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Abstract
There is quite an extensive literature on the deleterious impact of exposure misclassification

when inferring exposure-disease associations, and on statistical methods to mitigate this impact.
Virtually all of this work, however, presumes a common number of states for the true exposure
status and the classified exposure status. In the simplest situation, for instance, both the true status
and the classified status are binary. The present work diverges from the norm, in considering
classification into three states when the actual exposure status is simply binary. Intuitively, the
classification states might be labeled as `unlikely exposed,' `maybe exposed,' and `likely exposed.'
While this situation has been discussed informally in the epidemiological literature, we provide
some theory concerning what can be learned about the exposure-disease relationship, under various
assumptions about the classification scheme. We focus on the challenging situation whereby no
validation data is available from which to infer classification probabilities, but some prior assertions
about these probabilities might be justified.
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identification.
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1 Introduction

It is well known that unacknowledged exposure misclassification can bias esti-
mates of exposure-disease association. Consider, for example, a binary expo-
sure subject to misclassification, with the extent of misclassification described
by sensitivity and specificity, i.e., the probability of correct classification for
exposed and unexposed subjects respectively. For a specific study design,
and under assumptions about how the misclassification mechanism depends
on outcome and confounding variables, the impact of misclassification can
be assessed. For instance, consider unmatched case-control sampling, where
the goal is to infer exposure prevalences in case and control populations, and
thereby infer the exposure-disease odds-ratio. A readily understood situation
arises if the misclassification is nondifferential, i.e., the classification proba-
bilities are unaffected by disease status. The bias in estimating the target
parameter by wrongly assuming there is no misclassification can then be ex-
pressed as a function of sensitivity and specificity (see, for instance, Gustafson
2004, Ch. 3). In sufficiently simple settings, nondifferential misclassification
which is not accounted for will bias estimation toward the null of no exposure-
disease association.

Some understanding of how the bias induced by unacknowledged mis-
classification depends on various aspects of the problem at hand can spawn
informal strategies for mitigating this bias. This is taken up in Dosemeci and
Stewart (1996), who interpret their results as follows:

These findings suggest that if, in the exposure assessment process
of a case-control study, where the exposure prevalence is low, an
occupational hygienist is not sure about the exposure status of a
subject, it is judicious to classify that subject as unexposed.

This recommendation arises since, in the presence of low exposure prevalences,
the magnitude of the bias increases much faster as the specificity drops from
one than it does as the sensitivity drops from one. Thus keeping the exposure
group ‘pure,’ by limiting the misclassification of truly unexposed subjects into
it, becomes paramount.

The form of such a recommendation suggests thinking of the exposure
classification, at least initially, as being made into one of three categories.
For sake of definiteness, we label these categories as unlikely exposed, maybe
exposed, and likely exposed. Then, depending on the context, some mitiga-
tion of bias could be achieved by collapsing the observed exposure data from
three categories down to two, e.g., merging the first two categories if expo-
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sure prevalence is low. (In the face of high exposure prevalences, analogous
considerations would suggest instead merging the last two categories.) After
such a merge, data analysis can follow along the routine lines of inferring the
odds-ratio from a 2× 2 exposure-disease table of counts.

It is natural to ask whether a more formal statistical scheme might better
mitigate bias and/or better reflect a posteriori uncertainty about the target
parameter. Particularly, we investigate directly modelling the exposure clas-
sification into the unlikely, maybe, and likely categories. Thus the sensitivity
and specificity of the classification scheme are supplanted by probability distri-
butions across the three categories, for the truly exposed and the truly unex-
posed respectively. While non-differential misclassification with more than two
categories has been considered in the literature (see, for instance, Dosemeci,
Wacholder, and Lubin 1990, Birkett 1992, Weinberg, Umbach, and Greenland
1994, Correa-Villaseor, Stewart, Franco-Marina, and Seacat 1995), this is typ-
ically considered when the same set of labels for more than two ordered states
is used for both the true and observed exposure status (e.g. none, low, high).
‘Non-square’ situations, such as two states for the true status and three states
for the observed status, do not seem to have garnered attention.

In our framework, we quantify the information about exposure preva-
lences, and hence the odds-ratio, in a large-sample sense. In situations where
classification probabilities are known, or can be consistently estimated from
validation data, then inferential options for consistent estimation of the odds-
ratio are available; see, for instance, Gustafson (2004, Ch. 5) or Buonaccorsi
(2010, Ch. 3). This paper focusses on the more challenging setting where
classification probabilities cannot be estimated consistently. Given this, we
cannot expect to consistently estimate the exposure-disease odds-ratio as the
case and control sample sizes increase. We may, however, be able to rule out
some values for the odds-ratio.

First, in Section 2, we focus on determining identification regions from
prior regions. Particularly, given assumptions about the possible values of
classification probabilities, we show what values of exposure prevalances are
compatible with the distribution of the observable data. This falls within
the rubric of partially identified models (e.g., Manski 2003), whereby even
the observation of an infinite amount of data does not reveal the true values
of the target parameters, but does rule out some values. We consider two
prior regions based on different assumptions about a priori plausible values
of the misclassification probabilities. The first is a weak assumption that the
exposure classification scheme is ‘better than random,’ in a particular sense.
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The second is a stronger assumption of monotonicity, in the sense that for
any two categories, and either level of true exposure, the worse classification is
less likely. We also compare the resulting identification regions to those which
arise from collapsing the three categories down to two categories and then
acknowledging misclassification. Note that identification regions for partially
identified models are relevant whether non-Bayesian or Bayesian inference is
to be pursued.

