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Targeted Maximum Likelihood Estimation for
Dynamic Treatment Regimes in Sequentially

Randomized Controlled Trials
Paul H. Chaffee and Mark J. van der Laan

Abstract
Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the

search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple
time-point treatments with a view toward optimal treatment regimes is of interest in many types of
afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate
cancer, renal failure, and many others. Methods for analyzing data from SRCTs exist but they are
either inefficient or suffer from the drawbacks of estimating equation methodology. We describe
an estimation procedure, targeted maximum likelihood estimation (TMLE), which has been fully
developed and implemented in point treatment settings, including time to event outcomes, binary
outcomes and continuous outcomes. Here we develop and implement TMLE in the SRCT setting.
As in the former settings, the TMLE procedure is targeted toward a pre-specified parameter of the
distribution of the observed data, and thereby achieves important bias reduction in estimation of that
parameter. As with the so-called Augmented Inverse Probability of Censoring Weight (A-IPCW)
estimator, TMLE is double-robust and locally efficient. We report simulation results corresponding
to two data-generating distributions from a longitudinal data structure.

KEYWORDS: semi-parametric efficient estimation, targeted maximum likelihood estimation,
estimation methods, sequential randomized controlled trials, dynamic treatment regimes
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1 Introduction

1.1 Background

The treatment of many types of afflictions involves ongoing therapy—that is, ap-
plication of therapy at more than one point in time. Therapy in this context often
involves treatment of patients with drugs, but need not be limited to drugs. For
example, the use of pill organization devices (“pillboxes”) has been studied as a
means to improve drug adherence (Petersen et al., 2007), and others (Moodie et al.,
2009) have studied the optimum time at which infants should stop breastfeeding.

A common setting for ongoing treatment therapy involves randomization to
initial treatment (or randomization to initial treatment within subgroups of the pop-
ulation of interest), followed by later treatments which may also be randomized,
or randomized to a certain subset of possible treatments given that certain inter-
mediate outcomes were observed after the initial treatment. Examples from the
literature include treatment by antipsychotic medications for reduction in severity
of schizophrenia symptoms (Tunis et al., 2006), treatment of prostate cancer by a
sequence of drugs determined by success or failure of first-line treatment (Bembom
and van der Laan, 2007), when HIV patients should switch treatments (Orellana
et al. 2010, van der Laan and Petersen 2007) and many others.

Suppose, for example, that every subject in a prostate cancer study is ran-
domized to an initial pair of treatments (A or B, say), and if a subject’s tumor size
increases or does not decrease, the subject is again randomized to A or B at the sec-
ond treatment point. On the other hand, if the subject does well on the first treatment
(tumor size decreases, say), then he or she is assigned the same treatment at the sec-
ond time point as the first. The general term for multiple time point treatments in
which treatments after the first-line are assigned in response to intermediate out-
comes is dynamic treatment regimes or dynamic treatment rules (Murphy et al.,
2001). If the intermediate outcome in such SRCTs is affected by initial treatment,
and in turn affects decisions at the second time-point treatment as well as the final
outcome, then it is a so-called “time-dependent confounder.”

1.2 Existing Procedures

A number of methods have been proposed to estimate parameters associated with
such a study. This article describes implementation of targeted maximum likeli-
hood estimation for two time-point longitudinal data structures, and is based on the
framework developed for general longitudinal data structures presented in van der
Laan (2010a,b).

1

Chaffee and van der Laan: TMLE for Dynamic Treatment Regimes

Published by De Gruyter, 2012



Lunceford et al. (2002) develop inverse probability of treatment weighted
(IPTW) estimators and an estimating equation estimator suitable for analysis of
survival times from a leukemia clinical trial. Wahed and Tsiatis (2004) propose an
estimating equation-based estimator which uses the efficient influence curve for es-
timating treatment policy-specific parameters in two-stage clinical trials. They later
extended those methods to account for right-censoring in such trials (Wahed and
Tsiatis, 2006). Guo and Tsiatis (2005) develop what they call a “Weighted Risk Set
Estimator” for use in two-stage trials where the outcome is a time-to-event (such as
death). Tunis et al. (2006) use IPTW methods, Marginal Structural Models and the
so-called “g-estimation” method for analyzing the causal effect of a “continuous”
treatment regime of atypical antipsychotic medications on severity of schizophrenia
symptoms. This study/analysis involved no time-dependent confounders, however.
Laber et al. (2009) use Q-learning to estimate optimal dynamic treatment regimes in
Attention Deficit Hyperactivity Disorder in children. Miyahara and Wahed (2010)
used weighted Kaplan-Meier estimators for estimating treatment-specific survival
rates. Orellana et al. (2010) use structural marginal mean models, IPTW and the so-
called augmented inverse probability of censoring weighted (A-IPCW) estimators
with a view toward estimating optimal treatment regimes for switching to HAART
therapy among HIV-positive patients. Bembom and van der Laan (2007) apply
simple g-computation and IPTW estimation procedures in analyzing the optimum
response of prostate cancer patients to randomized first-line treatment followed by
second-line treatment which was either 1) the same as the first line treatment if
that had been deemed successful, or 2) randomized to three remaining treatments
if the first line had failed. The data used for the latter analysis has recently been
re-analyzed using stabilized IPTW estimation by Wang et al. (2012). The latter ar-
ticle was the subject of discussion articles, among them a general presentation of
the methods described here (Chaffee and van der Laan, 2012). This type of trial and
data closely resembles what we simulate and analyze in the present study, though
we add baseline covariates and more than two levels of success in the intermedi-
ate biomarker covariate in order to generalize the data structure to more types of
scenarios.

We present a new estimator for this longitudinal data structure: the targeted
maximum likelihood estimator (TMLE). TMLE has application in a wide range of
data structures and sampling designs (van der Laan and Rose, 2011). Though this
estimator can be applied to a broad range of data structures of longitudinal type, we
focus here on the estimation of treatment-rule-specific mean outcomes. This also
covers static treatment regimes for the given data structures.

In the next section we describe the data structure and define the likelihood
for the scenarios we intend to analyze. Once we have specified a counterfactual
target parameter of interest and equated it with a well-defined mapping from condi-
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tional distributions of the data to a real number, we describe TMLE in broad outline,
and in particular, the implementation of two different estimators grounded in the
general TMLE approach. Specifically we present the so-called efficient influence
curve for certain parameters of interest and show the relationship between elements
of this object and elements of the targeted maximum likelihood estimators. Follow-
ing these general descriptions we present simulation results, including details of
specific treatment rules, data generation and results in terms of bias, variance and
relative mean squared error. A short discussion of the results follows.

2 Data Structure and Likelihood
In the settings of interest here, a randomly sampled subject has data structure O =
(L(0),A(0),L(1),A(1),Y = L(2)) ∼ P0, where L(0) indicates a vector of baseline
covariates, A(0) is initial randomized treatment, L(1) is, say, an intermediate
biomarker (which we first consider as binary), A(1) is the second time point treat-
ment (which we also take as binary), Y = L(2) is the clinical outcome of interest and
P0 is the joint distribution of O. We take the data to be n i.i.d. copies of O. We also
assume A(1) can be set in response to L(1). The patient’s full treatment is therefore
(A(0),A(1)), and specific realizations of (A(0),A(1)) may or may not constitute
realizations of a specific dynamic treatment rule. Such “rules” are dynamic in the
sense that the regimen can be assigned according to a patient’s response to treatment
over time. However, even if A(0) and A(1) are both unconditionally randomized,
parameters of the distribution of the above data can nevertheless be identified which
correspond with dynamic treatment regimens.

