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Evaluating a New Marker for Risk Prediction
Using the Test Tradeoff: An Update
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Abstract
Most of the methodological literature on evaluating an additional marker for risk prediction

involves purely statistical measures of classification performance. A disadvantage of a purely
statistical measure is the difficulty in deciding the improvement in the measure that would make
inclusion of the additional marker worthwhile. In contrast, a medical decision making approach can
weigh the cost or harm of ascertaining an additional marker against the benefit of a higher true
positive rate for a given false positive rate that may be associated with risk prediction involving the
additional marker. An appealing form of the medical decision making approach involves the risk
threshold, which is the risk at which the expected utility of treatment and no treatment is the same.
In this framework, a readily interpretable evaluation of the net benefit of an additional marker is the
test tradeoff corresponding to the risk threshold. The test tradeoff is the minimum number of tests
for a new marker that need to be traded for a true positive to yield an increase in the net benefit of
risk prediction with the additional marker. For a sensitivity analysis the test tradeoff is computed
over multiple risk thresholds. This article updates the theory and estimation of the test tradeoff. An
example is provided.
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1 Introduction 
 
Risk prediction provides important information for making treatment decisions.  
For example, predictions of the risk of residual tumor inform decisions about 
surgical resection in patients with testicular cancer (Steyerberg et al., 1995), and 
predictions of the risk of breast cancer inform decisions about chemoprevention 
(Mealiffe et al., 2010). An important question is whether or not it is worthwhile to 
include an additional marker in the risk prediction model.  Here we take a 
decision analytic perspective in weighing benefits and harms in a population of an 
additional marker for risk prediction. Testing for or otherwise ascertaining the 
additional marker could have costs or harms that need to be weighed against 
benefits and harms of risk prediction with the additional marker. We consider a  
situation in which, in the absence of risk prediction, there are only two decisions: 
treat or not treat.  
 For the sake of brevity, “develops disease” will mean “develops disease in 
the absence of the treatment under consideration,” and “risk” will refer to “risk of 
developing disease.” Also “additional marker” refers to either a single marker or 
set of markers. We define the risk prediction model as a mathematical model for 
the risk of developing disease as a function of a set of predictors. We consider two 
risk prediction models: Model 1, a baseline risk prediction model, and Model 2, a 
risk prediction model that uses the predictors in Model 1and an additional marker. 
We also define the following samples and population. The development sample is 
the sample used to formulate the risk prediction model. The development 
population is the population from which the development sample is implicitly a 
random draw. The validation sample is the sample used to evaluate risk prediction 
model (and sometimes also used to refine the risk prediction model). The target 
population is a population from which the validation sample is implicitly a 
random draw or a random draw separately for persons who develop disease and 
persons who do not develop disease (thus allowing for oversampling of persons 
who developed a rare disease). Usually the target population corresponds to a 
different geographic location than the development population (Justice, et al. 
1999). 
 There is a large literature on purely statistical methods to evaluate an 
additional marker for risk prediction.  One approach is to compare classification 
performance curves from Models 1 and 2 in the validation samples. Examples 
include receiver operating characteristic (ROC) curves and predictiveness curves 
(Gu and Pepe, 2009). A second approach is to construct a summary statistical 
measure of classification performance in the validation sample. Examples include 
a change in the area under the receiver operating characteristic curve (AUC) 
(Tzoulaki, et al., 2009), a difference in the maximum Youden indices, integrated 
discriminant improvement, and net reclassification improvement (Pencina, et al 
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2008, Gu and Pepe, 2009, Whittemore, 2010). A fundamental limitation with 
these approaches is deciding how large a difference between performance 
measures for Models 1 and Model 2 is sufficient to deem the new marker 
worthwhile. Also, when these measures can be framed in terms of costs and 
benefits, they can assume an unrealistic cost-benefit tradeoff as with the Youden 
index (Baker and Kramer, 2007) or the area under the ROC curve (Hand, 2010).   
 A medical decision-making approach to evaluating an additional marker 
for risk prediction circumvents the aforementioned drawbacks of a purely 
statistical measure. The main challenge with using costs and benefits is to 
determine their relative values. A sensitivity analysis over a range of costs and 
benefits should therefore be considered.  In a landmark paper, Vickers and Elkin 
(2006) introduced decision curves as a method to simplify the sensitivity analysis 
for the net benefit of a risk prediction model.  Vickers and Elkin (2006) 
considered an individual risk threshold, which is the risk at which a person would 
be indifferent between treatment and no treatment (Pauker and Kassirer, 1980). 
The plot of net benefit of risk prediction versus risk threshold is called a decision 
curve.  Baker et al. (2009) and Baker (2009) extended decision curves to relative 
utility curves. The relative utility is the maximum expected utility of risk 
prediction divided by the expected utility of perfect prediction.  The relative 
utility curve is a plot relative utility versus a population risk threshold. The 
population risk threshold (called risk threshold subsequently) is the risk at which 
the expected utility of treatment and no treatment is the same in the population.   
 Baker et al. (2009) also introduced the test threshold (called here the test 
tradeoff to better distinguish it from the risk threshold) to evaluate a new marker 
at a specified risk threshold. The test tradeoff corresponding to a risk threshold is 
the minimum number of tests for a new marker that need to be traded for a true 
positive to yield an increase in the net benefit of risk prediction with the 
additional marker.  The test tradeoff can then be considered in light of any 
detrimental side effects or monetary costs of testing for the marker.  For example 
a test tradeoff of 100 could be reasonable if testing for the marker involved only a 
simple blood test but unreasonable if testing for the marker required an invasive 
biopsy.  Computation of the test tradeoff at various risk thresholds provides a 
sensitivity analysis. 
 Section 2 updates the theory underlying the medical decision making 
approach to evaluating risk prediction; it links various formulations in terms of 
the Fundamental Rule of cost-benefit analysis, improves two-stage risk 
prediction, and distinguishes population and individual risk thresholds. Section 3 
expands on graphical insights concerning ROC and relative utility curves. Section 
4 presents new results in the estimation of relative utility curves and test tradeoff, 
introduces the risk mapping plot, and provides a new comparison of estimates.  
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Section 5 is a simulation; Section 6 provides an application; and Section 7 is a 
discussion. 
 

