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Evaluating a New Marker for Risk Prediction
Using the Test Tradeoff: An Update
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Abstract

Most of the methodological literature on evaluating an additional marker for risk prediction
involves purely statistical measures of classification performance. A disadvantage of a purely
statistical measure is the difficulty in deciding the improvement in the measure that would make
inclusion of the additional marker worthwhile. In contrast, a medical decision making approach can
weigh the cost or harm of ascertaining an additional marker against the benefit of a higher true
positive rate for a given false positive rate that may be associated with risk prediction involving the
additional marker. An appealing form of the medical decision making approach involves the risk
threshold, which is the risk at which the expected utility of treatment and no treatment is the same.
In this framework, a readily interpretable evaluation of the net benefit of an additional marker is the
test tradeoff corresponding to the risk threshold. The test tradeoff is the minimum number of tests
for a new marker that need to be traded for a true positive to yield an increase in the net benefit of
risk prediction with the additional marker. For a sensitivity analysis the test tradeoff is computed
over multiple risk thresholds. This article updates the theory and estimation of the test tradeoff. An
example is provided.
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1 Introduction

Risk prediction provides important information for making treatment decisions.
For example, predictions of the risk of residual tumor inform decisions about
surgical resection in patients with testicular cancer (Steyerberg et al., 1995), and
predictions of the risk of breast cancer inform decisions about chemoprevention
(Mealiffe et al., 2010). An important question is whether or not it is worthwhile to
include an additional marker in the risk prediction model. Here we take a
decision analytic perspective in weighing benefits and harms in a population of an
additional marker for risk prediction. Testing for or otherwise ascertaining the
additional marker could have costs or harms that need to be weighed against
benefits and harms of risk prediction with the additional marker. We consider a
situation in which, in the absence of risk prediction, there are only two decisions:
treat or not treat.

For the sake of brevity, “develops disease” will mean “develops disease in
the absence of the treatment under consideration,” and “risk’ will refer to “risk of
developing disease.” Also “additional marker” refers to either a single marker or
set of markers. We define the risk prediction model as a mathematical model for
the risk of developing disease as a function of a set of predictors. We consider two
risk prediction models: Model 1, a baseline risk prediction model, and Model 2, a
risk prediction model that uses the predictors in Model 1and an additional marker.
We also define the following samples and population. The development sample is
the sample used to formulate the risk prediction model. The development
population 1is the population from which the development sample is implicitly a
random draw. The validation sample is the sample used to evaluate risk prediction
model (and sometimes also used to refine the risk prediction model). The target
population is a population from which the validation sample is implicitly a
random draw or a random draw separately for persons who develop disease and
persons who do not develop disease (thus allowing for oversampling of persons
who developed a rare disease). Usually the target population corresponds to a
different geographic location than the development population (Justice, et al.
1999).

There is a large literature on purely statistical methods to evaluate an
additional marker for risk prediction. One approach is to compare classification
performance curves from Models 1 and 2 in the validation samples. Examples
include receiver operating characteristic (ROC) curves and predictiveness curves
(Gu and Pepe, 2009). A second approach is to construct a summary statistical
measure of classification performance in the validation sample. Examples include
a change in the area under the receiver operating characteristic curve (AUC)
(Tzoulaki, et al., 2009), a difference in the maximum Youden indices, integrated
discriminant improvement, and net reclassification improvement (Pencina, et al
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2008, Gu and Pepe, 2009, Whittemore, 2010). A fundamental limitation with
these approaches is deciding how large a difference between performance
measures for Models 1 and Model 2 is sufficient to deem the new marker
worthwhile. Also, when these measures can be framed in terms of costs and
benefits, they can assume an unrealistic cost-benefit tradeoff as with the Youden
index (Baker and Kramer, 2007) or the area under the ROC curve (Hand, 2010).

A medical decision-making approach to evaluating an additional marker
for risk prediction circumvents the aforementioned drawbacks of a purely
statistical measure. The main challenge with using costs and benefits is to
determine their relative values. A sensitivity analysis over a range of costs and
benefits should therefore be considered. In a landmark paper, Vickers and Elkin
(2006) introduced decision curves as a method to simplify the sensitivity analysis
for the net benefit of a risk prediction model. Vickers and Elkin (2006)
considered an individual risk threshold, which is the risk at which a person would
be indifferent between treatment and no treatment (Pauker and Kassirer, 1980).
The plot of net benefit of risk prediction versus risk threshold is called a decision
curve. Baker et al. (2009) and Baker (2009) extended decision curves to relative
utility curves. The relative utility is the maximum expected utility of risk
prediction divided by the expected utility of perfect prediction. The relative
utility curve is a plot relative utility versus a population risk threshold. The
population risk threshold (called risk threshold subsequently) is the risk at which
the expected utility of treatment and no treatment is the same in the population.

Baker et al. (2009) also introduced the test threshold (called here the test
tradeoff to better distinguish it from the risk threshold) to evaluate a new marker
at a specified risk threshold. The test tradeoff corresponding to a risk threshold is
the minimum number of tests for a new marker that need to be traded for a true
positive to yield an increase in the net benefit of risk prediction with the
additional marker. The test tradeoff can then be considered in light of any
detrimental side effects or monetary costs of testing for the marker. For example
a test tradeoff of 100 could be reasonable if testing for the marker involved only a
simple blood test but unreasonable if testing for the marker required an invasive
biopsy. Computation of the test tradeoff at various risk thresholds provides a
sensitivity analysis.

Section 2 updates the theory underlying the medical decision making
approach to evaluating risk prediction; it links various formulations in terms of
the Fundamental Rule of cost-benefit analysis, improves two-stage risk
prediction, and distinguishes population and individual risk thresholds. Section 3
expands on graphical insights concerning ROC and relative utility curves. Section
4 presents new results in the estimation of relative utility curves and test tradeoff,
introduces the risk mapping plot, and provides a new comparison of estimates.
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Section 5 is a simulation; Section 6 provides an application; and Section 7 is a
discussion.

2 Theory

The goal is to compare the use of risk prediction Model 1 versus risk prediction
Model 2 (with an additional marker) for making a decision of treatment versus no
treatment when applied to a target population. Under the benefit-cost approach,
this comparison is based on the net benefit, which is the total expected benefit
minus the total expected harm measured in the same units as benefit. Stokey and
Zeckhauser (1978) define the Fundamental Rule in any choice situation as
selecting the alternative that produces the greatest net benefit. We discuss various
versions of the Fundamental Rule that involve different simplifications in the
benefit-cost inputs. To help the reader with notation, a summary of symbols is
provided in Table 1.

An important quantity in the computation of the net benefit of risk
prediction is the risk score. An individual’s risk score is the risk of developing
disease computed from applying the risk prediction model in the development
sample to the predictors for that individual. The risk score is considered here as a
preliminary measure of risk, rather than as a definitive probability of an event. A
value of the risk score greater than a cutpoint is an indicator for treatment and a
value of the risk score less than a cutpoint is an indicator for no treatment. In this
respect the risk score is no different from a measure of serum cholesterol level
used to predict the risk of cardiovascular disease. Let J denote a risk score
computed for an individual in the target population. Let D=1 if the individual in
the target population develops disease and 0 otherwise. The probability of
developing disease for an individual in the target population with risk score j is
written

R; = pr(D =1| J =j, target population)
= probability of developing disease if the risk score is ;.

An important requirement of the risk score j is

Risk Score Assumption: R; increases as j increases.