The likelihood of the data described above can be factorized as

p(O) =
2

∏
j=0

P[L( j) | L̄( j−1), Ā( j−1)]
1

∏
j=0

P[A( j) | L̄( j), Ā( j−1)], (1)

where Ā( j) = (A(0),A(1), ...,A( j)) and L̄( j) is similarly defined. Factorizing the
likelihood in this way is suggested by the time–ordering of the variables in O.

For simplicity, we introduce the notation QL( j), j = 0,1,2 to denote the
factors of (1) under the first product and gA( j), j = 0,1 for those under the second;
the latter we refer to as the treatment and/or censoring mechanism. Thus in the
simpler notation we have

p(O) =
2

∏
j=0

QL( j)

1

∏
j=0

gA( j) = Qg.
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Analogously to point treatment contexts, we define a treatment-specific mean
for the multiple time-point data structure where here a particular treatment means a
specific treatment course over time. Instead of a static treatment regime, we define a
treatment rule, d = (d0,d1) for the treatment points (A(0),A(1)), which is the set of
mappings d0 : D0→A0,d1 : D1→A1, where A j, j = 0,1 is the set of possible val-
ues for A( j), D0 is the support of L(0) and D1 is the support of (L(0),A(0),L(1)).
We can express the overall rule as d(L̄(1)) = (d0(L(0)),d1(L̄(1))). Under this defi-
nition we can easily express either static or dynamic treatment rules, or a combina-
tion of the two (see examples in section 4.1).

The G-formula is defined as the product across all nodes, excluding inter-
vention nodes, of the conditional distribution of each node given its parent nodes in
the model, and with the values of the intervention nodes fixed according to the static
or dynamic intervention of interest. This formula thus expresses the distribution of
L̄ under the dynamic intervention Ā≡ (A(0),A(1)) = d(L̄):

Pd(L̄) =
2

∏
j=0

Qd
L( j)(L̄( j)), (2)

where

Qd
L( j)(L̄( j))≡ P(L( j) | L̄( j−1), Ā( j−1) = d(L̄( j−1))).

The superscript d here indicates that the conditional distribution of each node given
its parent L nodes is also conditional on treatment being set according to the spec-
ified treatment rule. We reserve subscript d to refer to counterfactually-defined
variables.

2.1 Causal and Statistical Models

We assume a structural causal model (SCM, see Pearl, 2000) and associated causal
model M F , which includes all possible distributions compatible with the assumed
SCM. Elements of the observed data model, M , can be thought of as being indexed
by the elements of M F , i.e., M =

{
PPU,X : PU,X ∈M F}.

Suppose now that we are interested in the outcomes of individuals had their
treatment regimen been assigned according to some rule, d. Given a particular
SCM such as the one defined above, we can write Yd , the so-called counterfactual
outcome under rule d, as the value Y would have taken on under the intervention
where A is set to the value dictated by d(L̄) as specified by the SCM.

With the counterfactual outcome Yd now defined in terms of the solution
to a system of structural equations given by the SCM, we define a corresponding
counterfactual parameter ΨF(PU,X) = EYd . Using (2),
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Ψ
F(PU,X) = EYd = ∑

l(0),l(1)
E (Yd | L(0) = l(0),Ld(1) = l(1))

1

∏
j=0

QLd( j)(l̄( j)), (3)

where QLd( j) ≡ P(Ld( j) | L̄d( j− 1)) and we omit the subscript d on L(0) since it
is prior to any treatment. In words, this parameter is the mean outcome under PU,X
when treatment is set according to Ā = d(L̄).

For the parameter of interest here, EYd , the sequential randomization as-
sumption (SRA), Yd ⊥ A( j) | Pa(A( j)) for j = 0,1, is sufficient for identification
of the causal parameter ΨF(PU,X) and a particular parameter of the observed data
distribution Ψ(P0) for some Ψ (Robins, 1986). In particular, the SRA implies

Ψ
F(PU,X) ≡ EYd

SRA
= ∑

l(0),l(1)
E
(
Y | L(0) = l(0),L(1) = l(1), Ā = d(L̄)

)
×

P(L(1) = l(1) | L(0) = l(0),A(0) = d0)×

P(L(0) = l(0))

= Ψ(P0). (4)

which is the so-called identifiability result.
Note that this parameter depends only on the Q part of the likelihood and

we therefore also write Ψ(P0) = Ψ(Q0). Note also that the first two factors in
the summand are undefined if either P

(
Ā = d(L̄) | L(0) = l(0),L(1) = l(1)

)
= 0 or

P(A(0) = d0 | L(0) = l(0)) = 0 for any (l(0), l(1)), and so we require these two
conditional probabilities to be positive (the so-called positivity assumption).

In this article we present a method for semi-parametric efficient estimation
of causal effects. This is achieved through estimation of the parameters of the G-
computation formula given above. The method is based on n independent and iden-
tically distributed observations of O, and our statistical model M , corresponding
to the causal model M F , makes no assumptions about the conditional distributions
QL( j), j = 0,1,2.

The parameter EYd can be approximated by generating a large number of
observations from the intervened distribution Pd and taking the mean of the final
outcome, in this case L(2). The joint distribution Pd can itself be approximated
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by simulating sequentially from the conditional distributions QLd( j), j = 0,1,2 to
generate the observed values L( j).

EYd can also be computed analytically:

Ψ(Q0)≡ EYd =∑
y

y ∑
l(0),l(1)

Pd [l(0), l(1),y]

SRA
= ∑

y
y ∑

l(0),l(1)
P[Y = y | Ā = d(L̄),L(0) = l(0),L(1) = l(1)]×

P[L(1) = l(1) | L(0) = l(0),A(0) = d0(L(0))]×P[L(0) = l(0)]

=∑
y

y ∑
l(0),l(1)

Qd
L(2) (l(0), l(1),y)Qd

L(1) (l(0), l(1))Qd
L(0)(l(0)),

The last expression is equivalent to the sum given in (4) if Y is binary. If L(0) is
continuous, the sum over l(0) is replaced by an integral. The integral is replaced
in turn by the empirical distribution if the expression above is approximated from a
large number of observations. In that case the last line reduces to

Ψ(Q0) =
1
n

n

∑
i=1

∑
y

y ∑
l(1)

Qd
L(2) (L(0)i, l(1),y)Qd

L(1) (L(0)i, l(1)) . (5)

The latter expression represents a well-defined mapping from the conditional dis-
tributions QL( j) to the real line. Given an estimator Qn ≡ ∏

2
j=0 QL( j)n of Q0 ≡

∏
2
j=0 QL( j) we arrive at the substitution estimator Ψ(Qn) of Ψ(Q0).

Next we describe the targeted maximum likelihood estimator (TMLE) of
the relevant parameters of the G-computation formula. The TMLE is a double-
robust and locally efficient substitution estimator. The methods described here
extend naturally to data structures with more time points, and/or more than one
time-dependent confounder per time point (van der Laan, 2010a).

3 Targeted Maximum Likelihood Estimator
With the above parameter now established to be a well-defined mapping from the
distribution of the data to the real line, we turn to the estimation of the conditional
distributions, QL( j) which are the domains of the function defining the parameter of
interest, Ψ(Q0).
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3.1 Basic Description

In targeted maximum likelihood estimation we begin by obtaining an initial estima-
tor of Q0; we then update this estimator with a fluctuation function that is tailored
specifically to remove bias in estimating the particular parameter of interest. Nat-
urally, this means that the fluctuation function is a function of the parameter of
interest. There are, of course, various methods for obtaining an initial estimator:
one can propose a parametric model for each factor QL( j) and estimate the coeffi-
cients using maximum likelihood, or one can employ machine learning algorithms
which use the data itself to build a model. The former method involves using stan-
dard software if the factors L( j) are binary. Each of these general methods in turn
has many variants. We favor machine learning, and in particular the Super Learner
approach (van der Laan et al., 2007). Utilization of machine learning for the initial
estimator Q(0) of Q can improve efficiency of the TMLEs (as well as A-IPCW) in
a randomized trial. In observational settings, in which g is unknown, the utilization
of machine learning can improve both bias and variance; in either context we feel it
is important to employ machine learning to achieve the best performance from the
double-robust estimators.