Having established the form of the identification regions, we turn to
Bayesian inference. First, in Section 3 , we determine the behaviour of the
posterior distributions over the control and case exposure prevalences, as the
control and case sample sizes go to infinity. This is pursued via the general
approach to determining the limiting posterior distribution in partially iden-
tified models outlined in Gustafson (2005) (see also Gustafson 2010). Neces-
sarily, the support of the limiting posterior distribution is the corresponding
identification region. Then, in Section 4, we give some examples of poste-
rior distributions arising from finite samples approaching their limits as the
sample size grows. We also compare these with posterior distributions arising
from the informal approach of collapsing to two categories and then ignoring
misclassification.

2 Identification Regions

Let Y , X, and X∗ represent an individual’s disease status, actual exposure
status, and apparent exposure status respectively. The disease status Y and
the actual exposure status X each have two categories, coded as zero for
‘absence’ and one for ‘presence.’ The apparent exposure status X∗ has three
categories, coded as zero for unlikely exposed, one for maybe exposed, and two
for likely exposed. Thus observed data take the form of a 2 × 3 (Y,X∗) data
table. For clarity of exposition, we assume case-control sampling throughout,
whereby the data table is obtained from sampling the population distribution
of (X∗|Y ), and the task is to infer the (X, Y ) odds-ratio. However, our find-
ings are also directly applicable to cross-sectional or prospective sampling of
(X∗, Y ) or (Y |X∗) respectively.

Define r0 and r1 to be the prevalences of exposure among controls and
cases:

r0 = Pr {X = 1 | Y = 0} ,

r1 = Pr {X = 1 | Y = 1} .
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The non-differential misclassification assumption is invoked, under which X∗

and Y are conditionally independent given X. Thus the misclassification is
described via pij denoting the probability of classifying a subject truly having
the i-th exposure level into the j-th category:

p0 =

 p00

p01

p02

 =

 Pr {X∗ = 0 | X = 0}
Pr {X∗ = 1 | X = 0}
Pr {X∗ = 2 | X = 0}

 ,

p1 =

 p10

p11

p12

 =

 Pr {X∗ = 0 | X = 1}
Pr {X∗ = 1 | X = 1}
Pr {X∗ = 2 | X = 1}

 .

Then, the prevalences of apparent exposure among controls and cases, say θ0

and θ1, can be expressed as combinations of r0, r1, p0, and p1:

θ0 =

 θ00

θ01

θ02

 =

 r0p10 + (1− r0)p00

r0p11 + (1− r0)p01

r0p12 + (1− r0)p02

 =

 Pr {X∗ = 0 | Y = 0}
Pr {X∗ = 1 | Y = 0}
Pr {X∗ = 2 | Y = 0}

 ,

θ1 =

 θ10

θ11

θ12

 =

 r1p10 + (1− r1)p00

r1p11 + (1− r1)p01

r1p12 + (1− r1)p02

 =

 Pr {X∗ = 0 | Y = 1}
Pr {X∗ = 1 | Y = 1}
Pr {X∗ = 2 | Y = 1}

 .

Clearly the distribution of the observed data depends on the unknown param-
eters only via θ = (θ0, θ1), and only functions of θ are consistently estimable.

Going forward, it is useful to note that pi and θi belong to the probability
simplex on three categories, which we denote as S3. When useful, we visualize
points in S3 by plotting the probability assigned to the first (third) category
on the vertical (horizontal) axis, so that S3 is represented as the lower-left
triangle in the unit square (0, 1)2.

We study the situation where the only direct information about the clas-
sification probabilities p = (p0, p1) is a priori knowledge that they lie in a
particular subset of S2

3. We write this as p ∈ P, and refer to P as the prior
region. In concept we could also consider a prior region for the exposure preva-
lences r = (r0, r1) which would be a subset of (0, 1)2, but in fact in this paper
we only consider the situation where this prior region is all of (0, 1)2.

Following the general approach to partial identification, as described for
instance by Manski (2003), we start with the prior region and the values of
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θ (thinking of the latter as equivalent to observation of an infinite number of
controls and cases). Then we would like to know all the values of the unknown
parameters (particularly the target parameters r) which could have produced
this value of θ. Formally, let the identification region Q(θ) be all values of the
target parameters (r0, r1) which yield this value of θ for some choice of p ∈ P.
Since we learn the values of θ as the sample size increases, the identification
region can be regarded as all values of (r0, r1) which are still plausible after
having observed an infinite amount of data, presuming that the classification
probabilities are indeed inside the prior region. Note that the identification
region r ∈ Q(θ) will in turn generate an identification region (typically an
interval) for the exposure-disease odds-ratio OR = {r1/(1−r1)}/{r0/(1−r0)}.

2.1 Constraint A

To motivate a realistic prior region, note that merging the maybe and unlikely
categories together would result in a binary classification scheme having sensi-
tivity p12 and specificity 1−p02, so that an assumption of ‘better than random’
classification is expressed as p12 > p02. Similarly, if the maybe and likely cat-
egories were merged, the assumption p00 > p10 would hold sway. Therefore, if
categories are not actually collapsed, it is natural to assume that both inequal-
ities hold. We refer to this as constraint A, and express the prior region as
p ∈ PA. With respect to our visualization scheme, p0 and p1 can be anywhere
in the lower-left triangle representing S3, so long as p1 is south-east of p0.