Consider a cutpoint s on the risk score such that J >s indicates a positive
classification followed by treatment, and J < s indicates a negative classification

followed by no treatment. The following probabilities for the target population are
basic to the analysis:
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P =pr(D=1 | target population)=probability of developing disease,
FPR;=pr(J > s | D=0, target population) = false positive rate at cutpoint s,
TPR, =pr(J > s | D =1, target population) = true positive rate at cutpoint s.

Symbol Definition (applies to target population)

J risk score

D indicator of developing disease

R probability of developing disease if the risk score is j

P probability of developing disease

FPR, false positive rate at cutpoint s

TPR, true positive rate at cutpoint s

Ureatdis) utility of treating a person who would develop disease in the absence

of treatment

U(no treat, dis)

utility of not treating a person who would develop disease in the
absence of treatment

U(treat no dis)

utility of treating a person who would not develop disease

U(no treat, no dis)

utility of not treating a person who would not develop disease

UT est

utility (harm or cost) associated with testing for or otherwise
ascertaining all predictors in a model

Ubpreds) expected utility of risk prediction at cutpoint s
UnoTrear expected utility of no treatment
Urrear expected utility of treatment
UPred*(s) UPred(s) —_ UN()T reat
B U(treat,dis) - U(no treat, dis)
= overall gain from treating a person who would develop disease
C U(no treat, no dis) — U(treat, no dis)
=overall cost from treating a person who would not develop disease
T 1/ (1 + B/C) = risk threshold
ROCSLOPE, slope of ROC curve at cutpoint ¢
NB, net benefit for decision curves
Uperpred expected utility of perfect prediction
RU, relative utility at cutpoint ¢
ANB, NBiModel 21 — NBiModel1]
= increase in net benefit for decision curves
Al]T est UTest[Model 11 — UTest [Model 2]
= cost of the additional test used with Model 2
ANB UTesi=0 maximum acceptable testing harm

1/ ANBZ\UT@SF()

test tradeoff

Table 1. Summary of symbols used in Section 2.
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A utility is a numerical value for a health benefit, harm, or monetary cost,
measured on a common scale. A positive value for utility indicates a benefit and
a negative value indicates a cost or harm. Five utilities are associated with risk
prediction: Ugeadis), the utility of treating a person who would develop disease in
the absence of treatment, Upo near, dis), the utility of not treating a person who
would develop disease in the absence of treatment, Ugea, no dis), the utility of
treating a person who would not develop disease, U trear, no ais)» the utility of not
treating a person who would not develop disease, andUy,s, is the utility (harm or
cost) associated with testing for or otherwise ascertaining all predictors in a
model. It is reasonable to assume that Ugreardis) > Upno trear, disy ANA Upno trear, no ais) >
Ulreat, no dis)- Also Urey < 0 because any test has some burden, harmful side effect,
or monetary cost. Each of these utilities is an average of the utilities of
individuals in the target population.

Using the aforementioned utilities and probabilities, we discuss various
formulations for comparing the net benefit of Model 2 versus Model 1starting
with the most basic formulation and then discussing various simplifications and
extensions.

2.1 Comparing maximum expected utilities of risk prediction

Fundamentally, the comparison of the net benefit of Model 2 versus Model 1 is a
comparison of the maximum expected utility of risk prediction under Model 2
versus Model 1. The maximum expected utility of risk prediction is the
maximum, over the cutpoints, of the expected utility of risk prediction. For
cutpoint s the expected utility of risk prediction is the average of the
aforementioned utilities weighted by their probabilities of occurrence,

UPred(s) =P XTPRS x U(treat,dis)
+ P x (1 - TPRS) ><Uv(no treat, dis)
+ (1 _P) x FPRb X U(lreal, no dis)
+ (1 _P) X (1 _FPRS) ><(](no treat, no dis)
+ UTesl- (1)

Let subscripts “Model 1” and “Model 2” denote that the risk score based
on risk prediction Models 1 and 2, respectively. In this framework, the
Fundamental Rule is

Fundamental Rule Version I:

Benefit-cost iHPUtS are U(treat,dis), U(no treat, dis)» U(treat, no dis)» U(no treat, no dis)»
and Ures.

Select Model 2 if Max,{Upyedcsyimodel 213 > Maxs{ Upred(s)iModel 17} -
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Typically Upo trear, no dis) 15 set to 0, which does not affect the Fundamental Rule.
Sometimes Upreas, aisy 18 also set to 0 (Briggs and Zaretski, 2008; Cai et al, 2011),
which is a strong assumption that is not necessary for simplification, as will be
seen in Section 2.2.

2.2 Comparing maximum expected utilities of risk prediction: a
simplification involving the no treatment option

Fundamental Rule Version 1 can be greatly simplified by considering the
expected utility of risk prediction in excess of the expected utility of no treatment.
The expected utility of no treatment is

UNoTreal =P x U(no treat, dis) + (1 - P) x U(no treat, no dis)- (2)
For later discussion it also helpful to define the expected utility of treatment,
UTreat =P x U(treat,dis)+ (1 - P) X U(lreat, no dis)- (3)

The expected utility of risk prediction in excess of the expected utility of no
treatment is

UPi‘ed*(s) = UPred(s) - UNoT reat
=P xTPR, x B — (1 — P) x FPR, % C + Upey, Where
B = U(treat,dis) - U(na treat, dis)s
C= U(no treat, no dis) — U(treat, no dis)+ (4)

The quantity B is the overall benefit of treating a person who would
develop disease. The quantity C is the overall cost of treating a person who
would not develop disease. Equation (4) with Uz, = 0 was proposed by Peirce
(1884). Based on equation (4), the Fundamental Rule can be expressed as

Fundamental Rule Version 2:
Benefit-cost inputs are B, C, and Ur,g,.
Select Model 2 if Max{Upyea*(s) )imodel 21 > Maxs{ Uprea(s)iModel 11} -

2.3 Comparing maximum expected utilities of risk prediction: a
simplification using the risk threshold

Fundamental Rule Version 2 can be simplified even further by using the risk
threshold to compute the optimal cutpoint that maximizes the expected utility of
risk prediction. The risk threshold, denoted 7, is the probability of developing
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disease in the population at which the expected utility of treatment and no
treatment is the same. Substituting 7 for P when setting Unorrear = Urrear 10
equations (2) and (3) gives the following formula for the risk threshold,

T=1/(1+B/C) = (C/B)/ (1+C/B), (5)

which implies C/B =T/ (1 — T). The quantity C/B is sometimes called the
relative utility of true- and false- positve results (Halpern et al. 1996), which
should not be confused with the terminology “relative utility” discussed later.
The receiver operating characteristic (ROC) curve in the target population is a
plot of TPR, versus FPR, . As derived in Appendix A, the slope of this ROC
curve at cutpoint ¢ (more precisely between cutpoint ¢ and cutpoint #+1) is

ROCSLOPE, = (TPR,— TPR+1))/ (FPR,— FPR:1)).
={1=P)/ P} xR/ (1 = Ry). (6)

A fundamental result (Pauker and Kassier, 1975, Metz, 1978, Gail and
Pfeiffer, 2005) is the following. Under the Risk Score Assumption, for a risk
threshold of 7, the maximum expected utility of risk prediction occurs at cutpoint
t of the risk score that satisfies what we call the

Optimization Requirement, R, =T,
which is equivalent to
ROCSLOPE, = {(1-P)/ P} xT/(1-T).

A proof of the optimization requirement is given in Appendix B. Using
the optimization requirement, the Fundamental Rule can be simplified as

Fundamental Rule Version 3:
Benefit-cost inputs are B, C, and Ur,.

Select Model 2 if Upreapimodel 21 > Upred*@Model 135

where the optimal cutpoint ¢ solves R, = T.