2 Theory 
 
The goal is to compare the use of risk prediction Model 1 versus risk prediction 
Model 2 (with an additional marker) for making a decision of treatment versus no 
treatment when applied to a target population.  Under the benefit-cost approach, 
this comparison is based on the net benefit, which is the total expected benefit 
minus the total expected harm measured in the same units as benefit. Stokey and 
Zeckhauser (1978) define the Fundamental Rule in any choice situation as 
selecting the alternative that produces the greatest net benefit.  We discuss various 
versions of the Fundamental Rule that involve different simplifications in the 
benefit-cost inputs.  To help the reader with notation, a summary of symbols is 
provided in Table 1. 
 An important quantity in the computation of the net benefit of risk 
prediction is the risk score. An individual’s risk score is the risk of developing 
disease computed from applying the risk prediction model in the development 
sample to the predictors for that individual.  The risk score is considered here as a 
preliminary measure of risk, rather than as a definitive probability of an event.  A 
value of the risk score greater than a cutpoint is an indicator for treatment and a 
value of the risk score less than a cutpoint is an indicator for no treatment.  In this 
respect the risk score is no different from a measure of serum cholesterol level 
used to predict the risk of cardiovascular disease. Let J denote a risk score 
computed for an individual in the target population. Let D=1 if the individual in 
the target population develops disease and 0 otherwise.  The probability of 
developing disease for an individual in the target population with risk score j is 
written 
 
   Rj = pr(D =1| J =j, target population) 
        = probability of developing disease if the risk score is j. 
 
An important requirement of the risk score j is   
 
           Risk Score Assumption:  Rj increases as j increases.  
 

Consider a cutpoint s on the risk score such that J ≥s indicates a positive 
classification followed by treatment, and J < s indicates a negative classification 
followed by no treatment. The following probabilities for the target population are 
basic to the analysis: 
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   P = pr(D=1 | target population)=probability of developing disease,   
  FPRs = pr(J ≥ s | D =0, target population) = false positive rate at cutpoint s, 
  TPRs = pr(J ≥ s | D =1, target population)  = true positive rate at cutpoint s. 
 
Symbol Definition (applies to target population) 
J risk score  
D indicator of developing disease 
Rj probability of developing disease if the risk score is j 
P probability of developing disease   
FPRs false positive rate at cutpoint s 
TPRs true positive rate at cutpoint s 
U(treatdis) utility of treating a person who would develop disease in the absence 

of  treatment 
U(no treat, dis) utility of not treating a person who would develop disease in the 

absence of treatment  
U(treat, no dis) utility of  treating a person who would not develop disease  
U(no treat, no dis)  utility of not treating a person who would not develop disease  
UTest utility (harm or cost) associated with testing for or otherwise 

ascertaining all predictors in a model 
UPred(s)     expected utility of risk prediction at cutpoint s  
UNoTreat  expected utility of no treatment     
UTreat  expected utility of treatment    
UPred*(s)  UPred(s) – UNoTreat  
B U(treat,dis) – U(no treat, dis)   