Upon obtaining an initial estimate Q(0) of Q0, the next step in TMLE is to
apply a fluctuation function to this initial estimator that is the least favorable para-
metric submodel through the initial estimate, Q(0) (van der Laan and Rubin, 2006).
This parametric submodel through Q(0) is chosen so that estimation of Ψ(Q0) is
“hardest in the sense that the parametric Cramer-Rao Lower Bound for the variance
of an unbiased estimator is maximal among all parametric submodels,” (van der
Laan, 2010a). Since the Cramer-Rao lower bound corresponds with a standardized
L2 norm of dΨ(Qn(ε))/dε evaluated at ε = 0, this is equivalent to selecting the
parametric submodel for which this derivative is maximal w.r.t. this L2 norm.

We also seek an (asymptotically) efficient estimator. This too is achieved
with the above described fluctuated update Qn(ε) because the score of our paramet-
ric submodel at zero fluctuation equals the efficient influence curve of the pathwise
derivative of the target parameter, Ψ (also evaluated at ε = 0).

TMLE thus essentially consists in 1) selecting a submodel Qg(ε) possibly
indexed by nuisance parameter g, and 2) a valid loss function L (Q,O) : (Q,O)→
L (Q,O) ∈ R. Given these two elements, TMLE solves

Pn

{
d

dε
[L (Q∗n(ε))]ε=0

}
= 0,

so if this “score” is equal to the efficient influence curve, D∗(Q∗n,gn), then we have
that Q∗n solves PnD∗(Q∗n,gn) = 0. Here we used the notation Pn f ≡ 1

n ∑
n
i=1 f (Oi).

Now a result from semi-parametric theory is that solving this efficient score for

7

Chaffee and van der Laan: TMLE for Dynamic Treatment Regimes

Published by De Gruyter, 2012



the target parameter yields, under regularity conditions (including the requirement
that Qn and gn consistently estimate Q0 and g0, respectively), an asymptotically
linear estimator with influence curve equal to D∗(Q0,g0). The TMLE of the target
parameter is therefore efficient. Moreover, the TMLE is double-robust in that it is a
consistent estimator of Ψ(Q0) if either Qn or gn is consistent.

TMLE acquires these properties by choosing the fluctuation function, Qn(ε),
such that it includes a term derived from the efficient influence curve of Ψ(Q0).

The following theorem presents the efficient influence curve for a parameter
like the ones described above. The content of the theorem will make it immediately
apparent why the fluctuation function described subsequently takes the form it does;
i.e., it will be seen how the terms in the efficient influence curve lead directly to the
form of the fluctuation function, QL( j)n(ε).

3.2 Efficient Influence Curve

We repeat here Theorem 1 from van der Laan (2010a).

Theorem 1 The efficient influence curve for Ψ(Q0) = E0Yd at the true distribution
P0 of O can be represented as

D∗ = Π(DIPCW | TQ),

where

DIPCW (O) =
I(Ā = d(L̄))

g(Ā = d(L̄) | X)
Y −ψ.

TQ is the tangent space of Q in the nonparametric model, X is the full data (in
the present context the full data X would be defined as (L(0),L(1)d,L(2)d) and
Π denotes the projection operator onto TQ in the Hilbert space L2

0(P0) of square
P0-integrable functions of O, endowed with inner product 〈h1,h2〉= EP0h1h2(O).

This subspace,

TQ =
2

∑
j=0

TQL( j)

is the orthogonal sum of the tangent spaces TQL( j) of the QL( j)-factors, which con-
sists of functions of L( j),Pa(L( j)) with conditional mean zero, given the parents
Pa(L( j)) of L( j), j = 0,1,2. Recall also that we denote L(2) by ‘Y .’

Let
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D∗j(Q,g) = Π(D j | TQL( j)).

Then

D∗0 =E(Yd | L(0))−ψ,

D∗1 =
I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X ]

{
CL(1)(Q0)(1)−CL(1)(Q0)(0)

}
×

{L(1)−E[L(1) | L(0),A(0)]} ,

D∗2 =
I[Ā = d(L̄)]

g[Ā = d(L̄) | X ]

{
L(2)−E[L(2) | L̄(1), Ā(2)]

}
,

where, for δ = {0,1} we used the notation

CL(1)(Q0)(δ )≡ E(Yd | L(0),A(0) = d(L(0)),L(1) = δ ).

We note that

E[Yd | L(0),A(0) = d0(L(0)),L(1)] = E[Y | L̄(1), Ā = d(L̄)].

We omit the rest of the theorem as presented in van der Laan (2010a) as it pertains
to data structures with up to T time points, T ∈ N.

As mentioned above, TMLE solves the efficient influence curve equation,
PnD∗(Q∗n,gn). This is accomplished by adding a covariate to an initial estimator
Q(0)

L( j) as follows. (Here L( j) is taken as binary.)

logit[QL( j)n(ε)] = logit[Q(0)
L( j)n]+ εCL( j)(Qn,gn), (6)

where, for example,

CL(1)(Q,g)≡ I[A(0) = d0(L(0))]
g[A(0) = d0(L(0)) | X ]

{
CL(1)(Q0)(1)−CL(1)(Q0)(0)

}
,

with CL(1)(Q0)(δ ) as defined in Theorem 1, and

CL(2)(Q,g)≡ I(Ā = d(L̄)))
g(Ā = d(L̄)) | X)

.

It immediately follows that this choice of QL( j)(ε) yields a score that is equal to the
efficient influence curve at ε = 0 as claimed.
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3.3 Implementation of the TMLEs

Below we briefly describe two different procedures for the fitting of ε , which we
call the one-step and iterative approaches, and which result in two distinct targeted
maximum likelihood estimators. The iterative approach estimates a common ε for
all factors for which a fluctuation function is applied, and the one-step estimator fits
each factor separately. In the latter case ‘ε’ in equation (6) should be replaced with
‘ε j.’

In a forthcoming article we present yet another method of fitting ε (see the
working paper, Chaffee and van der Laan, 2011). The method there invovles solving
the efficient influence curve equation directly, rather than indirectly by solving the
score equation.

It’s worth noting that the number of different TMLEs is not limited to the
number of methods for fitting the fluctuation function. Targeted maximum likeli-
hood estimators can also be indexed by different initial estimators, Q(0). The class
of TMLEs is defined by the fact that they all apply a specific fluctuation function
to the initial estimator Q(0) (which is explicitly designed so that the derivative of
the loss function at zero fluctuation is equal to the efficient influence curve), inde-
pendent of the choice of Q(0), and a loss function for the purposes of estimating
ε .

Of course, some choices for Q(0) are better than others in that they will be
better approximations of Q0. Doing a good job on the initial estimator has important
performance consequences.