2.4 Comparing decision curves

The Fundamental Rule Version 3 can be simplified by eliminating the separate
contributions of B and C and using only the risk threshold 7. This is the method of

decision curves (Vickers and Elkin, 2006) who use the term “net benefit” (in a
more specific manner than previously discussed) to define the following quantity,
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NBt= (UPred(t) - UNoTreat)/B
— PXTPR, — (1-P) x{T/ (1 = T)} x FPR, + Ups/B. 7)

This net benefit for a decision curve, NB;, is the maximum benefit of risk
prediction (in excess of the benefit of no treatment) in units of the benefit of
treating a true positive. It equals the benefit of treating a true positive after
subtracting the cost of treating a false positive at an “exchange rate” based on the
risk  threshold. In this framework, the Fundamental Rule 1is

Fundamental Rule Version 4:
Benefit-cost inputs are 7 and Ury.
Select Model 2 ifNBt[Model 21> NBt[Model 11

where the optimal cutpoint ¢ solves R, = T. The original form of the decision
curve plotted net benefit versus individual risk threshold (Vickers and Elkin,
2006) when Urey = 0.

2.5 Comparing relative utility curves

Additional perspective in comparing the net benefits of Models 1 and 2 can be
obtained by considering the expected utility of perfect prediction. The expected
utility of perfect prediction is a weighted average of the utility of treatment if
disease develops and the utility of no treatment if disease does not develop,

UPerfPred = P X U(treat,dis) + (1 _P) X U(no treat,no dis)- (8)

The expected utility of no risk prediction is the larger of (i) the expected
utility of always selecting no treatment and (ii) the expected utility of always
selecting treatment. Relative utility (Baker, et al, 2009; Baker, 2009) is the ratio of
the maximum expected utility of risk prediction (in excess of the expected utility
of no risk prediction) to the expected utility of perfect prediction (in excess of the
expected utility of no risk prediction), which can be written as

(UPred(t) - UTreat) / (UPe}ffPred - UTreat)a if UNoTreat < UTreata
RU, = {
(UPred(t) _UNoTreat) / (UPe}ffPred - UNoTreal): if UNoTreal 2 UTreat.- (9)

In the first case in equation (9), the expected utility of no risk prediction is
Urrear because Unorrear < Urrear-. In the second case in equation (9), the expected
utility of no risk prediction is Unyrrear because Unorrear = Urrear.. As derived in
Appendix C, equation (9) can be simplified to
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(1-FPR,) — (1-TPR,) | ROCSlope, +Unw /{(1 = P) x C}, if T < P,
RUt:{
TPR, — FPR,x ROCSlope, +Upes;/ (P % B), if 7 >P. (10)

In terms of relative utilities, the Fundamental Rule is

Fundamental Rule Version 5:
Benefit-cost inputs are 7" and Uy,
Select Model 2 if RUjmodel 21 > RUiModel 17,

where the optimal cutpoint ¢ solves R, = T.

A relative utility curve for the target population is a plot of RU, versus T’
when Ur.; = 0. The relative utility curve includes both cases in equation (9) for
completeness and to fully link it to the ROC curve (as discussed in Section 3).
The relative utility curve has a single maximum where 7 equals P and decreases
to zero on either side of the maximum (Baker, et al., 2009). A relative utility of
zero means there is no benefit of risk prediction. As discussed in Section 2.9 only
one case in equation (10) is usually relevant.

2.6 Computing maximum acceptable testing harm

So far the versions of the Fundamental Rule have involved an input of Up,
which can be difficult to specify. Here the Fundamental Rule is inverted to find a
bound related to Ur,. For this purpose, it is convenient to define

ANB; = NBimodel 21 — NBiModel1]s (11)

and, reversing the order of models in the subtraction,

AUrtest = UfesiModel 11 — UTest [Model 21 (12)
so that AU7gsr s positive. We can then write
ANBI = ANBL‘|UT€SZ‘:0_ (AUTesl /B), (13)

where ANByuresi=o 18 the value of ANB; when Ur.y, = 0. Inverting Fundamental
Rule Version 4 and applying equation (13) gives an upper bound on AUz, /B,

Fundamental Rule Version 6:
Benefit-cost input is 7.
Select Model 2 if (AUrest /B) < ANBjuTesi=0,
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where the optimal cutpoint ¢ solves R, = T. Baker (2009) called ANB;yzesi=0, the
maximum acceptable testing harm. The maximum acceptable testing harm
corresponding to a risk threshold is the maximum increased harm of testing for an
additional marker (measured as true positives not treated) so that there is an
increase in net benefit with an additional marker.

2.7 Computing the test tradeoff

Rather than considering an upper bound on (AUr. /B ), it is sometimes easier to
consider a lower bound on (B /AUr.s ). This lower bound is the number of tests
for a new marker that would be traded for a true positive. For example suppose B
represents the benefit equivalent to 2 true positives treated and AUrgst represents
the cost equivalent to 0.10 true positives not treated. Then (2 units) / (0.10 units)
= 20 is the number of tests that would be traded for a true positive. This lower
bound leads to

Fundamental Rule Version 7:
Benefit-cost input is 7.
Select Model 2 if (B /AUrest) > (1/ ANByjuTesi=0),

where the optimal cutpoint ¢ solves R, = T. Baker et al (2009) called the quantity
1/ ANBjurest=0 the test threshold but, to avoid confusion with risk threshold, it is
called here the test tradeoff. The test tradeoff corresponding to a risk threshold is
the minimum number of tests for a new marker that need to be traded for a true
positive to yield an increase in the net benefit of risk prediction with an additional
marker. For example, in evaluating the addition of breast density to a model to
predict the risk of invasive breast cancer, Baker (2009) computed a test tradeoff of
3333. This test tradeoff of 3333 means that 3333 measurements of breast density
would need to traded for correct identification of a woman who would develop
invasive breast cancer in the absence of treatment to yield an increase in the net
benefit of risk prediction. Because measuring breast density has little cost or
harm, this test tradeoff would likely be considered acceptable.

2.8 Computing the test tradeoff with two-stage risk prediction

Costs of additional marker testing can be reduced at some loss of performance by
testing for the additional marker in only persons in the target population with
intermediate levels of risk scores under Model 1. The Model 2* risk scores are the
sorted (from smallest to largest) union of Model 1 risk scores not in the
intermediate category with the Model 2 risk scores for individuals whose Model 1
risk scores are in the intermediate category (Figure 1). This version of two-stage

10
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risk prediction supersedes that in Baker et al. (2009) which implicitly required
that Model 2 risk scores in the intermediate category were within the range of
Model 1 risk scores in the intermediate category.

The choice of intermediate levels of risk score for Model 1 needs to be
specified in advance. The smaller the range of intermediate levels, the greater the
cost savings, but also the less informative the Model 2* risk scores. Generally the
intermediate levels would correspond to risk scores in a range where there is
considerable debate over treatment or no treatment, such as in cardiovascular
disease prevention (Ridker, et al. 2007).

Model 1 risk scores |« low —|«—intermediate — |« high — |
| relevant relevant
Model 2 risk scores |«<— relevant — |

Model 2* risk scores the sorted (smallest to largest) union of relevant
Model 1 risk scores (low and high) and
Model 2 risk scores (intermediate)

Figure 1 Two-stage risk prediction to compute Model 2* risk scores in the target
population.