= overall gain from treating a person who would develop disease  
C  U(no treat, no dis)  – U(treat, no dis)   

=overall cost from treating a person who would not develop disease 
T 1 / (1 + B/C) = risk threshold 
ROCSLOPEt slope of ROC curve at cutpoint t 
NBt net benefit for decision curves 
UPerfPred expected utility of perfect prediction               
RUt relative utility at cutpoint t 
∆NBt NBt[Model 2]  –  NBt[Model1]  

= increase in net benefit for decision curves  
∆UTest  UTest[Model 1]  – UTest [Model 2]  

 = cost of the additional test used with Model 2 
∆NBt|UTest=0 maximum acceptable testing harm 
1/ ∆NBt|UTest=0 test tradeoff 

 
Table 1.  Summary of symbols used in Section 2. 
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A utility is a numerical value for a health benefit, harm, or monetary cost, 
measured on a common scale.  A positive value for utility indicates a benefit and 
a negative value indicates a cost or harm.  Five utilities are associated with risk 
prediction: U(treat,dis), the utility of treating a person who would develop disease in 
the absence of  treatment, U(no treat, dis), the utility of not treating a person who 
would develop disease in the absence of treatment, U(treat, no dis), the utility of  
treating a person who would not develop disease, U(no treat, no dis), the utility of not 
treating a person who would not develop disease, andUTest  is the utility (harm or 
cost) associated with testing for or otherwise ascertaining all predictors in a 
model. It is reasonable to assume that U(treat,dis) > U(no treat, dis)  and U(no treat, no dis) > 
U(treat, no dis). Also UTest < 0 because any test has some burden, harmful side effect, 
or monetary cost.  Each of these utilities is an average of the utilities of 
individuals in the target population.  
 Using the aforementioned utilities and probabilities, we discuss various 
formulations for comparing the net benefit of Model 2 versus Model 1starting 
with the most basic formulation and then discussing various simplifications and 
extensions.  
 
2.1 Comparing maximum expected utilities of risk prediction 
 
Fundamentally, the comparison of the net benefit of Model 2 versus Model 1 is a 
comparison of the maximum expected utility of risk prediction under Model 2 
versus Model 1. The maximum expected utility of risk prediction is the 
maximum, over the cutpoints, of the expected utility of risk prediction. For 
cutpoint s the expected utility of risk prediction is the average of the 
aforementioned utilities weighted by their probabilities of occurrence, 
 
      UPred(s) =  P ×TPRs  × U(treat,dis)   
                  +  P × (1 – TPRs) ×U(no treat, dis)  

                          +  (1 – P) × FPRs  × U(treat, no dis)   
                 + (1 – P) × (1 – FPRs) ×U(no treat, no dis)    
                          + UTest.       (1) 
 

Let subscripts “Model 1” and “Model 2” denote that the risk score based 
on risk prediction Models 1 and 2, respectively.  In this framework, the 
Fundamental Rule is 
 
 Fundamental Rule Version 1:  
 Benefit-cost inputs are U(treat,dis), U(no treat, dis), U(treat, no dis), U(no treat, no dis), 
  and UTest. 
 Select Model 2 if Maxs{UPred(s)[Model 2]} > Maxs{UPred(s)[Model 1]}. 
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Typically U(no treat, no dis) is set to 0, which does not affect the Fundamental Rule. 
Sometimes U(treat, dis)   is also set to 0 (Briggs and Zaretski, 2008; Cai et al, 2011), 
which is a strong assumption that is not necessary for simplification, as will be 
seen in Section 2.2.  
 
2.2 Comparing maximum expected utilities of risk prediction: a 
simplification involving the no treatment option 
 
Fundamental Rule Version 1 can be greatly simplified by considering the 
expected utility of risk prediction in excess of the expected utility of no treatment. 
The expected utility of no treatment is  
 
        UNoTreat = P  ×U(no treat, dis)   + (1 – P) × U(no treat, no dis).    (2) 
 
For later discussion it also helpful to define the expected utility of treatment,   
 
             UTreat = P × U(treat,dis)+ (1 – P) × U(treat, no dis).     (3) 
 
The expected utility of risk prediction in excess of the expected utility of no 
treatment is 
 
 UPred*(s) = UPred(s) – UNoTreat   
     = P × TPRs  × B  –  (1 – P) × FPRs × C  +  UTest,  where 
 B = U(treat,dis) – U(no treat, dis),        
            C = U(no treat, no dis)  – U(treat, no dis).     (4) 
   

The quantity B is the overall benefit of treating a person who would 
develop disease.  The quantity C is the overall cost of treating a person who 
would not develop disease. Equation (4) with UTest = 0 was proposed by Peirce 
(1884).  Based on equation (4), the Fundamental Rule can be expressed as 
 
 Fundamental Rule Version 2:  
 Benefit-cost inputs are B, C, and UTest. 
 Select Model 2 if Maxs{UPred*(s) )[Model 2] > Maxs{UPred*(s)[Model 1]}. 
 