One-Step TMLE

The one-step TMLE exploits the fact that estimates of the conditional distribu-
tions of Y and Yd are not required in order to compute the clever covariate term
of QL(2)(ε), the latter being the final Q0 term in the time-ordering of the factors

(for a two-stage sequential randomized trial). This allows one to update Q(0)
Ld(2)

≡
P(Yd = 1 | Ld(1),L(0)) = EQ(0)[Yd | Ld(1),L(0)] with its fluctuation ε2CL(2)(Q,g)
first, then use this updated (i.e., fluctuated) estimate Q∗L(2) in the updating step of
the QL(1) term. We remind the reader that the efficient influence curve—and hence
CL( j)(Q,g)—is parameter-specific, and therefore different parameters (which in our
context amounts to different EYd indexed by d) will have different realizations of
the clever covariates.

As with the maximum likelihood estimator (discussed in section 4), both
estimators (one-step and iterative) require an initial estimate Q(0)

L( j) of QL( j) for
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j = 0,1,2, where Q(0)
L(0) ≡ PQ(0)(L(0)) will just be estimated by the empirical dis-

tribution of L(0). Thus the estimates Q(0)
L( j), j = 1,2 would just be, e.g., the ML

estimates if that is how one obtains an initial estimate of Q0. Upon obtaining these
initial estimates of Q0, one then computes an “updated” estimate Q∗L(2) by fitting
the coefficient ε2 using (in this case of binary factors), logistic regression. The es-
timate of ε2 is thus an MLE. This means computing a column of values of CL(2)
(one value per observation) and then regressing the outcome L(2) on this variable
using the logit of the initial prediction (based on Q(0)

L(2)) as offset. That is, for each
observation a predicted value of L(2) on the logit scale is generated based on the
previously obtained Q(0)

L(2). Then ε2,n is found by regressing L(2) on the computed

column CL(2) with logit
(

Q(0)
L(2)

)
as offset. (This is achieved in R with the offset

argument in the glm function.)
Note that this clever covariate, CL(2), requires an estimate of g(Ā | X) =

g(Ā | L(0),L(1)) (the latter equality valid under the sequential randomization as-
sumption). With A(0) random and A(1) a function of L(1) only, and if L(1) is
binary or discrete, this estimate is easily obtained non-parametrically. If L(1) is
continuous, some modeling will be required.

Having obtained an estimate Q∗L(2) (which is parameter-dependent, and hence
targeted at the parameter of interest), one then proceeds to update the estimate of
QL(1) by fitting the coefficient ε1,n—again using logistic regression if L(1) is bi-
nary. Note that CL(1)(Q,g) involves an estimate of QL(2). Naturally, we use our
best (parameter-targeted) estimate for this, Q∗L(2), which was obtained in the pre-
vious step. Q∗ = (Q∗L(1),Q

∗
L(2)) now solves the efficient influence curve equation,

and iterating the above procedure will not result in an updated estimate of Q∗—i.e.,
the kth iteration estimate ε(k) will be zero for all k > 1 if the procedure is repeated
using the Q∗ obtained in the previous round as initial estimator. Armed now with
the updated estimate Q∗ ≡ (Q∗L(1),Q

∗
L(2)), we obtain the one-step TMLE, Ψ(Q∗),

from the G-computation formula (5) for our parameter of interest with Q∗ in place
of Q0.

When L(1) is multilevel—say, four levels—one can model QL(1) as follows.
Code each of the categories for L(1) ∈ {0,1,2,3} as a binary indicator variable,
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L(1,m), m = 0,1,2,3:

P[L(1) = m | Pa(L(1))] = P[L(1) = m | L(1)≥ m,Pa(L(1))]∗P[L(1)≥ m | Pa(L(1))]

= P[L(1,m) = 1 | L(1)≥ m,Pa(L(1))]
m−1

∏
m′=0

{
1−P[L(1,m′) = 1 | L(1)≥ m′,Pa(L(1))]

}
= QL(1,m)(1, L̄(1,m−1) = 0,Pa(L(1)))

m−1

∏
m′=0

QL(1,m′)(0, L̄(1,m
′−1) = 0,Pa(L(1))),

where L̄(1,s) = (L(1,s),L(1,s−1), ...,L(1,0)). In this way, the conditional density
of each binary factor of L(1), QL(1,m), can be estimated using logistic regression.
We now denote QL(1) = ∏

3
m=0 QL(1,m).

To estimate these binary conditional densities, one creates a new data set
analogous to a repeated measures data set, in which the number of rows correspond-
ing to each observation is determined by the value of m for which L(1,m) = 1. For
example, suppose that for individual i, L(1)i = 2 and therefore L(1,2)i = 1. Then
i will contribute three rows of data where the values in the cells for each row are
identical except for two columns: a column that denotes an indicator and an adja-
cent column corresponding to the increasing values of m from 0 to 2. The rows for
the indicator column for this individual are 0 up until m = 2 (at which the indicator
is 1), and the next row is the first row for the next individual in the dataset. One
now performs a logistic regression of the column corresponding to the indicator on
the parents of L(1), including the column for m.

Now with conditional densities for these binary indicator variables in hand,
one can proceed with the targeting step. Each QL(1,m), m = 0,1,2,3 is updated by
adding a clever covariate term. The terms are again derived from the corresponding
part of the efficient influence curve associated with the likelihood of the data, as
factorized according to this new data structure with binary indicator variables (see
Appendix I). One can see from these terms that the updating proceeds as above
for the binary L(1) case, i.e., one computes CL(2) first, then the terms CL(1,m), m =
0,1,2,3 in sequence backwards in time, starting with CL(1,3), and performs logistic
regression to obtain the estimates of ε . Again, this process of computing the clever
covariates and estimating the corresponding ε ′s converges in one round.

Iterative TMLE

The procedure here corresponds to estimating ε with the MLE,

εn = argmax
ε

2

∏
j=1

n

∏
i=1

QL( j),n(ε)(Oi).
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In contrast to the one-step approach, here we estimate a single/common ε for all
factors QL( j), j = 1,2.

This iterative approach requires treating the observations as repeated mea-
sures. Thus, (assuming L(1) binary for the moment), each observation contributes
two rows of data, and instead of a separate column for L(1) and L(2), the values
from these columns are alternated in a single column one might call “outcome.”
Thus the first two rows in the data set correspond to the first observation. Both rows
are the same for this first observation except for three columns: those for outcome,
offset and clever covariate. There are no longer separate columns for L(1) and L(2),
nor for the offsets, and there is likewise a single column for CL( j). The rows for all
three columns alternate values corresponding to j = 1 and j = 2 (as described for
L( j)).

If L(1) is multi-level, the repeated measures for each observation consists
of the rows described in the previous section, plus one row for L(2).

Maximum likelihood estimation of ε is then carried out by running logis-
tic regression on the outcome with CL( j) as the sole covariate (this column contains

CL(1,m) for all non-degenerate m if L(1) is discrete), and with logit
(

Q(0)
L( j)

)
as offset.

This value of εn is used as coefficient for the clever covariates in the QL( j)(ε) terms
for the next iteration. Note that CL(1) : (Qn,gn)→ CL(1)(Qn,gn). Thus for the kth

iteration (k = 1,2, ...), C(k)
L(1) =C(k)

L(1)(Q
(k−1)
n ,gn), and gn is not updated. The process

can be iterated till convergence. Convergence is hardly required, however, if the dif-
ference |ψ(k−1)

n −ψ
(k)
n | is much smaller than var(ψ(k−1)

n ). Here ψ
(k)
n ≡Ψ(Q(k)(ε))

is the kth iteration TMLE of the parameter, and the estimated variance, varn(ψ
(k−1)
n )

can be used in place of the true variance. Our simulations suggest that the iterated
values of ψ

(k)
n are approximately monotonic, and in any case, the value of |εn| for

successive iterations typically diminishes more than an order of magnitude. The
latter fact implies that successive iterations always produce increasingly smaller
values of the absolute difference |ψ(k−1)

n −ψ
(k)
n |, which means that once this dif-

ference meets the above stated criterion, the process is complete for all practical
purposes.