Let ANB* = NBjqmodel 2] — NBgmoden]- Let f denote the fraction of
persons in the intermediate category. The expected cost of testing for the
additional marker in the population is /' /AUr.. The version of the Fundamental
Rule for two-stage risk prediction is

Fundamental Rule Version 8:
Benefit-cost input is 7.
Select Model 2 if B /AUrey > f/ ANB*utesi=0,

where the optimal cutpoint ¢ solves R, = T. If f/ ANB*yuresi=0 < 1/ ANByuTesi=0,
two-stage risk prediction is preferable to single-stage risk prediction, because the
test tradeoff is lower.

2.9 Sensitivity analysis for risk thresholds

As a sensitivity analysis, the test tradeoff is computed at different risk thresholds.
It helps to anchor the range of risk thresholds at a level accepted in practice. If the
level accepted in practice is not known, a good approximation may be obtained by
modifying the accepted risk threshold for a different treatment or disease to

PublishedbyDeGruyter2012 11
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account for different levels of harm and benefit than in the situation of interest
(Baker, 1998).

The default decision of treatment or no treatment in the absence of risk
prediction provides information about the relevant range of risk thresholds for a
sensitivity analysis, called the relevant region (Baker et al, 2009). If the default
strategy is no treatment, the relevant region is the set of risk thresholds greater
than the probability of developing disease, which is implied by Unorrear > Urrear-
Conversely, if the default strategy is treatment, the relevant region is the set of
risk thresholds less than the probability of developing disease, which is implied
by Unotrear < Urrear.. Thus, the sensitivity analysis should involve risk thresholds
in a subset of the relevant region.

2.10 Population versus individual risk thresholds

The test tradeoff is a summary measure of the “value” of an additional marker in a
population. It assumes that a policy decision is made that all individuals with
estimated risks greater than or equal to the population risk threshold are
recommended for treatment and all other individuals are not recommended for
treatment. The reason that the test tradeoff (and relative utility and decision
curves) refer to a population quantity is that the false and true positive rates at
given risk score are population quantities. The test tradeoff (and relative utility
and decision curves) could also apply to a subset of the population with a
particular risk threshold and the same distribution of risk scores as in the
population. Thus the sensitivity analysis for various values of risk threshold T’
could apply to either (i) uncertainty in specifying a single population risk
threshold or (ii) a range of risk thresholds among various subsets of the
population with each subset having the same distribution of risk scores as in the
population.

In contrast, an individual may have different utilities than the population
averages and this leads to an individual risk threshold. The individual can
compare his individual risk score j* with his individual risk threshold 7*. If j* >
T*, the individual should receive treatment and otherwise not receive treatment
(Appendix D). This type of decision making is implicitly made in practice.

3 Graphical insights

Traditionally ROC curves have been used to compare additional markers
(Tzoulaki, et al., 2009). A comparison of ROC curves for Models 1 and 2 has two
downsides from a medical decision-making perspective. First ROC curves
measure only classification performance and not relative utility (or net benefit of
decision curves). Second, comparing classification performance at the same FPR

12
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(the usual procedure) can be misleading because the same FPR’s on different
ROC curves usually corresponds to different ROC slopes and risk thresholds.

It may thus be surprising that an ROC curve can be translated into a
relative utility curve using only one piece of additional information, namely the
probability of developing disease. The key is that ROC and relative utility curves
are connected by equation (10) with Uz = 0, namely,

(1-FPR)— (1 - TPR,)/ ROCSlope, , if T < P,

RUz|Utest:0= {
TPR, — FPR, x ROCSlope,, if T>P. (14)

Equation (14) corresponds to the graphical relationship in Figure 2, which extends
a plot in Baker et al. (2009) to a comparison of two models.

ROC curve RU curve
10[
0.8+
[
© 2
.g % 06 3
B ()
S 3 04f
g T
= 0.2 4
3
0.0+ { ]
‘ ‘ ‘ ‘ ‘ ‘ 11 . 45 ‘
00 02 04 06 08 10 0.0 0.2 04 0.6 0.8
false positive rate risk threshold

Figure 2 Translating from ROC to RU curves for Model 1 (lower curves) and
Model 2 (upper curves). With P= 0.2, the slope of 1 of the red lines on the left
side yields a risk threshold of 7= 0 which corresponds to the red point on the
right side.

Equation (14) implies that the tangent of the ROC curve at a given slope
gives the relative utility on the horizontal line at TPR=1 (the first case) or the
vertical line at FPR=0 (the second case).

Figure 2 illustrates the second case in equation (14). Consider the top
ROC curve (for Model 2) on the left side of Figure 2 with TPR; =0.95, FPR; =
0.35 and the ROCSlope; = 1, which corresponds to the red line segment from /=3
to =4. The tangent of the ROC curve at /=3 is extended to the left vertical line at
FPR=0 to give RUj3uresi=0= 0.6; this value of relative utility corresponds to the top
green point which is then translated horizontally to the right side of Figure 2.
Because the probability of developing disease is set at P= 0.2, then following
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equation (6), the risk threshold derived from ROCSlope; = 1 is R; =0.2. This risk
threshold is indicated by the red point on the right side of Figure 2.

Figure 2 has two main implications. First with only one additional piece
of information (namely, the probability of developing disease) the relative utility
curve is more informative than the ROC curve, as it allows a vertical comparison
of relative utilities for each risk threshold. Second, if the ROC curves for Models
1 and 2 are similar, the relative utility curves for Models 1 and 2 will be similar.
Thus small changes in ROC curves for Model 1 to Model 2 indicate little clinical
utility for including an additional marker in the risk prediction model.

4 Estimation

So far we have described the theoretical underpinnings of the medical decision-
making approach to evaluating an additional marker using risk thresholds in the
target population. Now we turn to estimation.

The general scheme is outlined in Figure 3. The goal is to estimate the test
tradeoff at various risk thresholds in the target population. A favorable test
tradeoff would lead to a recommendation that individuals in the target population
estimate their risk of developing disease to determine whether to receive
treatment. The details of Figure 3 will be discussed.

Development sample (individual-level data): Fit risk prediction model

Validation sample (individual-level data):

Step 1. Compute risk score (basic or adjusted) by applying risk
prediction model to individual-level data.

Step 2. Estimate risk (predicted or observed) from risk score

Step 3. Adjust estimated risk if different probability of developing disease

Step 4 Estimate test tradeoff (predicted, observed, or hybrid) at various
risk thresholds based on estimated risks and observed outcomes.
(This is main goal of this analysis).

Target population (individual-level data)
(This is a future application if the test tradeoff is favorable).
Step 1. Compute risk score (basic or adjusted) by applying risk prediction
model to individual-level data
Step 2 Estimate individual risk (either risk score or risk score
translated to an estimate via the risk mapping plot).
Step 3 Individuals decide on treatment based on individual risk and
individual risk threshold

Figure 3 Estimation overview
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4.1 Risk scores

Two types of risk scores are considered. A basic risk score is the risk score
obtained by applying the risk prediction model from the development sample
directly to predictors in the validation sample. Let xy4.44 denote predictor g for
person 4 in the validation sample. Let apgy and bpey, denote parameter estimates
from the development sample. Let expit(x)=exp(x) /{1+exp(x)}. One form for the
basic risk score is

JB(h) = expit(aDEV+ 2q XVAL(hg) bDEVq)- (15)
An adjusted risk score is the risk score obtained by fitting the basic risk

score to the validation sample using an intercept and slope (Cox, 1958; Steyerberg
et al. 2004). One form of the adjusted risk score is

JR(h) = expit{aVAL + byar 10git(JB(h))}. (16)
where ayy;. and by, are parameter estimates from the validation sample. The

notation J refers to either Jpp) or Jrm), after ordering from smallest to largest risk
Scores.