Consider a value of θ which is compatible with constraint A, i.e., this
θ arises for some value of p ∈ PA along with some value of r ∈ (0, 1)2.
Geometrically, it is immediate that θ is compatible with constraint A if and
only if the line connecting θ0 and θ1 has negative slope. Below we refer to this
line simply as ‘the connecting line.’ Without loss of generality, but for ease of
exposition, we assume θ1 lies south-east of θ0 (as must arise if in fact r0 < r1,
so that OR > 1). Then the identification region in terms of p is immediately
visualized as follows: p0 can lie anywhere on the connecting line above θ0 and
p1 can lie anywhere on the connecting line below θ1 (though of course each pi

must remain within S3).

This geometry lends itself to simple algebraic description of the identifi-
cation region in terms of z = (z0, z1), where

p0 = θ0 + z0(θ0 − θ1), (1)

p1 = θ1 + z1(θ1 − θ0), (2)
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i.e., zi indicates how far pi lies beyond θi. Thus each zi is non-negative, but
cannot exceed the value which maps pi onto the boundary of S3. Consequently,
the identification region for (z0, z1) is rectangular, given by 0 ≤ zi ≤ z̄i(θ), for
i = 0, 1, where

z̄0(θ) =

{
min( θ02

θ12−θ02
, θ01

θ11−θ01
) if θ11 − θ01 > 0,

θ02

θ12−θ02
if θ11 − θ01 ≤ 0.

(3)

z̄1(θ) =

{
min( θ10

θ00−θ10
, θ11

θ01−θ11
) if θ01 − θ11 > 0,

θ10

θ00−θ10
if θ01 − θ11 ≤ 0.

(4)

From here, it is easy to verify that the rectangular identification region for
(z0, z1) maps to a polygonal identification region for (r0, r1), via the map
(r0, r1) = (1 + z0 + z1)

−1(z0, 1 + z0). In particular,

QA(θ) =

{
(r0, r1) ∈ (0, 1)2 :r1 >

z̄0(θ) + 1

z̄0(θ)
r0, r1 >

z̄1(θ)

z̄1(θ) + 1
r0 +

1

z̄1(θ) + 1

}
.

The situation described thus far is illustrated in the left panels of Figure
1, for the arbitrarily chosen example values of θ0 = (0.645, 0.200, 0.155) and
θ1 = (0.567, 0.200, 0.233). The top panel illustrates these θi values and the
identification region for p, within S3. The middle panel shows this identifica-
tion region expressed in terms of z, and finally the bottom panel visualizes
this region as r ∈ QA(θ).

2.2 Constraint B

Sometimes a stronger assumption than constraint A may be justified, making
explicit reference to the chance of ‘maybe’ classification. The monotonicity of
p0 and p1 might be assumed, whereby the worse a classification is, the less
likely it is. This constraint, henceforth referred to as constraint B, can be
expressed as p00 > p01 > p02 and p10 < p11 < p12, which we denote as p ∈ PB.
The visual representation of PB is given in the upper-right panel of Figure 1,
in which p0 must lie in the upper shaded triangle and p1 must lie in the lower
shaded triangle.

Say that θ is compatible with constraint A, and again assume, without
loss of generality, that θ1 is south-east of θ0. Taking the geometric view, the
identification region under constraint B will be non-empty if and only if the
portion of the connecting line above θ0 intersect the prior region for p0 and
the portion below θ1 intersects the prior region for p1. We will say that θ
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is compatible with constraint B if the identification region is non-empty. If
θ arises from a true value of p ∈ PB then by definition θ is compatible with
constraint B. However, if θ arises from a true value of p ∈ PA − PB, then
θ may or may not be compatible with constraint B. Upon inspection of the
upper-right panel of Figure 1, we see that compatibility with constraint B
arises if and only if the connecting line intersects the vertical axis between 0.5
and 1, and also intersects the horizontal axis between 0.5 and 1.

For a θ compatible with constraint B, we can again express the iden-
tification region in terms of z. The upper bounds on z0 and z1 must corre-
spond to the intersection of the connecting line with the vertical and hori-
zontal axes respectively, and therefore be the same upper bounds (3) and (4)
that apply under constraint A. Note as well though that if θ is compatible
with constraint B, then (3) and (4) specialize to z̄0(θ) = θ02/(θ12 − θ02) and
z̄1(θ) = θ10/(θ00 − θ10). It is also clear from the geometric view (upper-right
panel of Figure 1 again) that zi will have a positive lower bound if and only
if θi lies outside the prior region for pi. Thus our identification region is now
expressed as zi(θ) ≤ zi ≤ z̄i(θ), for i = 0, 1, where

z0(θ) = max

(
0,

θ01 − θ02

(θ11 − θ12)− (θ01 − θ02)

)
,

z1(θ) = max

(
0,

θ10 − θ11

(θ00 − θ01)− (θ10 − θ11)

)
.