4 Simulations
We simulated data corresponding to the data structure described in section 2 under
varying conditions. The specifics of the data generation process are given in the ap-
pendix. The conditions chosen illustrate the double-robustness property of TMLE
and EE, and behavior at various sample sizes. We report on simulations in which
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A(0) was assigned randomly but A(1) was assigned in response to an individual’s
L(1); the latter corresponding to an individual’s intermediate response to treatment
A(0). The specification of these dynamic regimes are given in the following section.

Simulations were divided into two main cases: binary L(1), and discrete
L(1) with four levels. For each simulated data set, we computed the estimate of the
target parameter Ψ(P0) ≡ EYd for three specific rules using the following estima-
tors: 1) One-step TMLE; 2) Iterative TMLE; 3) Inverse Probability of Treatment
Weighting (IPTW); 4) Efficient Influence Curve Estimating Equation Methodology
(EE); 5) Maximum Likelihood Estimation using the G-computation formula. In the
Results subsection we give bias, variance and relative MSE estimates.

Here is a brief description of each of the estimators examined.

• Maximum Likelihood
The (parametric) MLE requires a parametric specification of QL( j) for com-
putation of the parameter estimate, Ψ(Q0). The form used (e.g., QL( j),n =

expit[m(L̄( j− 1), Ā( j− 1) | βn)] for some function m(· | ·)) was either that
of the correct QL( j) or a purposely misspecified form, and in either case the
MLE of the coefficients β were obtained with common software (namely, the
glm function in the R language). The estimate of EYd was then computed
using the G-computation formula (5), which, e.g., with binary Y and binary
L(1), and using the empirical distribution of L(0) is

Ψ(Q0) =
1
n

n

∑
i=1

∑
y

y ∑
l(1)

Qd
L(1)(L(0)i, l(1))Qd

L(2)(L(0)i, l(1),y)

=
1
n

n

∑
i=1

{
Qd

L(1)(L(0)i, l(1) = 1)Qd
L(2)(L(0)i, l(1) = 1,y = 1)

+Qd
L(1)(L(0)i, l(1) = 0)Qd

L(2)(L(0)i, l(1) = 0,y = 1)
}
.

The maximum likelihood estimator, which is a substitution estimator, can
thus be expressed as ΨMLE

n = Ψ

(
Q(0)

)
, where for each factor Qd

L( j) in the

G-computation formula, the corresponding MLE, Q(0)d
L( j) is substituted, and

where Q(0),d ≡ QMLE,d .
The estimator thus requires estimations of QL( j) ≡ P(L( j) | Pa(L( j))), which
as mentioned above, were correctly specified for one set of simulations and
incorrectly specified for another.
• One-Step TMLE

See Implementation section above. The initial estimator of Q0 is the MLE
estimator given above.
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• Iterative TMLE
See Implementation section above. Here also the initial estimator of Q0 is the
MLE estimator.
• IPTW

The IPTW estimator is defined to be

ψ
IPTW
n =

1
n

n

∑
i=1

Yi
I(Āi = d(L̄)

g[Āi = d(L̄) | Xi]
.

As with TMLE, this estimator requires estimation of g[Ā = d(L̄) | X ], which
for binary factors and binary treatment is a straightforward non-parametric
computation. The IPTW estimator is known to become unstable when there
are ETA violations, or practical ETA violations. Adjustments to the estimator
that compensate for these issues have been proposed (Bembom and van der
Laan, 2008). In the simulations at hand, g[Ā = d(L̄) | L̄] was bounded well
away from 0 and 1 but was nevertheless not estimated at all (the true distri-
bution of A | X was used). However, van der Laan and Robins (2003) show
that there is some efficiency gain in estimating g(Ā | L̄) over using the known
true g.
• Estimating Equation Method

This method solves the efficient influence curve estimating equation in ψ .
That is,

ψ
EE
n = PnEQn(Yd | L(0))+

1
n ∑

i

{
D∗1,n(Oi)+D∗2,n(Oi)

}
,

with D∗1,n,D
∗
2,n as given in Theorem 1 except that the true conditional expec-

tations of Y and of Yd in the expressions for D∗1 and D∗2 are replaced with their
respective sample estimates. The only difference between this estimator and
the so-called augmented inverse probability of censoring weights (A-IPCW)
estimator is in the way the expression for the efficient influence curve is de-
rived. The results for the A-IPCW estimator should be identical to those for
the one we describe here.
Just as with the TMLE, this estimator requires model specifications of QL( j),
j = 1,2 for estimation of E(Yd | L(0)) and for the elements of D∗1,D

∗
2 that

involve conditional expectations of Yd and of Y . Here again we used the
ML estimates of QL( j), under both correct and incorrect model specification
scenarios, i.e., we used Qn = Q(0) for the factors involving estimates of Q0 in
the estimating equation above. (See description of the Maximum Likelihood
Estimator above.)
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4.1 Some Specific Treatment Rules

We considered several treatment rules, one set for binary L(1) (three different
rules), and a necessarily different set (also three separate rules) for the discrete
L(1) case. This permits easy computation of the natural parameters of interest
EYdi − EYd j , for i 6= j, where in our case, i, j = 1,2,3. Indeed such parameters
are arguably the ultimate parameters of interest to researchers utilizing longitudinal
data of the type described here, since they implicitly give the optimum treatment
rule among those considered. As the number of discrete levels of L(1) increases,
one can begin considering indexing treatment rules by threshold levels θ of L(1)
such that, e.g., assuming binary A(0) and A(1), one could set A(1) according to
A(1) = [1−A(0)]I(l(1)< θ)+ [A(0)]I(l(1)≥ θ).

Binary L(1)

In the binary L(1) case, we considered the following three treatment rules

• Rule 1. A(0) = 1, A(1) = A(0) ∗ I(L(1) = 1)+ (1−A(0)) ∗ I(L(1) = 0). In
words, set treatment at time 0 to treatment 1, and if the patient does well on
that treatment as defined by L(1) = 1, continue with same treatment at time
1. Otherwise, switch at A(1) to treatment 0.
• Rule 2. A(0) either 0 or 1, and A(1) = A(0). That is, A(0) can be either 0

or 1, but whatever it is, stay on the same treatment at time 1, independent of
patient’s response to treatment A(0).
• Rule 3. A(0) = 0, A(1) = A(0) ∗ I(L(1) = 1)+ (1−A(0)) ∗ I(L(1) = 0). In

words, set treatment at time 0 to 0 and if the patient does well, stay on treat-
ment 0 at time 1, otherwise switch to treatment 1 at A(1). This is identical to
Rule 1 except that patients start on treatment 0 instead of treatment 1.

Note that estimation of, or evaluation of, a rule-specific parameter does not
require that patients were actually assigned treatment in that manner, i.e., according
to the rule. If patients were assigned treatment randomly, then one simply needs
to know which individuals in fact followed the rule in order to estimate the rule-
specific mean outcome. In this case, and with P(A(0) = 1) = P(A(1) = 1) = 0.5,
one could also construct the simple, consistent estimator (1/nd)∑iYiI(Āi = d(L̄i)),
where nd = ∑i(Āi = d(L̄i)), but this estimator is inefficient relative to the double-
robust estimators.

On the other hand, if treatment was indeed assigned according to, e.g., one
of the above treatment rules, then L(1) is a time-dependent confounder. These are
really the cases of interest. If one’s estimator does not adjust for confounding in
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these cases it will be biased. All the estimators we compared attempt to adjust for
confounding in one way or another.