4.2 Estimated risks
There are two estimates of risk in the validation sample:
rprepg) =J 18 the predicted estimate of risk,

rogsi 1S the observed estimated risk for the i™ interval of ordered risk
scores, which is based on the outcomes in the validation sample.

With a binary outcome, rogs) equals the fraction of persons in the i interval of
risk scores who develop disease. With a survival outcome, rops;) equals 1 minus
the Kaplan-Meier estimate of surviving the outcome to a pre-specified time.
Unlike the observed risk, the predicted risk can be a biased in the validation
sample because it is based on a model derived in the development sample. Define
TPREDINTG) = 2j@) 'PrEDG) | hi Where ;4 are risk scores in the i interval of risk
scores. A minimal requirement for unbiased estimation of the predicted risk is the

Calibration Condition: 7prepivri) = roBsg)-

PublishedbyDeGruyter2012 15



The International Journal of Biostatistics, Vol. 8[2012], Iss. 1, Art. 5

Often the Calibration Condition is graphically checked by a plot of
TPREDINT()) VErsus rogpss, called a calibration plot. The necessary degree of
similarity between rprepivry and rogsy 1s difficult to specify. The Homer-
Lemeshow test is sometimes used to test this similarity (Homer and Lemeshow,
2000). Alternatively the estimated parameters for intercept and slope in equation
(16) to compute adjusted risk scores can provide information on the plausibility of
the Calibration Condition. However, use of adjusted risk scores does not
necessarily guarantee the Calibration Condition will hold.

4.3 Modified risk estimates due to sampling

For rare diseases, study costs can be reduced by creating the validation sample by
taking a random sample from the target population of persons who did not
develop disease and including all persons who developed disease. When using
this sampling procedure, it is necessary to modify estimates of risk. In this
regard, it helps to define the validation population as the population from which
the validation sample is a random draw, as distinguished from the target
population for which the validation sample is a random draw by disease status.
Estimates of risk in the validation sample apply directly to the validation
population but need to be modified for the target population. By definition, the
validation and target populations have the same distribution of risk scores
conditional on the indicator D of whether disease occurred,

pr(J=j | D=d, target population) = pr(J=j | D=d, validation population). (17)
For the validation population, we define the following parameters

r; = pr(D=1| J=j, validation population)
= risk of disease in validation population at risk score j,

w; = pr(J=j | validation population)
= probability of risk score j in validation population,

p =pr(D=1| validation pop) =), r; w;
= probability of developing disease in validation population.

Using equation (17), the probability of risk score j in the target population is
W;=pr(J=j | target population)
= pr(J=j | D=1, target population) P + pr(J=j |D=0,target population) (1 — P),

= pr(J=j | D=1, validation population) P
+ pr(J=j |D=0,validation population) (1 — P), (18)
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Using equations (17) and (18), the risk in the target population is related to
the risk in the validation population by the following formula (e.g., Baker, 2009;
Rousson and Zumbrunn, 2011),

R; = pr(D=1| J=j, target population)
= {pr(J=j | D=1, target population) P} / W,
= {pr(J=j | D=1, validation population) P} / W,
= (5w P Ip) / {rywi P/ p+ (1= r) wi(1 - P) /(1 -p)}
= (7P Ip)/ {r; P 1 p+(1—1) (1= P) /(1 -p)}. (19)
= RiskAdjust(r;, P, p)

See Figure 4 for a summary of this modification.

Validation sample
rprepg) 1S the predicted estimate of risk
rossg) 1S the observed estimated risk

T T
(random draw) (random draw by disease status)
T T
Validation population Target population
p =pr(developing disease) P=pr(developing disease)

r; = pr(developing disease| risk score j)  R; = pr(developing disease| risk score ;)
= RiskAdjust(r;, P, p)

Figure 4 Risk parameters in validation and target populations.

Let n denote the number of persons in the validation sample, and let »;
denote the number of persons in the /™ interval of ordered risk scores in the
validation sample. Based on equation (19), the estimated risks in the target
population corresponding to the predicted and observed risks in the validation
sample are

RPREDO’) = RiSkAdjuSl‘(l’pREDO), P, pPRED), where
wprepg =1/ n and  pprep= Y rerepg) / 1, (20)

ROBS(i) = Rl'SkAd]'uSt(l’OBS(i), P, pOBS), where
wossqy= i/ 2 hi and pos= )i Foss@ WoBs()- (21)

Based on equations (18), (A.2), and (A.3), the false and true positive rates
are the same for the validation and target populations:
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FPRy= Y o (I=rj)w;i/ (I-p)= Y (1-R;) W;/ (1-P), (22)
TPRs= Yoy rjwi/ p= Y55 Ry W,/ P. (23)
4.4 Predicted estimate of test tradeoff

The predicted estimate of the relative utility curve is the estimate obtained by
using only predicted risks. Let j index the ordered risk score in the validation
sample. The predicted estimates of false and true positive rates and ROC slope are

FPRPRED(]) = Z/'<u(1 - VPRED(u)) WPRED(u) / (1 — prreD), (24)
TPRpRrEDG) = ) j>u VPRED() WPRED() | PPRED: (25)

ROCSLOPEPREDO') = {pPRED / (1 —pPRED)}{ (1 - ”PREDO)) / rPREDO)}-
={P/(1-P)}{ (1 —Rprepg) ! RereD()}- (26)

Predicted estimates of relative utility curves and test tradeoff are based on
Rprepg), FPRprepg), and TPRprepg) -

4.5 Observed estimate of test tradeoff

The observed estimate of the relative utility curve is the estimate obtained using
only observed risks. To compute observed risks, a preliminary set of intervals, i =
1, 2, ..., I, is selected where, for example, each interval might correspond to a
decile of predicted risk. A problem is that a preliminary estimate of the ROC
curve derived from the observed risks,

FPRogsi) = Yi<u(1 —FoBsa) ) Wossaw / (1 — poss), (27)
TPRoBs@) = Yizu T0BSw WoBSw ! PoBS, (28)

may not be concave, violating the Risk Score Assumption.

A solution is to construct a concave ROC curve from the preliminary
estimate of the ROC curve. There are at least four approaches to constructing a
concave ROC curve from a non-concave preliminary ROC curve: (i) a parametric
model, (ii) a semi-parametric model (e.g. Wan and Zhang, 2007), (iii) isotonic
regression on the risks as a function of risk score (Lloyd, 2002), and (iv) a
concave envelope (sometimes called convex hull) of the ROC points (Egan, 1975;
Provost and Fawcett, 2001). We use the last approach because it gives the
performance of a superior set of classification rules (as will be discussed).
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Figure 5 Construction of concave ROC curves. The plot of corresponding risks is
constructed from the slopes of the ROC curve and the probability of developing
disease.

The concave envelope of the ROC curve is constructed from the
preliminary ROC curve by successively drawing a line from each point to the
point on its right, so that the line connecting the two points has the largest slope.
For example in Figure 5 (top), a preliminary non-concave ROC curve includes
points 4, 5, and 6. In Figure 5 (bottom), a concave envelope of ROC points is
obtained by drawing a line from point 6 to point 4, bypassing point 5 because the
slope of the line from point 6 to point 4 is greater than the slope of the line from
point 6 to point 5. The risk scores in Figure 5 (bottom right) are computed from
the slopes of the ROC curve in Figure 5 (bottom left) and the probability of
developing disease (P = 0.20).