Again this rectangular identification region for (z0, z1) induces a polygonal
identification region (r0, r1) ∈ QB(θ), as illustrated in the middle-right and
lower-right panels of Figure 1. Formally,

QB(θ) =

{
(r0, r1) ∈ (0, 1)2 : r1 >

z̄0(θ) + 1

z̄0(θ)
r0, r1 >

z̄1(θ)

z̄1(θ) + 1
r0 +

1

z̄1(θ) + 1
,

r1 <
z0(θ) + 1

z0(θ)
r0, r1 <

z1(θ)

z1(θ) + 1
r0 +

1

z1(θ) + 1

}
.

Note that if θ is compatible with constraint B, the identification regions for
z under constraints A and B are both rectangular with the same north-east
vertex. Consequently, in terms of r, the lower boundary of QB(θ) is guaranteed
to be a subset of the lower boundary of QA(θ).
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Figure 1: Prior and identification regions for example values θ0 =
(0.645, 0.200, 0.155) and θ1 = (0.567, 0.200, 0.233). The left (right) plots cor-
respond to constraint A (B). The top, middle and bottom plots correspond to
the probability simplex, the z plane and the r plane respectively. In all cases
prior regions are in grey and identification regions are in black.
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2.3 Comparison Between Constraint A and B

We can summarize some salient features of the identification regions under
constraints A and B in the following theorem.

Theorem 2.1 Say that θ is compatible with constraint A. Also, assume with-
out loss of generality that θ00 > θ10 and θ02 < θ12 (as must arise if r0 < r1,
so that OR > 1, and consequently a lower bound on OR will be a bound away
from the null). Then:

(i) If θ ∈ PB, then QA(θ) = QB(θ). That is, both constraints give rise to the
same identification region if θ0 and θ1 fall in the prior regions for p0 and p1

under constraint B. Otherwise, QB(θ) ⊂ QA(θ).

(ii) Constraint A yields an infinite upper bound on the odds-ratio.

(iii) If θ is compatible with constraint B, then constraint B yields a finite upper
bound on the odds-ratio if and only if θ0 lies outside the prior region for p0

and θ1 lies outside the prior region for p1.

(iv) Constraint A yields a lower bound on the odds-ratio achieved by r0 =
z̄0(θ)/(z̄0(θ)+ z̄1(θ)+1) and r1 = (z̄0(θ)+1)/(z̄0(θ)+ z̄1(θ)+1). If θ is com-
patible with constraint B, then the same lower bound applies under constraint
B.

Proof:
(i) : If θ ∈ PB then z0(θ) = z1(θ) = 0, and the result follows immediately.

(ii)&(iii) : The odds-ratio tends to infinity as r0 goes to zero or r1 goes to
one. This corresponds to p0 going to θ0 (from above/left) or p1 going to
θ1 (from below/right), along the connecting line. Geometrically, the prior
region under constraint A can never preclude either possibility, simply because
(θ0, θ1) ∈ PA. Both possibilities are precluded under constraint B, however, if
and only if the line segment between θ0 and θ1 does not intersect the union of
the two components of PB (i.e., the line segment does not intersect the shaded
region in the upper-right panel of Figure 1).

(iv) : Clearly the maximum value of r0 and the minimum value of r1 correspond
to the two intersections of the connecting line with the S3 boundary. This can
also be visualized as the north-east vertex of the identification rectangle for
z, and as the middle of the three vertices which give the lower boundary for
QA(θ) or QB(θ).
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2.4 Collapsing Exposure to Two Categories

As alluded to in the Introduction, it is informative to compare the identification
regions described above to the identification region arising when exposure is
collapsed from three to two categories. Particularly, if low exposure prevalences
are anticipated, the ‘unlikely’ and ‘maybe’ categories could be merged. Then
the binary apparent exposure status would be

X∗∗ =

{
0 if X∗ ∈ {0, 1},
1 if X∗ = 2,

with the quality of classification described by specificity 1− p∗0 and sensitivity
p∗1, where p∗0 = p02 and p∗1 = p12. A weak and commonly invoked assumption
is that p∗0 < p∗1, stating that the classification scheme is better than simply
choosing an exposure status completely at random. Thus we take the prior
region P∗ to be the triangular region on (0, 1)2 for which this inequality holds.
The information gleaned from an infinite data sample would be the value of
θ∗, where

θ∗0 = r0p
∗
1 + (1− r0)p

∗
0 = Pr {X∗∗ = 1 | Y = 0} ,

θ∗1 = r1p
∗
1 + (1− r1)p

∗
0 = Pr {X∗∗ = 1 | Y = 1} .

The identification region for this problem is determined by Gustafson, Le,
and Saskin (2001). However, we express their results in a form more amenable
for comparison with the results in Sections 2.1 and 2.2. Assume without loss
of generality that θ∗0 < θ∗1 (as must arise if r0 < r1). As per (1) and (2), we can
define z∗ = (z∗0 , z

∗
1), where p∗0 = θ∗0 +z0(θ

∗
0−θ∗1) and p∗1 = θ∗1 +z1(θ

∗
1−θ∗0). Then

by the same geometric argument as earlier, we have a rectangular identification
region of the form 0 < z∗i < z̄∗i (θ

∗) for i = 0, 1, with

z̄∗0(θ
∗) =

θ∗0
θ∗1 − θ∗0

,

z̄∗1(θ
∗) =

1− θ∗1
θ∗1 − θ∗0

,

where θ∗0 = θ02 and θ∗1 = θ12. Moreover, the identification region maps to r
just as before, according to (r0, r1) = (1+z∗0 +z∗1)

−1(z∗0 , 1+z∗0). Thus we again
have a polygonal boundary for the identification region r ∈ Q∗(θ∗).