2.3 Comparing maximum expected utilities of risk prediction: a 
simplification using the risk threshold  
 
Fundamental Rule Version 2 can be simplified even further by using the risk 
threshold to compute the optimal cutpoint that maximizes the expected utility of 
risk prediction. The risk threshold, denoted T, is the probability of developing 
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disease in the population at which the expected utility of treatment and no 
treatment is the same.  Substituting T for P when setting UNoTreat = UTreat  in 
equations (2) and (3) gives the following formula for the risk threshold, 
 
  T = 1 / (1 + B/C)  =  (C/B) / (1+C/B),                                      (5) 
 
which implies  C/B = T / (1 – T).  The quantity C/B  is sometimes called the  
relative utility of true- and false- positve results (Halpern et al. 1996), which 
should not be confused with the terminology “relative utility” discussed later.  
The receiver operating characteristic (ROC) curve in the target population is a 
plot of TPRt  versus FPRt . As derived in Appendix A, the slope of this ROC 
curve at cutpoint t (more precisely between cutpoint t and cutpoint t+1) is 
 
           ROCSLOPEt   = (TPRt –  TPR(t+1))/ (FPRt –  FPR(t+1)).  
                                   = {(1 – P) / P} × Rt / (1 – Rt).    (6) 
 

A fundamental result (Pauker and Kassier, 1975, Metz, 1978, Gail and 
Pfeiffer, 2005) is the following.  Under the Risk Score Assumption, for a risk 
threshold of T, the maximum expected utility of risk prediction occurs at cutpoint 
t of the risk score that satisfies what we call the 
 
   Optimization Requirement,  Rt = T,  
  which is equivalent to  
              ROCSLOPEt  =  {(1 – P) / P} × T / (1 – T).    
 

A proof of the optimization requirement is given in Appendix B.  Using 
the optimization requirement, the Fundamental Rule can be simplified as 
 
 Fundamental Rule Version 3:  
 Benefit-cost inputs are B, C, and UTest. 
 Select Model 2 if UPred*(t)[Model 2]  > UPred*(t)[Model 1], 
 
where the optimal cutpoint t solves Rt = T.  
 
2.4 Comparing decision curves 
 
The Fundamental Rule Version 3 can be simplified by eliminating the separate 
contributions of B and C and using only the risk threshold T. This is the method of 
decision curves (Vickers and Elkin, 2006) who use the term “net benefit” (in a 
more specific manner than previously discussed) to define the following quantity, 
 

7

Baker et al.: Evaluating a New Marker for Risk Prediction

Published by De Gruyter, 2012



NBt =   (UPred(t)  –  UNoTreat) / B        
       = P ×TPRt  –  (1–P) ×{T / (1 – T)} ×  FPRt   + UTest / B.  (7) 
 

This net benefit for a decision curve, NBt, is the maximum benefit of risk 
prediction (in excess of the benefit of no treatment) in units of the benefit of 
treating a true positive.  It equals the benefit of treating a true positive after 
subtracting the cost of treating a false positive at an “exchange rate” based on the 
risk threshold.  In this framework, the Fundamental Rule is 
 
 Fundamental Rule Version 4:  
 Benefit-cost inputs are T and UTest.  
 Select Model 2 if NBt[Model 2] > NBt[Model 1], 
 
where the optimal cutpoint t solves Rt = T.  The original form of the decision 
curve plotted net benefit versus individual risk threshold (Vickers and Elkin, 
2006) when UTest = 0. 
 
2.5 Comparing relative utility curves  
 
Additional perspective in comparing the net benefits of Models 1 and 2 can be 
obtained by considering the expected utility of perfect prediction. The expected 
utility of perfect prediction is a weighted average of the utility of treatment if 
disease develops and the utility of no treatment if disease does not develop, 
        
        UPerfPred  =  P × U(treat,dis)  +  (1 – P) × U(no treat,no dis).   (8) 
 

The expected utility of no risk prediction is the larger of (i) the expected 
utility of always selecting no treatment and (ii) the expected utility of always 
selecting treatment. Relative utility (Baker, et al, 2009; Baker, 2009) is the ratio of 
the maximum expected utility of risk prediction (in excess of the expected utility 
of no risk prediction) to the expected utility of perfect prediction (in excess of the 
expected utility of no risk prediction), which can be written as 
 
              (UPred(t) – UTreat) / (UPerfPred – UTreat),     if UNoTreat <  UTreat, 
 RUt = { 
              (UPred(t) –UNoTreat) / (UPerfPred  – UNoTreat),   if  UNoTreat ≥ UTreat..    (9) 
 

In the first case in equation (9), the expected utility of no risk prediction is 
UTreat because UNoTreat <  UTreat..