The concave envelope of the ROC curve measures the performance of
classification rules created by a random selection of cutpoints; this performance is
better than the performance of classification rules summarized by the preliminary
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ROC curve. For example, consider a classification rule based on the random
selection of cutpoint js (corresponding to point 6) with probability a and cutpoint
Jj4 (corresponding to point 4) with probability (1-a), for 0< o < 1. The false and
true positive rates associated with this random selection are FPRy; = oo FPRs + (1—
o) FPR, and TPRy; = oo TPRs + (1-a0) TPR,. As o varies from 0 to 1, a line is
created connecting points 6 and 4 on the ROC curve. This line has a higher true
positive rate at the same false positive rate than classification based on the
cutpoint corresponding to point 5, indicating superior classification performance.

Let FPROBSC(Z’), TPROBSC(i)a and ROCSLOPEOBSCQ) denote estimates of false
positive rate, true positive rate, and ROC slope based on the ordered cutpoint i of
the concave envelope of the ROC curve. Let Rpgscy denote the observed
estimate of risk derived from ROCSLOPEopsci and P. Observed estimates of
relative utility curves and test tradeoff are based on Rogsci), FPRosscq, and
T PROBSC(U-

4.6 Hybrid estimate of test tradeoff

Vickers and Elkin (2006) proposed an estimate of decision curves that can also be
applied to the relative utility curve, which we call a hybrid estimate. The hybrid
estimate uses outcomes in the validation sample to estimate false and true positive
rates but uses the predicted estimate of risk that does not involve outcomes in the
validation sample. Let FPRogs;) and TPRogs; denote the observed estimates of
false and true positive rates based on ordered risk score j. With binary outcomes
FPRogsg) and TPRogsg) are the usual fractions. With survival data, Vickers, et al.
(2008) computed FPRogs() and TPRogsg) using a Kaplan-Meier estimates for risk
score j. Because this type of estimate can yield ROC curves that do not increase
monotonically, Heagerty, Lumley, and Pepe (2000) introduced an estimate that
avoids this drawback. Hybrid estimate of relative utility and test tradeoff are
based on RPREDO), FPROBSU’), and TPROBSO),

4.7 Comparison of estimates of test tradeoff

We compare the three types of estimates of test tradeoff under four criteria
summarized in Table 2.

Criterion 1 (necessity of Calibration Condition for unbiased estimation).
The predicted and hybrid estimates of test tradeoff require the Calibration
Condition for unbiased estimation because they involve predicted estimates of
risk. The hybrid estimate is less sensitive to violations of the Calibration
Condition than the predicted estimate because estimates of false and true positive
rates do not involve predicted estimates of risk. The observed estimate of test

20



Bakeretal.:EvaluatingaNewM arkerforRiskPrediction

tradeoff does not require the Calibration Condition for unbiased estimation
because it is a function of only observed estimates of risk.

Criterion 1 Criterion 2 Criterion3 Criterion 4
Estimate of Unbiased Do bootstrap | Compatibility | Estimated
test tradeoff | without confidence of estimates | risk in target
(estimates of | Calibration intervals from | of R with population
risk and false | Condition? validation estimates of
and true sample FPR; TPR;
positive rates) capture all

variability of
outcomes?

Predicted no, no, yes risk score
(RprEDG), requires RprEDG)
FPRPRED(/) Calibration FPRPRED(/)
TPRPREDO) ) Condition for TPRPREDO’) do

RPREDU); not involve

FPRpreD() outcomes

TPRpreDG)
Observed yes yes yes risk score
(ROBSC(i): used with risk
FPRoBsc), mapping plot
TPRossc)
Hybrid no, no, Rprepg) no risk score
(RprEDG) requires does not
FPRogsg), Calibration involve
TPRoss(j)) Condition for | outcomes

RprED(G)

Table 2 Comparison of estimates

Criterion 2 (role of bootstrap confidence intervals). Confidence intervals
for the estimated test tradeoff are computed by bootstrapping the data (baseline
variables and outcomes) in the validation sample. (Often data from the
development sample are not available). For the observed estimate of test tradeoff,
the confidence interval captures all the variability of outcomes in the validation
sample because the observed estimate of test tradeoff is a function of only
observed estimates of risks. For the predicted estimate of test tradeoff, the
confidence interval does not fully capture variability because predicted estimates
of R;, FPR; and TPR; do not depend on outcomes in validation sample. For the
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hybrid estimate of test tradeoff, the confidence interval does not fully capture
variability because the predicted estimate of R; does not depend on outcomes in
the validation sample. Consequently, the bootstrap confidence interval is widest
for the observed estimate of test tradeoff and narrowest for the predicted estimate
of test tradeoft.

Criterion 3 (compatibility of estimates of risk, and false and true positive
rates). A desirable property of estimates of risk and false and true positive rate is
that they satisfy the fundamental relationship in equations (22) and (23). This
property holds for predicted and observed estimates and ensures smooth relative
utility curves. Generally this property does not hold for hybrid estimates, leading
to relative utility curves that may be jagged with possibly large fluctuations in
estimates of test tradeoff for small changes in the risk threshold.

Criterion 4 (risk estimates in the target population). If the test tradeoff is
favorable, risk estimates would be computed for individuals in the target
population in a future application. With predicted or hybrid estimates of test
tradeoff, the predicted risk estimates in the target population are simply the risk
scores, which is the conventional approach. With an observed estimate of test
tradeoff, the risk scores need to be converted to an observed risk without the
benefit of an observed outcome. This conversion may be accomplished via a risk
mapping plot estimated from the validation sample. The horizontal axis of the risk
mapping plot is the risk score and the vertical axis is the observed risk. An
individual in the target population would use the plot to obtain the observed
estimate of risk associated with his risk score. The risk mapping plot for the
example in Section 6 is given in Figure 6.

Risk Mapping Plot: Model 1 Risk Mapping Plot: Model 2
10 Fr ' ' ' ' ] lO L ' ' ' ' '
08} ] 0.8
2 061 z 0.6
2 3
g 04} g 04l
02 q 021
00} ‘ ‘ ‘ ‘ B 00¢, ‘ ‘ ‘ ‘ B
00 02 04 06 08 10 00 02 04 06 08 10
risk score risk score

Figure 6 Mapping of risk score to observed risk estimate.
The predicted estimate of test-trade off is most appropriate if the

Calibration Condition holds, smooth relative utility curves are desired,
confidence intervals are not of interest, and risk scores are used to estimate risk in
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future individuals . The hybrid estimate is most appropriate in the same situation
as the predicted estimate but without a smooth relative utility curve and with a
likely smaller bias from a violation of the Calibration Condition. The observed
estimate is most appropriate when the Calibration Condition is questionable and
confidence intervals are desired.

5 Simulation

To investigate the performance of different estimates, we randomly generated
data under different logistic regression models in the development and validation
samples. Under the simulation, the true risk in development population is

logit(pr(Y; =1x) = 0.5+ 1.5 xj; + 1.5 x;2 + 1.5 x;3,
and the true risk in the validation population is
logit(pr(Y; =1|x) = 0.1 + 0.5 x;; +0.5, xpp+ 0.5 x;3.

The sample size was 600. Model 1 is a model fitted to x;; and xi;. Model 2
is a model fitted to x;;, xi, and x;3. As expected, the basic risk score was poorly
calibrated. The adjusted risk score was also poorly calibrated for Model 1,
although to a lesser degree than the basic risk score (Figure 7).

When computed from basic risk scores, the relative utility curves differed
considerably among the different estimates (Figure 8). When computed from
adjusted risk scores, the relative utility curves were more similar among the
different estimates (Figure 9). The relative utility curve for the observed estimate
is the same for the basic and adjusted risk scores because it depends only on the
ranks of the risk scores, which are the same for basic and adjusted risk scores.