It is very easy to compare the effect of collapsing to the use of three
categories and constraint A.
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Theorem 2.2 Say that θ is compatible with constraint A. Also, assume with-
out loss of generality that θ00 > θ10 and θ02 < θ12 (as must arise if r0 < r1).
Then:

QA(θ) ⊂ Q∗(θ∗). Consequently, Q∗(θ∗) cannot produce a finite upper bound
on the odds-ratio, while the lower bound cannot exceed that corresponding to
QA(θ).

Proof: When θ is compatible with constraint A, z̄∗0(θ
∗) ≥ z̄0(θ) and , z̄∗1(θ

∗) >
z̄1(θ). Also, the lower bound of zi(θ) for both collapsed case and constraint
A are zero (zi(θ

∗) = zi(θ
∗) = 0, for i = 0, 1). By mapping the identification

region for (z0, z1) to (r0, r1), we can directly get the conclusion that QA(θ) ⊂
Q∗(θ∗). Since the upper bound on the odds-ratio under constraint A is infinite,
the collapsed case will also yields an infinite upper bound on the odds-ratio.
Also, the lower bound on the odds-ration for the collapsed case will always
smaller or equal to the lower bound under constraint A.

2.5 Examples

To examine identification regions under some realistic scenarios, we use two
settings of exposure prevalence among controls (r0), two settings of the odds-
ratio (OR), and two settings of the classification probabilities (p0, p1). The
value of r1 is determined from r0 and OR. We use ‘-’ and ‘+’ to label the first
and second settings for each of the three factors. For instance, then, (−+ +)
would label the scenario with the first setting for exposure prevalence but the
second setting for both the odds-ratio and the classification probabilities.

For the exposure prevalence among controls, the settings are r−0 = 0.05
and r+

0 = 0.15. For the exposure-disease association, the settings are OR− =
1.2 and OR+ = 2.0. Note that we do not consider the null situation (OR = 1),
for the behaviour is quite different in this situation. Clearly OR = 1 if
and only if θ0 = θ1, so that if the null is true, the identification interval
for the odds-ratio reduces to a single point. For the classification probabili-
ties, the first setting is ‘symmetric,’ in the sense that exposed and unexposed
subjects are classified equally well. Particularly, p−

0 = (0.75, 0.20, 0.05) and
p−

1 = (0.05, 0.20, 0.75). The second setting corresponds to highly specific
but not sensitive classification. That is, exposure is hard to detect, with
p+

0 = (0.900, 0.075, 0.025) and p+
1 = (0.2, 0.3, 0.5). There are 23 = 8 values of

θ arising from all combinations of these factors. The identification regions for
the four p = p− scenarios are displayed in Figures 2 through 5. The identifi-
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Figure 2: Identification regions for the combination (−−−). In the upper-left
panel, the dot indicates the true exposure prevalences (r0, r1), while the cross
indicates apparent exposure prevalences upon collapsing to two categories and
ignoring misclassification, (θ∗0, θ

∗
1). In the other three panels, prior and identi-

fication regions are indicated in grey and black respectively. The upper-right
panel is the r plane in collapsed case, the lower-left panel is under constraint
A, and the lower-right panel is under constraint B. In the collapsed case,
θ∗0=0.0850 and θ∗1=0.0916. Under constraint A and B, θ0=(0.7150, 0.2000,
0.0850) and θ1=(0.7084, 0.2000, 0.0916).

cation regions for the p = p+ scenarios are available as supplementary figures
(www.stat.ubc.ca/∼gustaf).

From the figures, we see that, in all cases, collapsing and using constraint
A yield very similar identification regions for r. The identification region using
constraint B is typically very much smaller, though of course constraints A and
B are guaranteed to yield the same lower bound for the odds-ratio. Moreover,
while some values of θ produce a finite upper bound on the odds-ratio under
constraint B, this does not happen for any of the eight scenarios considered
here. To the extent that our scenarios are typical, this suggests that a finite
upper bound is uncommon. In fact, we can see that low exposure prevalences
will tend to produce values of θ0 close to p0, and therefore inside the prior
region under constraint B, unless p0 happens to be very close to the boundary
of the prior region. Thus we can intuit that a finite upper bound for the
odds-ratio will not commonly arise. More specifically, for given classification
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Figure 3: Identification regions for the combination (− + −). The layout is
the same as Figure 2. In the collapsed case, θ∗0=0.0850 and θ∗1=0.1167. Un-
der constraint A and B, θ0=(0.7150, 0.2000, 0.0850) and θ1=(0.6833, 0.2000,
0.1167).