Discrete L(1) with Four Values

With discrete-valued L(1) (L(1) ∈ {0,1,2,3}), the treatment rules were necessarily
modified slightly to accommodate the additional values. The analog of rule 1 above,
for example, is of the form

• A(0) = 1, A(1) = A(0)∗ I(L(1)> l(1))+(1−A(0))∗ I(L(1)≤ l(1)) for some
l(1) ∈ {0,1,2,3}.

4.2 Simulation Results

Notes on the tables

Estimates of bias, variance and relative mean squared error (Rel MSE) are presented
for the TMLEs and several comparison estimators. We define relative MSE for each
estimator as the ratio of its MSE to that of an efficient, unbiased estimator. The
efficiency bound here is the variance of the efficient influence curve. Thus for each
estimator ψn of ψ0,

Rel MSE≡ (E(ψn)−ψ0)
2 + var(ψn)

var(D∗(Q,g))/n
,

where D∗ is the efficient influence curve for the relevant parameter, ΨF . In fact, the
value used in these computations for var (D∗(Q,g)) is itself an estimate computed
from taking the variance of D∗(Q0,g0)(O) from a large number of observations
generated from P0.

The bias values shown are not accurate to much less than 10−3. This is
because the true parameter values were also obtained by simulation from the true Pd
for each rule d with a large number of observations. Thus bias estimates that appear
to be smaller than this should be viewed as simply being < 10−3. We indicate these
estimates with an asterisk.

Qm,gc denotes results where g (the treatment mechanism) was correctly
specified, but QL(2) was purposely misspecified. Qc,gc are simulations for which
both Q and g are correctly specified. In an SRCT, we expect g to be known and thus
did not perform analyses with a misspecified g. For each trial scenario we present
results for both Qc,gc and Qm,gc. Note that the IPTW estimator is not affected by
whether or not Qn is correctly specified, since it does not estimate Q0.
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Varying numbers of simulations were done under the different scenarios.
The number of simulations under each configuration (i.e., a given scenario and
either Qc,gc or Qm,gc) ranged from 1990 to 5000 depending on computation time.

Confidence Intervals and Coverage Estimates

Table 3 gives influence curve-based estimates of the true coverage for computed
95% confidence intervals for the two TMLEs. The latter were computed for each
simulated data set by estimating the variance of the efficient influence curve using
that data set.

Scenario I: Binary L(1); A(1) Assigned in Response to L(1)

For brevity we only include the performance of the estimators for a single parame-
ter, EY1. The results for the other treatment-rule-specific parameters are similar.

Scenario II: Discrete L(1); A(1) Assigned in Response to L(1)

With discrete L(1) we modeled the binary factors QL(1,m) similarly to the way these
factors were generated, i.e., using a hazard approach (see Appendix II). Thus each
binary factor is modeled with logistic regression: as with the binary case, an initial
estimate Q(0)

L(1,m)
is obtained by logistic regression (where this estimator could be

correctly or incorrectly specified) and a corresponding fluctuation function applied.

Small Sample Results

We also simulated data under scenario II above for a sample size of 30. We an-
ticipated efficiency differences (if any) between the iterative and one-step TMLEs
would show up at this very small sample size (see Discussion section). We saw no
significant difference in the variance of these two estimators, however. The perfor-
mance of the TMLEs at this sample size is remarkable, particularly under model
misspecification, and we felt these results warranted a separate table (see Table 4).

4.3 Discussion

Relative efficiency for the ML estimator is almost always≤ 1. The semi-parametric
efficiency bound does not apply in general to that of an estimator based on a para-
metric model. Even so, when Q is correctly specified, the variance of the ML
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Qc,gc
TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias 3.0e-3 2.8e-3 -1.5e.3 1.2e-3 1.8e-3
Var 3.9e-3 3.9e-3 1.1e-2 3.9e-3 3.8e-3
Rel MSE 1.3 1.3 3.9 1.3 1.3

n = 250
Bias * * -2.4e-3 1.0e-3 *
Var 1.3e-3 1.3e-3 4.6e-3 1.3e-3 1.3e-3
Rel MSE 1.1 1.1 3.9 1.1 1.1

n = 500
Bias * * -1.7e-3 * *
Var 6.3e-4 6.3e-4 2.3e-3 6.3e-4 6.3e-4
Rel MSE 1.1 1.1 4.0 1.1 1.1

Qm,gc
TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias 3.9e-3 3.5e-3 1.5e-3 -1.2e-1 -1.2e-3
Var 4.5e-3 4.5e-3 1.1e-2 2.8e-3 4.1e-3
Rel MSE 1.6 1.5 3.9 6.3 1.4

n = 250
Bias 1.4e-3 1.1e-3 -2.4e-3 -1.3e-1 -1.3e-3
Var 1.7e-3 1.7e-3 4.6e-3 1.1e-3 1.6e-3
Rel MSE 1.4 1.4 3.9 14.6 1.4

n = 500
Bias * * -1.7e-3 -1.3e-1 *
Var 8.7e-4 8.6e-4 2.3e-3 5.7e-4 8.3e-4
Rel MSE 1.5 1.5 4.0 28.5 1.4

Table 1: Scenario I Results: Performance of the various estimators in estimating EY1 at various
sample sizes. ‘Qc, gc’: Q correctly specified, g correctly specified; ‘Qm, gc’: Q misspecified, g
correctly specified. Iterative TMLE estimates in this table were for the 5th iteration. Asterisks
indicate bias < 10e-3.
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Qc,gc
TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias -3.1e-3 -3.0e-3 -3.2e-3 -2.6e-3 -3.3e-3
Var 5.5e-3 5.5e-3 2.0e-2 4.9e-3 5.4e-3
Rel MSE 1.1 1.1 4.0 1.0 1.1

n = 200
Bias -1.5e-3 -1.4e-3 3.8e-3 1.2e-3 -1.5e-3
Var 2.6e-3 2.6e-3 1.2e-2 2.3e-3 2.6e-3
Rel MSE 1.0 1.0 4.1 0.9 1.0

n = 500
Bias * * 1.3e-3 * *
Var 1.0e-3 1.0e-3 4.3e-3 9.0e-4 1.0e-3
Rel MSE 1.0 1.0 4.2 0.9 1.0

Qm,gc
TMLE (1-step) TMLE (Iter) IPTW MLE EE

n = 100
Bias -1.7e-3 -1.7e-3 -3.2e-3 -7.0e-2 -3.2e-3
Var 5.2e-3 5.2e-3 2.0e-2 2.9e-3 5.1e-3
Rel MSE 1.0 1.0 4.0 1.5 1.0

n = 200
Bias -1.9e-3 -1.9e-3 3.8e-3 -7.0e-2 -2.2e-3
Var 2.6e-3 2.6e-3 1.2e-2 1.5e-3 2.6e-3
Rel MSE 1.0 1.0 4.1 2.5 1.0

n = 500
Bias * * 1.3e-3 -7.0e-2 *
Var 1.1e-3 1.1e-3 4.3e-3 6.4e-4 1.1e-3
Rel MSE 1.1 1.1 4.2 5.5 1.0

Table 2: Scenario II Results: Performance of the various estimators in estimating a single pa-
rameter, EY1, for various sample sizes. ‘Qc, gc’ means Q correctly specified, g correctly specified,
while ‘Qm’ means Q misspecified. Iterative TMLE estimates in this table were for the 3rd iteration.
Asterisks indicate bias < 10e-3.
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Scenario I
n = 100 250 500

Qc,gc
TMLE (1-step) 0.85 0.92 0.93
TMLE (iter) 0.85 0.92 0.94

Qm,gc
TMLE (1-step) 0.91 0.93 0.94
TMLE (iter) 0.91 0.93 0.94

Scenario II
n = 100 200 500

Qc,gc
TMLE (1-step) 0.88 0.91 0.94
TMLE (iter) 0.89 0.91 0.94

Qm,gc
TMLE (1-step) 0.91 0.92 0.95
TMLE (iter) 0.91 0.92 0.95

Table 3: Coverage for nominal 95% confidence intervals under both data generation scenarios for
the two TMLEs at various sample sizes.