Estimates of test tradeoff were computed for three risk thresholds with
confidence intervals computed using 2000 bootstrap replications of the validation
sample. Results are shown for adjusted risk scores (Table 3). The observed or
hybrid estimate of the maximum acceptable testing harm can be less than zero
because these estimates involve outcomes in the validation sample. When the
maximum acceptable testing harm is less than zero, the test tradeoff is labeled as
“harm.”
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Figure 7 Calibration plots for simulated data.

Risk thresholds

Estimate 0.58 0.66 0.75
Predicted 15(12,19) |13 (11,17) |13 (11, 16)
Observed 13 (9, 34) 12 (9, 26) 14 (9, 39)
Hybrid 11(7,23) 10 (7, 19) 23 (10, harm)

Table 3 Estimated test tradeoff (95% confidence intervals) in simulated data with
adjusted risk scores.

For the risk threshold of 0.58 the estimated test tradeoff was similar for the
three estimates, but there was a considerable difference in the widths of the
bootstrap confidence intervals for reasons explained in Criterion 2 of estimation.
For risk threshold 0.75, the hybrid estimate differed from the observed estimate,
which may be related to Criterion 3 of estimation.
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Figure 8 ROC and relative utility curves derived from basic risk scores in

simulated data. Vertical lines correspond to risk thresholds in Table 3.

PublishedbyDeGruyter2012

25



The International Journal of Biostatistics, Vol. 8[2012], Iss. 1, Art. 5

ROC curve: Predicted estimate: RU curves: Predicted estimate:
Adjusted risk scores Adjusted risk scores
101 1 10r 1
Model 2----
Model 1—
08 1 08 1
Q
g 2
_02) 0.6+ 1 E 06+ 1
= <]
@ >
Q =
S 04t 1 5 o4f 1
> o
=
02} [ ,7 Modd2-- AUC=083 | 02} 1
{7 Model 1— AUC=0.75
00y pr(devel ops disease)=0.49 00y ]
00 02 04 06 08 10 00 02 04 06 08 1.0
False positive rate Risk threshold
ROC curve: Observed estimate: RU curves: Observed estimate:
Adjusted risk scores Adjusted risk scores
10+ R 10+ R
Model 2----
Model 1—
08r 1 08r 1
Q
® 2
.u2> 06+ 1 g 06+ 1
= <]
@ >
2 =
o 04r 4 g 04} ]
> o
=
02f ,7 Model 2---- AUC=0.83 02f ]
.7 Model 1— AUC=0.75
00y pr(devel ops disease)=0.49 00y ]
00 02 04 06 08 10 00 02 04 06 08 1.0
False positive rate Risk threshold
ROC curve: Hybrid estimate: RU curves: Hybrid estimate:
Adjusted risk scores Adjusted risk scores
10+ R 10+ R
Model 2----
Model 1—
08r 1 08r 1
Q
B 2
.02) 06+ 1 g 06+ 1
= (]
£ Q
14 2z
S04 1 8 o04r 1
=4 § 24
=
02t | 7 Mode 2---- AUC=083 | 02} 1
.7 Model 1— AUC=0.75
007 pr(develops disease)=0.49 00y v
00 02 04 06 08 10 00 02 04 06 08 1.0
False positive rate Risk threshold

Figure 9 ROC and relative utility curves derived from adjusted risk scores in
simulated data. Vertical lines correspond to the risk thresholds in Table 3.
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6 Application to cancer risk prediction

We applied the methodology to a risk prediction model for the presence of
residual tumor tissue in patients who received chemotherapy for testicular cancer
(Steyerberg, et al., 1995; Vergouwe, et al., 2007). The development and validation
samples consisted of 544 and 550 participants respectively. The fraction with
disease (residual tumor) was 0.67. In the absence of risk prediction, patients
receive treatment, so the relevant region for risk thresholds is less than 0.67.
Treatment is removal of lymph nodes. Model 1 involves three predictors: an
indicator of teratoma in the primary tumor, the size of the residual mass, and the
change in mass size induced by chemotherapy. Model 2 also includes the levels of
two markers in the blood, AFP and HCG. The goal is to decide if the additional
markers of AFP and HCG should be included in the risk prediction model when
considering risk prediction in a target population of eligible patients. The
validation sample is viewed as a random draw from the target population. The
calibration plot (Figure 10) shows good calibration, particularly for the adjusted
risk scores.
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Figure 10 Calibration plots with cancer data
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Figure 11 ROC and relative utility curves derived from adjusted risk scores for
men with testicular cancer. Vertical lines correspond to the risk thresholds in

Table 4
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Figure 11 shows ROC and relative utility curves for adjusted risk scores.
Because the ROC curves were similar for Models 1 and 2, it is not surprising, in
light of results in Section 4, that the relative utility curves are similar.

The estimates of test tradeoff are shown in Table 4 for adjusted risk
scores. As a sensitivity analysis, risk thresholds in the range from 0.2 to 0.4 are
considered for the risk of residual tumor, in line with a formal decision analysis
(Steyerberg, et al., 1999). Confidence intervals were based on 2000 bootstrap
replications of outcomes in the validation sample. The predicted estimates have
the narrowest confidence intervals because they are not based on outcomes of the
validation sample.

As an example of the interpretation of results consider the observed
estimate of test tradeoff for the risk threshold of 0.30, namely 169 with 95%
confidence interval of (40, “harm”). The test tradeoff of 169 can be interpreted as
follows: at least 169 marker tests need to be traded for an additional true positive
to yield an increase in net benefit of risk prediction with the additional markers.
Because ascertaining these markers has small monetary costs and little harm, the
cost of 169 marker ascertainments seems well worth the benefit of removing
lymph nodes from one patient with a residual tumor in a lymph node. However
there is one major caveat, namely the upper bound on the estimated test tradeoff
of “harm.” Thus, there is considerable uncertainty in this estimate of test tradeoff,
and researchers would need to consider the possibility that the addition of markers
could make the outcomes worse for patients in the validation population.

Estimate Risk thresholds for residual tumor

0.20 0.30 0.40
Predicted 712 (432, 1729) 63 (47,91) 32 (24,49)
Observed harm (298, harm) 169 (40, harm) | 22 (13,harm)
Hybrid 188 (108,3245) 50 (24, >104) 19 (11,59)

Table 4 Estimated test tradeoff (95% confidence intervals) for testicular cancer
data with adjusted risk scores.

7 Discussion

The test tradeoff at various risk thresholds is an appealing summary of the value
of an additional marker in the risk prediction model. The general problem with
using purely statistical measures to evaluate an additional marker is deciding how
large a statistic is sufficient to declare the additional marker worthwhile. In
contrast, the test tradeoff has a direct interpretation, namely the minimum number
of tests for a new marker that need to be traded for a true positive to yield an
increase in the net benefit of risk prediction with the additional marker. Thus the
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test tradeoff accounts for the cost (monetary cost and harm) of marker
ascertainment as well as the tradeoff between false and true positives summarized
by the risk threshold. The more information on risk thresholds, the more focused
the sensitivity analysis. The default of treatment or no treatment in the absence of
risk prediction limits the range of risk thresholds to investigate. But even without
any information to restrict the range of risk thresholds (which is when a purely
statistical measure might be considered), a sensitivity analysis for the estimated
test tradeoft could still be informative.

Somewhat remarkably, the test tradeoff is computed from relative utility
curves that can be derived from ROC curves with only one piece of additional
information, namely the probability of developing disease. If the ROC curves are
similar the relative utility curves will be similar; However if the ROC curves
differ, the relative utility curves (and the resulting test tradeoff) provide more
meaningful information than the ROC curves.