Figure 4: Identification regions for the combination (+ − −). The layout is
the same as Figure 2. In the collapsed case, θ∗0=0.1550 and θ∗1=0.1723. Un-
der constraint A and B, θ0=(0.6450, 0.2000, 0.1550) and θ1=(0.6277, 0.2000,
0.1723).
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Figure 5: Identification regions for the combination (+ + −). The layout is
the same as Figure 2. In the collapsed case, θ∗0=0.1550 and θ∗1=0.2326. Un-
der constraint A and B, θ0=(0.6450, 0.2000, 0.1550) and θ1=(0.5674, 0.2000,
0.2326).

probabilities p it is a simple matter to characterize how large r0 must be (and
how small r1 must be) to produce θ for which there is a finite upper bound
on OR. This will happen if

p01 − p02

(p10 + 2p12)− (p00 + 2p02)
< ri <

2p00 + p02 − 1

(2p00 + p02)− (2p10 + p12)
,

for i = 0, 1. For instance, with p = p−, the upper bound is finite if ri ∈
(0.214, 0.786), and with p = p+, this bound is finite if ri ∈ (0.200, 0.892).

The lower bounds of the odds-ratio in our eight scenarios are given in
Table 1. As guaranteed by theory, the lower bound is the same for constraints
A and B, but lower for the collapsed case. In most scenarios, the collapsed
case bound is only very slightly lower. In a practical sense the bounds are
useful. For instance, in the (+ − −) and (+ − +) scenarios one can rule out
an odds-ratio below 1.14 when the true value is 1.2, and in the (+ + −) and
(+ + +) scenarios one can rule out an odds-ratio below 1.7 when the true
value is 2. It is also worth noting that the lower bound in the collapsed case
corresponds to the large-sample limit of the raw odds-ratio in the collapsed
data table. Thus the extent to which constraints A and B produce a higher
lower bound than this reflects the utility of a formal adjustment approach over
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collapsing the unlikely and maybe categories together and treating this as the
unexposed category, without adjustment for misclassification.

Table 1: The lower bound of odds-ratio for collapsed case and for constraint
A and B in each scenario.

Scenarios Lower bound of odds-ratio
for collapsed case

Lower bound of odds-ratio
for constraint A and B

(−−−) 1.085 1.087

(−−+) 1.097 1.100

(−+−) 1.422 1.436

(−+ +) 1.474 1.496

(+−−) 1.135 1.143

(+−+) 1.137 1.147

(+ +−) 1.652 1.706

(+ + +) 1.643 1.715

3 Limiting Posterior Distribution

In a partially identified context such as that faced here, determining the iden-
tification region is only part of the inferential story. From a Bayesian perspec-
tive, as the sample size goes to infinity, the investigator learns more than just
the identification region. The posterior distribution of the target parameter
will tend to a limiting distribution over the identification region, so an obvious
issue to address is the extent to which the limiting posterior distribution is
flat or peaked across the identification region.

3.1 Principle

Suppose r0, r1, p0, and p1 are independent of each other a priori. We
assume that r0 ∼ U(0, 1), r1 ∼ U(0, 1), p0 ∼ Dirichlet(c00, c01, c02), and
p1 ∼ Dirichlet(c10, c11, c12), with the additional truncation of (p0, p1) to the
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assumed prior region P. Under these assumptions, the joint prior density can
be written as:

f(r0, r1, p0, p1) ∝

(
1∏

i=0

2∏
j=0

p
cij−1
ij

)
I(0,1)(r0)I(0,1)(r1)IP(p0, p1).

Since the value of θ is estimable from data, and r0 and r1 are target parame-
ters, a reparameterization from (r0, r1, p0, p1) to (r0, r1, θ0, θ1) is helpful. By
change of variables, the transformation gives the joint prior density as:

f(r0, r1, θ0, θ1) ∝
(

r0θ10 − r1θ00

r0 − r1

)c00−1

×(
r0θ11 − r1θ01

r0 − r1

)c01−1

×(
r0θ12 − r1θ02

r0 − r1

)c02−1

×(
(1− r1)θ00 − (1− r0)θ10

r0 − r1

)c10−1

×(
(1− r1)θ01 − (1− r0)θ11

r0 − r1

)c11−1

×(
(1− r1)θ02 − (1− r0)θ12

r0 − r1

)c12−1

×

1

(r0 − r1)2
IQ(θ)(r0, r1),

where a non-zero density is obtained only when r ∈ Q(θ).

The joint posterior density of all the parameters given the data can be
expressed as:

f(r0, r1, θ0, θ1 | X∗, Y ) = f(θ0, θ1 | X∗, Y )f(r0, r1 | θ0, θ1).

The distribution of the data (X∗, Y ) gives direct information on parameters
θ0 and θ1 only. As the sample sizes of the control and case groups increases,
the conditional density f(θ0, θ1 | X∗, Y ) will become narrower, converging to
a point mass at the true values of θ0 and θ1 in the limit. Also, it is easy to
point out that for fixed (θ0, θ1), the conditional prior density f(r0, r1 | θ0, θ1)
is simply proportional to the joint prior density f(r0, r1, θ0, θ1). Thus the
limiting posterior distribution of (r0, r1) can simply be ‘read off’ from the
expression given above.
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As a final step, the limiting posterior distribution of (r0, r1) induces a
limiting posterior distribution on the exposure-disease odds-ratio. By change
of variables and marginalization, we have the limiting posterior density of the
log odds-ratio, s = logit r1 − logit r0, as

f(s|θ0, θ1) =

∫
g(r0; s)f(r0, expit(s + logit r0)|θ0, θ1) dr0, (5)

where

g(r0; s) = expit(s + logit r0){1− expit(s + logit r0)}.

