parents and
their offspring, with each observation consisting of systolic and diastolic blood
pressures measured to the nearest Smm Hg. However among 250 sampled
families, only 204 contained information on brothers and sisters. Furthermore,
because of the impossibly low systolic blood pressure (15mm Hg) for one
daughter, another family was omitted .leaving 203 families for the analysis. Since
these data were given on a continuous scale, we dichotomized the observations
as described below:

For an individual whose blood level was above 130/80, the assigned
binary score was 1, otherwise it was 0. The results of the data analysis are
summarized in Table 2:
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Table 2: Analysis of Miall and Oldham data.
Parameter MLE  SE

i, 0.258  .0369
P, 0.0159 .0288
A, 0.1134 0.0145
2. 0.208  .0438
Py 0.027  0.053  Regression p,, =0.163(0.1033)

cov(p,, p,)=0.0003, cov(p,,p,,)=0.0010, and cov(p,, A, )= 0.0008.

Note that the estimators proposed by Karlin et al and the MLE’s are
numerically very similar. Using the data in the example, we have p, , =0.194,

with the bootstrap empirical standard error given by 0.01711. The parent-sib
correlation is estimated as p, =0.188, with standard error 0.023. We also note

that the estimator of the parent-sib correlation estimator obtained using maximum
likelihood differs from that obtained by the least squares estimators. This is not
unusual, as two estimators of the same parameters can be numerically different
and have different distributional properties. But it requires further investigation.

Remark:

One of the advantages of using least square for estimating the parent-offspring
correlation is that the estimator and its standard error are available in closed
forms. Moreover, if we assume that the error term in (6) is normally distribution
then one may perform exact statistical inferences on the model parameters,
although this approach should be preceded by residual diagnostics [20]. If the
required assumptions for the least squares are not satisfied, the MLE approach is a
reasonable alternative because it yields estimators that have asymptotically
optimal properties [21].

Using PROC GENMOD in SAS [22] the estimated odds ratio, which may
be used as a measure of similarity between parents and their offspring, was given
by 0.847 and its standard error based on the robust sandwich estimator by 0.140.

The p-value for testing the null hypothesis that the population odds ratio
equals one is given by 0.274. The working correlation when specified within the
GEE methodology as ‘“exchangeable” was 0.173 and can be regarded as a
population averaged measure of sib-sib correlation. Note that this correlation

10
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estimate is quiet close to its maximum likelihood counterpart. A good summary of
the GEE methodology can be found in many texts, for example chapters 12 and
13 in [23]. The SAS code for the GEE model is:

Proc Genmod;

Class familyid;

Model y; = x; / dist= bin link = logit;
Repeated subject=familyid / type=exch corrw;
Run;

Another approach to deriving the standard error of the bootstrap estimator of the
sib-sib correlation is to use the delta method. In general if él and 92 are two

statistics, and g(@1 ,éz) is a non-linear differentiable function, then the first order
approximation of the variance of gis given by:

- ) -9 . dg . 9 -
var(¢(6,,6,)) = (a—gl)z var(6,) + (ﬁ)z var(6,) + 2(8—2'1)(%) cov(6,,0,)

In the case of the sib-sib correlation we may take él =B.SV., and

6, =W.SV. The empirical variances and covariance of §, and 6, are obtained
from the bootstrap replications.

Application of the delta method gives a standard error of
SE(p.,,..)=0.0336. The 2000 replication bootstrap estimate of Karlin’s parent-

ssboot

sib correlation is p,,,, =0.189, and its empirical bootstrap standard error is

0.102. Figures 1 and 2 give the histograms of the 2000 bootstrap replications of
the sib-sib and parent-sib correlations respectively.

6. Discussion

The likelihood inference procedure discussed in this paper allows parametric
estimation of familial correlations when the responses are binary. The early work
by mathematical statisticians to develop distributions that allow for dependency in
the presence of multiple levels of hierarchy made it possible for us to construct
the likelihood function, and hence to derive the maximum likelihood estimates of
the correlation parameters. The application of maximum likelihood estimation to
familial data having two levels of structure, under the model proposed by
Sarmanov, is novel. Obtaining the solutions of the likelihood equations using the
quasi Newton method was simplified here by the presence of only a few
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parameters. However, the model is flexible enough to allow for inclusion of
family level covariates, although the number of parameters to be estimated
increases with the number of covariates included in the model. It should be
mentioned that because the of the exchangeability assumption we can model the
aggregate of the responses of both parents as well as the aggregate of responses of
their siblings. For this reason the model cannot accommodate covariates measured
at the individual level. There are however models that can accommodate
covariates measured at both levels (family level and within family individual
level) such as the Generalized Linear Mixed Model (GLIMMIX) and the
Generalized Estimating Equations (GEE) based models. However, care must be
taken when fitting these models to correlated data since these models consider the
correlation parameters as nuisance, focusing instead on the estimation of
regression coefficients. As a consequence of [5, 6], specification of the
correlations between measures made on the units within a cluster is not required.
However Crowder [24] demonstrated that the parameters involved in working
correlation matrix are subject to “uncertainty of definition which can lead to a
breakdown of the asymptotic properties of the estimators”. A clear advantage of
our proposed model is that it can be used to analyze data arising from more
complex designs, such as those constructed using twins with more than two
measured phenotypes for each twin (see; Shoukri and Donner [25]). Similarly, in
the absence of parental responses, and when siblings are characterized by gender,
then the analysis can focus on sex-specific correlations. For example one may test
the equality of intraclass correlations for males and females, leading to the
possible conclusion that gender is a risk factor in disease clustering. Testing this
hypothesis can be carried out using either a likelihood ratio test or a score test.
However the main focus of this paper is on estimation rather than hypothesis
testing.