Ultimately, a risk prediction model is used in a future application
involving persons in a target population. The translation of risk scores into an
estimated risk via a risk mapping plot (or functional equivalent) is unconventional
but not difficult. In this case, the observed estimate of test tradeoff is preferred
over predicted and hybrid estimates because it does not require the Calibration
Condition and bootstrap confidence intervals based on the validation sample are
appropriate. Generally individual-level data are needed; however, the observed
estimate can be computed from tabular data (Baker, 2009). With a more
conventional use of risk scores as predicted risks in a target population, the hybrid
or predicted estimate of test tradeoff is appropriate if the Calibration Condition
holds and there is no interest in confidence intervals. In this case, the hybrid
estimate would usually be preferred over the predicted estimate because it is more
robust to violations of the Calibration Condition. A general limitation with all
approaches for evaluating an additional marker for risk prediction is the
requirement that the validation sample be a random sample or a random sample
by disease outcome from the target population.

The examples discussed here involved risk prediction models based on
logistic regression but more complex multivariate approaches can be used. For
example Baker (2010) created relative utility curves using a nearest-centroid
analysis of microarray data (Baker, 2010). Software using Mathematica (Wolfram
Research, Inc, 2010) (which also illustrates the calculations here) is available at
http://dcppreview.cancer.gov/programs-resources/groups/b/software/newmarker.
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Appendix A

This appendix discusses some fundamental relationships between risk and false
and true positive rates. Let

W; = pr(J =j) = probability of risk score ;.

Then the following mathematical identities hold,

P=%iR; W) (A.1)
TPRy= Y= Ry W;/P, (A.2)
FPRy= Y2 (1= R) W;/ (1 - P), (A3)

ROCSLOPE; = (TPR;—TPR1))/ (FPR;—FPR 1))
= (B W/ P {(=Ry W,/ (1-P)j}.
= {(1-P)/ P} xR/ (1 =Ry). (A4)

Figure 12 shows the link between the ROC curve and the risk scores under the
Risk Score Assumption.

ROC curve risks versus risk score

true positive rate

‘ ‘ ‘ 00t_.% ‘ ‘ ‘ ‘
0 0.5 1 1 2 3 4 5

false positive rate risk score

Figure 12 Relationship between the ROC curve and risk scores. Numbers next to
points on the ROC curve refer to risk scores s= 1, 2, 3, 4, 5.
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Appendix B

This appendix proves that the expected utility of risk prediction is maximized at
R, = T'when the Risk Score Assumption holds. The difference in expected utilities
of prediction between risk score s and risk score (s +1) is

UPred(s)_ UPred(s+]) = (UPred(s) - UNoTreat) - (UPred(S+1) - UNoTreat)
= PXx (TPR(S) —TPR(SH)) x B
— (1 —P) X (FPR(S)—FPR(SH)) x C
— (P x ROCSLOPE, x B— (1 - P) x C}
X {FPR(S)—FPR(SH)}. (Bl)

If the Risk Score Assumption holds, ROCSLOPE; is increasing with s so
that (B.1) equals 0 at only one point. Setting equation (B.1) equal to zero and
solving for ROCSLOPE; gives the slope of the ROC curve at which the expected
utility is maximized when the Risk Score Assumption holds,

ROCSLOPE, = {(1 - P)/ P} x {C/ B}
={(1-P)/ P} x {T/(1-D)}. (B.2)

Appendix C
Recall the formula for relative utility is
(UPred(t) - UT reat) / (UPe}ffPred - UT reat)o if UNoT reat < UT reats
RU[: {
(UPred(t) _UNOT reat) / (UPerﬂ-’red - UNoTreat)a if UNoTreat > UT reat.s (Cl)
The numerators in the formulas for the relative utility are
UPred(t) - UNoTreat =P x TPRt X B — (1 _P) X FPRt xC + UTests (C2)
Upreat) — Urreas = (1 — P) X (1-FPR;) x C — P X (1-TPR)) X B + Ureg. (C.3)
The denominators in the formula for the relative utility are
UPerﬂ-’red - UNoTreat: {P X U(treat,dis) + (1 -P ) x U(no treat,no dz's)}
_{P x U(no treat, dis) + (1 - P) x U(no treat, no dis)}

= Px {U(treat,dis) - U(no treat, dl's)}
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UPe}ffPred_ Urrear = {P x U(li’eal,dié‘) + (1 _P) X U(no treat,no dis)}
_{P x U(treﬂt)dis)—i_ (1 - P) X U(treat, no dis)}
= (l - P) X {U(no treat,no dis) — U(treal, no dis)}
= (I-P)xC. (C.5)

Therefore the relative utility when Unorrear < Ufrear Can be written

RUt: (UPred(t) - UT reat )/ (UPerfPred - UT reat)
={(1-P) x (1-FPR}) x C — P X FNRy; X B +Ureyy }/ {(1 - P) % C}
= (1-FPR)) — (1-TPR)) x PA1 — P) xB /C+ Urey / {(1 — P) x C}
= (I-FPRy) — (I-TPR) x Pl = P) x{(1=T)/T} +Urey /{(1—P)x C}
= (1-FPR)) — (1-TPR,) / ROCSlope, +Uresy; / (1 — P) x C}. (C.6)

Also the relative utility when Unprrear = Urreqs can be written

RUt: (UPred(t) - UNoT reat )/ ( UPerjPred - UNoT reat)
={PxTPR, xB — (1-P)x FPR,x C + Upuy } /(P % B)
= TPR, — FPR, {(1-P)/ P} x (C/B) + Upe /(P x B)
=TPR, — FPR, {(1-P)/P} x {T/A1-T)} + Upy /(P % B)
= TPR, — FPR, ROCSlope, + Upu /(P % B). (C.7)

The condition for these two cases in the relative utility formula depends on
UTreat_ UNoTreat =PXxXB- (1 —P) x C. (C8)

The first case of Unoprrear < Urrear Successively implies Uryeqs— Unotrear > 0,
P/(1-P) >C/B,P/(1-P) >T/(1-T),and T < P. Similarly Unorrear > Urrear
implies 7 > P. Substituting the above results into the definition of relative utility
in (C.0) gives the formula in the text,

(1=FPR,) — (1=TPR,) | ROCSlope; +Upest /{(1 = P) x C}, if T < P,
RUt:{
TPR, — FPR,x ROCSlope, +Upe;/ (P % B), if T >P. (C.9)

Appendix D

The following derivation of an individual’s risk threshold follows Pauker and
Kassirer (1975) with the addition of a utility for testing costs. Let subscript “*”
denote an individual’s utilities. For an individual with risk score j* the expected
utility of no treatment is
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UNoTreal = pr(D=1 |J=] *) X U*(no treat, dis) + Pr(D=O|J=] *) x U*(no treat, no dis)s (D 1)
and the expected utility of treatment is
UTreal = Pr(D= 1 |J=] *) x U*(treat,dis)+ pr(D=0|J=] *)X U*(lreat, no dis) + U*Tesl' (D2)

Let B*= U*(treat,dis) - U*(no treat, dis) and C*= U*(no treat, no dis) — U*(treat, no dis)+
The individual risk threshold 7* at which there is indifference between no
treatment and treatment is obtained by setting equation (D.1) equal to equation
(D.2) and solving for pr(D=1| J=j*) to obtain

T* = {U*(no treat, no dis) _U*(treat,dis) + U*Test} /

{U*(lreat,dis) _U*(no treat, dis) + U*(no treat, no dis) _U*(treal,dis) + U*Test}
= (C¥/B*+ Unpy /B¥)/ (1+ C*/B*),

An individual with risk threshold 7* should receive treatment if his estimated risk
is greater than 7 and no treatment if his estimated risk is less than 7*.
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