Note that the support of the integrand in (5) is those r0 for which {r0, expit(s+
logit r0)} ∈ Q(θ). By inspection (e.g., see the bottom rows of Figure 1), for
given (s, θ) this could be either an interval of r0 values or a pair of disjoint
intervals. Particularly, we can think of the support as arising from intersecting
the identification region in the r plane with the level curve logit r1− logit r0 =
s. It is also easy to note that provided the prior density of (r|θ) is bounded on
Q(θ), the limiting density f(s|θ) will tend to zero as s approaches the lower
bound on the log-OR, since the support of the integrand in (5) is readily seen
to shrink to a single point in this limit, i.e., a unique r0 value gives rise to
the lower bound value of s. For given values of θ, we can readily evaluate (5)
using one-dimensional numerical integration.

3.2 Examples

The eight scenarios from Section 2 are revisited, in combination with two dif-
ferent settings of the prior distribution according to hyperparameters (c0, c1).
The first setting is c−

0 = c−
1 = (1, 1, 1), corresponding to uniform distribu-

tions for p0 and p1 across the prior region. As a second setting we take
c+
0 = (6, 4, 2), c+

1 = (2, 4, 6) which assigns more prior weight to better clas-
sifications (henceforth we refer to this setting as the ‘weighted’ prior). We
can mimic these hyperparameter settings for the collapsed case as well, via a
Beta(c0∗) prior on specificity and a Beta(c1∗) prior on specificity. Then we
take c−

0∗ = c−
1∗ = (1, 1) as an instance of uniform priors. In light of the col-

lapsibility property of Dirichlet distributions, the analogous ‘weighted prior’
setting when the maybe and unlikely categories are combined is c+

0∗ = (10, 2),
c+
1∗ = (6, 6).

For the four scenarios involving ‘symmetric’ classification probabilities,
the limiting posterior distributions of log OR appear in Figures 6 through 9.
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The corresponding figures for the other four scenarios are available as supple-
mentary figures (www.stat.ubc.ca/∼gustaf). In the case of uniform priors,
we consistently see constraint B lead to a more peaked limiting posterior distri-
bution than constraint A, even though the identification region is unchanged.
Thus, if it can be invoked, there is a benefit associated with the stronger
assumption about misclassification probabilities. In turn, posteriors under
constraint A are more peaked than their collapsed-case counterparts, even
though the identification regions are only very marginally bigger for the col-
lapsed case analysis. Thus we see a benefit associated with directly adjusting
for misclassification into the three exposure categories, rather than collapsing
to two categories and then adjusting.

The behaviour of the posteriors arising from the weighted priors is more
nuanced. Under constraint A, moving from the uniform prior to the weighted
prior tends to result in a more concentrated posterior, as one might expect.
However, and surprisingly, under constraint B, moving to the weighted prior
tends to flatten the posterior. Consequently, with the weighted prior, the con-
straint A and constraint B posterior distributions tend to be very similar. We
have further investigated this surprising ‘interaction’ between using the more
concentrated prior and the stronger constraint, and it seems to persist quite
generally if exposure prevalences are low and the odds-ratio is modest. If we
start with uniform priors and constraint A, the resulting posterior induces a
negative dependence between log OR and πW (p), where πW () is the weighted
prior density on the classification probabilities. Thus moving from the uni-
form prior to πW ‘downweights’ the long right tail, and thereby sharpens the
posterior distribution of log OR. However, upon ‘removing points’ that do
not satisfy constraint B, the dependence is seen to become positive. Thus the
constraint B analysis has this curious feature of a more concentrated prior
leading to a less concentrated posterior. We also note that with the weighted
prior constraint A or B again leads to a more concentrated posterior than the
‘collapse then adjust’ strategy.

4 Finite-Sample Posteriors

Until now, we have only considered limiting behaviour in the infinite sample-
size limit. Under this situation, the posterior on θ0 and θ1 reduces to a point
mass at the true values. It is instructive to see how the finite-sample posterior
distribution of the log odds-ratio moves toward the limiting posterior distri-
bution when the sample size increases, by simulating data under several of the
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Figure 6: Limiting posterior distributions under the combination (− − −).
The left panel gives the limiting posterior distributions of the log odds-ratio
under constraint A, constraint B, and the collapsed case, when p0 and p1 have
uniform priors. The right panel gives the limiting posterior distributions when
the prior distribution gives more weight to better exposure classifications. In
this scenario, the true log odds-ratio is 0.1823. The lower bound of the log
odds-ratio is 0.0839 under both constraint A and B, and 0.0818 under collapsed
case.

Figure 7: Limiting posterior distributions under the combination (− + −).
The layout is the same as Figure 6. In this scenario, the true log odds-ratio is
0.6932. The lower bound of the log odds-ratio is 0.3620 under both constraint
A and B, and 0.3519 under the collapsed case.
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Figure 8: Limiting posterior distributions under the combination (+ − −).
The layout is the same as Figure 6. In this scenario, the true log odds-ratio is
0.1823. The lower bound of the log odds-ratio is 0.1332 under both constraint
A and B, and 0.1267 under the collapsed case.