We conclude the discussion with two important remarks. First, it would be
desirable to extend the models designed for the analysis of clustered binary data
so that they can facilitate likelihood inferences if there is interest in analyzing
multiple phenotypes. In addition to the intraclass and the interclass correlations
for each phenotype, there may be interest in estimating several cross correlations
including correlations between relatives on different phenotypes. This means that
the extended model should accommodate a general interclass correlation
structure, of which the present model is a special case. However, the estimation
problem then requires future investigation. Second, although the use of the beta
distribution is ubiquitous in the analysis of clustered binary data, a sensitivity
analysis may be needed to assess the robustness of the resulting estimators when
other distributions are used as priors for the response probability. In this regard a
full Bayesian inference procedure may be adopted, where through Gibbs sampling
several competing priors may be compared.
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Appendix: SAS cod for the nested bootstrapping of blood pressures family data.

dm 'log;clear;output;clear’;
/* SAS Program for Bootstrapping Individuals within each Family */

option pageno=1 nodate;
libname in 'd:\Shoukri';
libname out 'd:\Shoukri';

data sibsib;
set in.karlinSibSib;
run;

** Direct the SAS log to a disk file to avoid SAS LOG Window becoming full;

proc printto log='D:\logfile.temp';

run;

% macro BTRAP, ** start of bootdtrap macro 'BTRAP";

%do Btrap=1 %to 2000; ** 2000 bootstrapped samples;

%do A=1 %to 203; ** select each family sequentially;
Data D1;
set sibsib; ** 223 families in the data set, unequal N in each family;
if famid=&A;

** sampling with replacement within each selected family;
** bootstrapped sample size equal to the original sample size in each family;
** bootstrapped sample within each family is named BTDATA n;
Data btdata;
drop [;
doI=1to N;
IOBS=INT(ranuni (0) *N) + 1;
set D1 point=IOBS nobs=N;
output;
end;
stop;
** assign a unique random number for later combining data sets;
Data BTdata &A;
set btdata;
unique=rannor (0);
%Iif &A=1 %then %do;
Data BTdata_all;
set btdata &A;
%end;

Published by De Gruyter, 2012
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%Iif &A>1 %then %do;
proc sort data=btdata all; by unique; run;
proc sort data=btdata &A; by unique; run;

** combining bootstrapped samples from each family;
Data BTdata_all;
update btdata_all btdata &A;
by unique;
run;
%end;
%end;

** direct Proc GLM output to a file on disk;

** avoids potential problem of SAS output window becoming full;
Filename glmout 'D:\GlmFile';
proc printto print=glmout new;
run;

** direct GLM ODS tables to 2 datasets;

ods output
OverallANOVA =TestAnova
ModelANOV A=Subject;

ods listing close;

proc glm;

class famid;

model y=famid;

random famid;

ods listing;

** extract the required variables from the 2 datasets;
data resultl (keep= SIGERROR);

set testanova;

if Source="Error' then SIGERROR=MS;

if sigerror ne .;

data result2(keep= Fam);

set Subject;

if Source='"Famld' then Fam=MS;

if Fam ne .;

run;

** re-direct the output to SAS output window;
proc printto print=print;

14
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run;
** combine the two data sets to have one observation for;
** each bootstrapped sample;

Data Both;
set resultl; set result2;

** append estimates from each bootstrap iteration;
** to a permanent SAS dataset on disk: Results;

proc append base=out.Results force;

run;
%end; ** end bootstrap iterations;

% mend BTRAP; ** end of bootstrap macro;
%Btrap, ** execute the BTRAP macro;

** read the data of bootstrapped results;

*% (2000 observations from 2000 bootstrap iterations);
data temp;

set out.Results;

** calculate SigmaB and RO variables;
SigmaB=(fam-sigerror)/3.07,;
RO=sigmaB/(sigerror+sigmaB);

** direct all results to ODS file;

ods rtf body='d:\Families.rtf' style=minimal;
proc print;
** obtain some basic descriptive statistics for;
** the bootstrapped distributions of the estimates;
proc means n mean std min max maxdec=4;
titlel 'Bootstrap Individuals within each Family';
run;

ods rtf close;
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Figure 1: Histogram of 2000 bootstrap samples of Karlin’s sib-sib intraclass
correlation coefficient (ICCC).
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Figure 2: Histogram of 2000 bootstrap samples of Karlin’s parent-sib correlation.

The mean is 0.187, and the bootstrap standard error is 0.023.
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