Qc,gc
Bias Var Rel MSE

TMLE (1-step) -0.016 0.023 1.4
TMLE (iter) -0.021 0.022 1.4
IPTW 3.7e-3 0.069 4.1
MLE -0.035 0.021 1.3
EE -0.027 0.021 1.3

Qm,gc
Bias Var Rel MSE

TMLE (1-step) -6.5e-3 0.019 1.2
TMLE (iter) -7.0e-3 0.019 1.1
IPTW 3.7e-3 0.069 4.1
MLE -3.0e-1 0.070 9.4
EE -9.8e-3 0.027 1.6

Table 4: Scenario II Data, at n= 30: Performance of the various estimators in estimating EY1. ‘Qc,
gc’ means Q correctly specified, g correctly specified, while ‘Qm’ means Q misspecified. Iterative
TMLE estimates in this table were for the 4th iteration.
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estimator appears to be very close to the semi-parametric efficiency bound when
n≥ 200.

Of particular note is that the TMLE, EE and MLE estimators are already
very close to the efficiency bound at n = 250 under Qc in the binary L(1) case.
Further, the reduction in bias in going to n = 500 is small in absolute terms.

Even more noteworthy is the performance of the TMLEs at the small sam-
ple size of 30 for the scenario II simulations (discrete L(1)). Bias and variance of
both estimators are better when Q(0) is misspecified. Misspecification in this case
consisted in setting Logit(QL(2)) = 3∗L(1) (compare with the true data generating
function given in Appendix II), but using correct specification for QL(1). With Q(0)

misspecified, the bias of both TMLEs is quite small and the variance is very close
to the efficiency bound. EE also shows lower bias under incorrect Q, but not lower
variance. The better performance under misspecification can be understood by not-
ing that under correct model specification, many more parameters of the model must
be fit. We expect that asymptotically, there is a gain in efficiency of the TMLEs and
EE if Q(0) is consistently estimated, but these simulations show that a parsimo-
nious model as initial estimator, even if misspecified, can have distinct advantages
in TMLE at small sample sizes.

The effect is still noticeable at sample size 100 in the discrete L(1) case.
There we also see lower bias of the TMLEs under incorrect model specification than
under correct model specification. This phenomenon is not present in the scenario
I simulations however.

The advantage of the TMLEs’ being substitution estimators also becomes
apparent in these small sample results: at n = 30, many times the EE and IPTW
estimators gave estimates outside the bounds of the model (EYd ∈ [0,1]). Indeed,
under Qm, the EE estimator gave estimates of EY1 > 1 more than 13% of the time.
For more extensive performance comparisons between TMLE and other double ro-
bust estimators (including the A-IPCW estimator) under various conditions, includ-
ing sparsity/positivity violation conditions, see, e.g., Porter et al. (2011), Stitelman
et al. (2011), Gruber and van der Laan (2010), Stitelman and van der Laan (2010)
and van der Laan and Rose (2011).

In general, under incorrect specification of Q we do not expect any of the
estimators that estimate Q0 to be asymptotically efficient except for the MLE, which
used a much simpler model than the true model and therefore could easily achieve
a lower variance bound. Misspecification of Q in all cases meant misspecifying
Q(0)

L(2) but correctly specifying QL(1). Thus under Qm,gc the MLE will be biased
but the TMLE and EE estimators are double robust and therefore still asymptoti-
cally unbiased under correct specification of g. Under the scenarios simulated here
g is expected to be known and we therefore omitted simulations in which g is mis-
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specified; the latter will of course result in bias of the IPTW estimator. Scenarios in
which g is not known, or not completely known are also quite plausible, however;
e.g., one can easily imagine settings in which assignment of A(0) and/or A(1) was
not done in complete accordance with a defined treatment rule. Nevertheless, even
in these cases, with A(0) randomized and L(1) discrete or binary, non-parametric
estimation of g would not be difficult. If A(0) is a function of L(0) then some
smoothing will be required for the estimate of g(A(0) | L(0)) and model misspeci-
fication is likely to arise.

The two versions of TMLE we’ve implemented (one-step and iterative) typ-
ically agree in their estimate of the parameter to within 1%, and in many cases
to within quite a bit less than this. For the two time-point data structure we’ve
simulated, the one-step estimator is conceptually easier to implement than the it-
erative approach, and slightly faster computationally. As the number of estimated
factors increases (either from having multiple time points, multiple covariates in
L( j), 1 < j < K, or both), the iterative method may become the more practical
programming choice.

Also noteworthy is that the one-step TMLE requires estimation of two ε’s
in the binary L(1) case and four ε’s in the discrete L(1) case. For the general data
structure (L(0),A(0), ...L(K),A(K),L(K+1)) where intermediate factor L( j) has t j

levels, the number of ε’s the one-step estimator must fit is ∑
K+1
j=1 (t j−1). In contrast,

the iterative TMLE performs a fitting of ε that is independent of K and t j. (Though
a new round of fitting occurs for each iteration, the bulk of the fitting occurs in
the first iteration.) We thus expected at least a small efficiency advantage for the
iterative method, though we have not observed it in the simulations presented here,
even in sample sizes as low as 30.

Comparison of the TMLE and Estimating Equation Methods

The fundamental differences between targeted maximum likelihood estimation and
estimating equation-based estimation have been detailed in the seminal targeted
maximum likelihood paper (van der Laan and Rubin, 2006) and elsewhere (see,
e.g., van der Laan and Rose, 2011). The differences bear repeating, however, and
we give a synopsis of them here.

The most essential difference is summed up in the fact that a TMLE is de-
fined as a (particular) substitution estimator—i.e, an estimator that can be repre-
sented as Ψ(P∗n ) for an estimator P∗n in the statistical model M —and an EE estima-
tor is not. This difference has important ramifications.

The EE algorithm is defined by writing the efficient influence curve, D(P),
as an estimating function D(ψ,η) in terms of parameter ψ and nuisance parameter
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η , and solving for ψ (van der Laan and Robins, 2003). In general, being able to
express D(P) in such a form is not a reasonable requirement for parameters and
models. In contrast the TMLE algorithm (described in section 3.1) does not rely on
the efficient influence curve’s being an estimating function.

The TMLE definition also does not rely on an estimating equation’s having
a unique solution, while EE is only well defined if the estimating equation has a
unique solution in ψ . The existence of multiple solutions of estimating equations
is a common phenomenon, just as a log-likelihood can have multiple local maxima
(and thus multiple solutions for the associated score equation) even though it has a
unique maximum. The TMLE P∗n of P is not defined as a solution of the equation
0 = ∑i D∗(P)(Oi) in P either (it is not even sensible to state that PnD(P) = 0 has a
unique solution in P, since there is a whole class of P’s that solve it)—it just happens
to solve the efficient score equation 0=∑i D∗(P∗n )(Oi) as a by-product of iteratively
maximizing the likelihood (or other loss) along a least-favorable submodel.