Figure 9: Limiting posterior distributions under the combination (+ + −).
The layout is the same as Figure 6. In this scenario, the true log odds-ratio is
0.6932. The lower bound of the log odds-ratio is 0.5341 under both constraint
A and B, and 0.5023 under the collapsed case.
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Figure 10: Posterior distributions under the combination (− − −). From the
upper-left panel to the lower-right panel, the posterior distributions of the
log odds-ratio for the sample sizes 100, 1000, 5000, and the limiting posterior
distribution are listed.

previous scenarios. The prior distributions are taken as p0 ∼ Dirichlet(6, 4, 2)
and p1 ∼ Dirichlet(2, 4, 6), truncated according to constraint A. We simulate
five independent data sequences with equal numbers of controls and cases
(ni = n, for i = 0, 1), and then determine the posterior distribution of log
OR after n = 100, n = 1000, and n = 5000 observations, using WinBUGS
(Lunn, Thomas, Best, and Spiegelhalter, 2000). We generically write Dn for
the observed data. Posterior densities arising under the (−−−) and (+ + +)
scenarios appear in Figures 10 and 11, with the limiting posterior densities
also given.

In both scenarios we see the sampling variation in the posterior distribu-
tion diminish with sample size. We also see, however, that the posterior ap-
proaches its limit much more quickly in the (+++) scenario then the (−−−)
scenario. In fact, this is readily understood, particularly if we contemplate how
the posterior variance approaches its limit. We write the posterior variance as
Var{s(r)|Dn}, where s(r) = logitr1 − logitr0 is the log odds-ratio, and note
that

Var{s(r)|Dn} = E [Var{s(r)|θ}|Dn] + Var [E{s(r)|θ}|Dn] , (6)

where the first term tends to a positive constant as n increases, but the second
term is of the order n−1. In our general experience with partially identified
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Figure 11: Posterior distributions under the combination (+++). The layout
is the same as Figure 10.

models, the first term can vary widely with the true parameter values. For
instance, here it is far larger under the (+ + +) parameters settings than the
(− − −) settings. On the other hand, the second (order n−1) term, which is
governed by the Fisher information in the model for (Dn|θ), can vary much
less with the parameter values. Thus getting ‘close to convergence,’ which
corresponds to the second term becoming small compared to the first, can
arise at a much smaller n when the first term is large, i.e., when the limiting
posterior distribution is wide. Variance decompositions such as (6) in partially
identified models are studied at length by Gustafson (2006).

The simulated datasets are also analyzed via the informal method alluded
to in Section 1. That is, ‘unlikely’ and ‘maybe’ subjects are merged and taken
as ‘unexposed,’ while the ‘likely’ subjects are taken to be ‘exposed’. Then
a standard analysis, without any adjustment for misclassification, is applied
to the resulting 2 × 2 data table. A Bayesian instantiation of the standard
analysis is applied, whereby the exposure prevalances for controls and cases
are assigned independent uniform priors, leading to independent Beta posterior
distributions. The corresponding posterior distributions for the log odds-ratio
appear in Figures 12 and 13. In fact, these work quite well. By ignoring
misclassification, markedly more peaked posterior distributions are obtained.
Yet even when n = 5000, the resulting bias does not yet dominate. That is,
the posterior does not yet rule out the true value of OR = 1.2 in the (−−−)
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Figure 12: Posterior distributions via informal analysis under the combination
(− − −). From the upper-left panel to the lower-right panel, the posterior
distributions of the log odds-ratio for the sample sizes 100, 1000, and 5000.

setting or OR = 2.0 in the (+ + +) setting. Thus the informal strategy of
choosing to treat ‘maybe’ subjects as being unexposed in light of low exposure
prevalence proves to be useful. Of course we know that with enough data
we would eventually be led astray. That is, from Table 1 we know that the
posterior will tend to a point mass at OR = 1.09 in the (− − −) case and
a point mass at OR = 1.72 in the (+ + +) case. Thus in concept, if not in
practice, the informal scheme is unappealing.

5 Discussion

We have considered non-differential classification of a truly binary exposure
into three categories. In this setting, inference about the exposure-disease as-
sociation could be based on collapsing of categories as implicitly advocated
by Dosemeci and Stewart (1996). Then the data could be analyzed with-
out acknowledging misclassification, or perhaps binary misclassification with
unknown sensitivity and specificity could be acknowledged. More formally,
and as investigated here, the classification into three states can be modelled
explicitly. This yields a partially identified inference problem, for which the
first-order issue in the efficacy of inference is the size of identification region.
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Figure 13: Posterior distributions via informal analysis under the combination
(+ + +). The layout is the same as Figure 13.

Regardless of whether Bayesian or non-Bayesian inference is pursued, the size
of the identification region summarizes how much uncertainty about target
parameters would remain if an infinite amount of data could be collected. In
our case, particularly, Section 2 illustrates how an infinite amount of data can
rule out near-null values of the exposure-disease association. We saw that the
choice of prior region for the classification probabilities can have a marked
effect on the bivariate identification region for the control and case exposure
prevalences, but little or no effect on the resulting identification interval for
the odds-ratio.

The second-order issue, investigated in Section 3, is the extent to which
the posterior distribution, in the large-sample limit, is flat or concentrated
across the identification region. We saw that in many circumstances the lim-
iting posterior distribution of the log odds-ratio is indeed quite peaked. In
Section 4 we also illustrated briefly how this limiting posterior distribution
is approached with finite data sets, and drew comparisons with the informal
approach of collapsing to two exposure categories and not adjusting for mis-
classification.
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