Instead of having to deal with multiple solutions of an equation, one might
well be faced with an estimating equation with no solution at all (in its parame-
ter space); this can occur, for example, under practical violations of the positivity
assumption. In the estimation problem addressed in this article, with positive prob-
ability the relevant estimating equation is only solved by a negative number, or
number larger than 1. We noted this behavior of the EE estimator—i.e., giving an
estimate that’s not even a probability—in the Results section above.

As mentioned above, dramatic differences in finite sample performance be-
tween EE (of which A-IPCW is an example) and TMLE under practical violations
of the positivity assumption have been established in many settings. The erratic be-
havior of EE in such cases is mainly due to its not respecting the global constraints
imposed by the target parameter mapping defined on the statistical model. Such
differences in behavior are not expected in a sequentially randomized trial in which
the treatment mechanism is known and nicely bounded away from zero, and sample
size is reasonably large, but the differences can be quite apparent in observational
settings or for very small sample sizes in the sequentially randomized trial setting
(as seen here).

Appendix I: Efficient Influence Curve for Discrete L(1)

In the following, D∗1,m indicates the efficient influence curve for the mth binary in-
dicator of L(1),m = 0,1,2,3, and Pa(L(1)) = (L(0),A(0)). We have
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D∗1,0(O) =
I(A(0) = d0(L(0)))

g(d0(L(0)) | X)
{E(Yd | L(1) = 0,Pa(L(1)))−

∑
m>0

E [Yd | L(1) = m,Pa(L(1))]P(L(1) = m | L(1)> 0,Pa(L(1)))}×

{I(L(1) = 0)− I(L(1)≥ 0)E[I(L(1) = 0) | Pa(L(1))]},

where, e.g.,

P(L(1) = 2 | L(1)> 0,Pa(L(1)))

=
P(L(1) = 2,L(1)> 0 | Pa(L(1)))

P(L(1)> 0 | Pa(L(1)))

=
P(L(1) = 2) | Pa(L(1))

1−P(L(1) = 0 | Pa(L(1)))

=
P(L(1) = 2 | L(1)≥ 2,Pa(L(1)))∏s<2 [1−P(L(1) = s | L(1)≥ s,Pa(L(1)))]

1−P(L(1) = 1 | Pa(L(1))
= P(L(1) = 2 | L(1)≥ 2,Pa(L(1))) [1−P(L(1) = 1 | L(1)≥ 1,Pa(L(1)))] ,

and

P(L(1) = 3 | L(1)> 0,Pa(L(1)))

= P(L(1) = 3 | L(1)≥ 3,Pa(L(1)))
2

∏
s=1

[1−P(L(1) = s | L(1)≥ s,Pa(L(1)))]

= 1∗
2

∏
s=1

[1−P(L(1) = s | L(1)≥ s,Pa(L(1)))] .

Similarly,

D∗1,1(O) =
I(A(0) = d0(L(0)))

g(d0(L(0)) | X)
{E(Yd | L(1) = 1,Pa(L(1)))−

∑
m>1

E [Yd | L(1) = m,Pa(L(1))]P(L(1) = m | L(1)> 1,Pa(L(1)))}×

{I(L(1) = 1)− I(L(1)≥ 1)E[I(L(1) = 1) | L(1)≥ 1,Pa(L(1))]},
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and

E[I(L(1) = m) | L(1)≥ m,Pa(L(1))]≡ P(L(1) = m | L(1)≥ m,Pa(L(1))).

D∗1,2(O) is similar, but D∗1,3(O) = 0 since

I(L(1) = 3)−I(L(1)≥ 3)E[I(L(1) = 3) | L(1)≥ 3,Pa(L(1))]

=I(L(1) = 3)− I(L(1) = 3)∗E[I(L(1) = 3) | L(1)≥ 3,Pa(L(1))]

=I(L(1) = 3)− I(L(1) = 3)∗P[L(1) = 3 | L(1)≥ 3,Pa(L(1))]

=I(L(1) = 3)− I(L(1) = 3)∗1 = 0.

Thus the efficient influence curve for EYd is

D∗(O) = D∗0(O)+
3

∑
m=0

D∗1,m(O)+D∗2(O),

with D∗0(O) and D∗2(O) exactly as given in Theorem 1.

The expression for clever covariate CL(1,m) follows immediately from D∗1,m
as simply the IPCW term times the first bracketed term. So, for example, CL(1,2)
would be

CL(1,2) =
I(A(0) = d0(L(0)))

g(d0(L(0)) | X)
{E(Yd | L(1) = 2,Pa(L(1)))−

∑
m>2

E [Yd | L(1) = m,Pa(L(1))]P(L(1) = m | L(1)> 2,Pa(L(1)))}.

Appendix II: Data Generation
In this appendix we describe the data generation process for each of the variables in
the causal model. There are notable differences in the two major sets of simulations
(i.e., the binary L(1) case vs. the discrete L(1) case).
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• L(0)
For both binary and discrete L(1) cases, L(0) consisted of four baseline co-
variates, L(0) = (W1, ...,W4)

T , three of which were distributed Normally, i.e.,

(W1,W2,W3)
T ∼ N(µ,Σ),

with µ = (0,−0.35,0)T and with all off-diagonal terms of Σ set to 0. The
fourth baseline covariate W4 was distributed as a truncated normal, also in-
dependent of the other baseline variables. Specifically, let random variable
W ′ ∼ N(5,1.52). Then

W4 =

{
W ′ if 2 <W ′ < 8

0 otherwise

• A(0)
A(0) was assigned randomly for all simulations, A(0)∼ Ber(0.5)
• L(1)

– (1) Binary In the binary L(1) case,
L(1)∼ Ber([1+ exp(−(Logit[QL(1)]))]

−1), where

Logit[QL(1)] =
1

2.5(2−W1−W4−2W 2
2 +1.8W 2

3 −3W4W3+3A(0)+2(1−
A(0))).

and with W1, ...W4 as defined above.
– (2) Discrete The conditional probabilities for each factor L(1,m), m =

0,1,2, were generated as follows.
logit[QL(1,0)] =

1
6.5 [−15−W1−W4−2W 2

2 +1.8W 2
3 −3W4W3 +

3A(0)+2(1−A(0))],
logit[QL(1,1)] = logit[QL(1,0)]+2.8,

logit[QL(1,2)] = logit[QL(1,1)]+4.2.

• A(1)

– (1) Binary L(1) A(1) was set according to

A(1) =
{

A(0) if L(1) = 1
A(0) with probability 0.5 otherwise

– (2) Discrete L(1) A(1) in the discrete case was set according to
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A(1) =
{

A(0) if L(1)> 1
A(0) with probability 0.5 otherwise

• L(2)
– (1) Binary L(1) For the binary L(1) simulations,

L(2)∼ Ber([1+ exp(−(Logit[QL(2)]))]
−1), where

Logit[QL(2)] =
1

2.5 (2−W1−W4−2W 2
2 +1.8W 2

3 −3W4W3 +3A(0)+2(1−A(0))+
2L(1)−1.5(1−L(1))+6∗ I(d(L̄) = 1)−6.5∗ I(d(L̄) = 2)−
W1(1−A(0))+W4A(1))).

– (2) Discrete L(1) For the simulations with discrete L(1),
L(2)∼ Ber([1+ exp(−(Logit[QL(2)]))]

−1), where

Logit[QL(2)] =
1
6 (−7−W1−W4−0.7W 2

2 +0.6W 2
3 −W4W3 +9A(0)+

3(1−A(0)))+1.4L(1)−W1(1−A(0))+W4A(1)+6∗ I(d(L̄) = 3).

In the above expressions I(d(L̄) = j), j = 1,2,3 is equal to 1 if rule j was followed
at both treatment time points (as described in section 4.1) and 0 otherwise.
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