 In the second case in equation (9), the expected 
utility of no risk prediction is UNoTreat because UNoTreat ≥ UTreat..

  As derived in 
Appendix C, equation (9) can be simplified to 
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           (1–FPRt) – (1–TPRt) / ROCSlopet  +UTest /{(1 – P) × C},  if  T  <  P, 
RUt ={ 
            TPRt  –  FPRt ×  ROCSlopet +UTest / (P × B),             if T  ≥ P.  (10) 
 
In terms of relative utilities, the Fundamental Rule is 
 
 Fundamental Rule Version 5:  
 Benefit-cost inputs are T and UTest.   
 Select Model 2 if RUt[Model 2] > RUt[Model 1], 
 
where the optimal cutpoint t solves Rt = T. 
 A relative utility curve for the target population is a plot of RUt versus T 
when UTest = 0.  The relative utility curve includes both cases in equation (9) for 
completeness and to fully link it to the ROC curve (as discussed in Section 3). 
The relative utility curve has a single maximum where T equals P and decreases 
to zero on either side of the maximum (Baker, et al., 2009).  A relative utility of 
zero means there is no benefit of risk prediction. As discussed in Section 2.9 only 
one case in equation (10) is usually relevant.  
 
2.6 Computing maximum acceptable testing harm 
 
So far the versions of the Fundamental Rule have involved an input of UTest, 
which can be difficult to specify.  Here the Fundamental Rule is inverted to find a 
bound related to UTest. For this purpose, it is convenient to define 
 
      ∆NBt  =  NBt[Model 2]  –  NBt[Model1],     (11) 
    
and, reversing the order of models in the subtraction, 
 
  ∆UTest  =  UTest[Model 1]  –  UTest [Model 2],    (12) 
   
so that ∆UTEST is positive.  We can then write  
         
    ∆NBt  = ∆NBt|UTest=0 – (∆UTest  /B),      (13)  
 
where ∆NBt|UTest=0  is the value of ∆NBt when UTest = 0. Inverting Fundamental 
Rule Version 4 and applying equation (13) gives an upper bound on ∆UTest  /B,  
 
 Fundamental Rule Version 6: 
 Benefit-cost input is T.  
 Select Model 2 if (∆UTest  /B )  < ∆NBt|UTest=0, 
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where the optimal cutpoint t solves Rt = T. Baker (2009) called ∆NBt|UTest=0, the 
maximum acceptable testing harm. The maximum acceptable testing harm 
corresponding to a risk threshold is the maximum increased harm of testing for an 
additional marker (measured as true positives not treated) so that there is an 
increase in net benefit with an additional marker. 
 
2.7 Computing the test tradeoff 
 
Rather than considering an upper bound on (∆UTest  /B ), it is sometimes easier to 
consider a lower bound on (B /∆UTest ). This lower bound is the number of tests 
for a new marker that would be traded for a true positive.  For example suppose B 
represents the benefit equivalent to 2 true positives treated and ∆UTEST represents 
the cost equivalent to 0.10 true positives not treated. Then (2 units) / (0.10 units) 
= 20 is the number of tests that would be traded for a true positive. This lower 
bound leads to   
 
 Fundamental Rule Version 7:  
 Benefit-cost input is T.   
 Select Model 2 if  (B /∆UTest ) > (1/ ∆NBt|UTest=0),  
 
where the optimal cutpoint t solves Rt = T.  Baker et al (2009) called the quantity 
1/ ∆NBt|UTest=0 the test threshold but, to avoid confusion with risk threshold, it is 
called here the test tradeoff.  The test tradeoff corresponding to a risk threshold is 
the minimum number of tests for a new marker that need to be traded for a true 
positive to yield an increase in the net benefit of risk prediction with an additional 
marker.  For example, in evaluating the addition of breast density to a model to 
predict the risk of invasive breast cancer, Baker (2009) computed a test tradeoff of 
3333. This test tradeoff of 3333 means that 3333 measurements of breast density 
would need to traded for correct identification of a woman who would develop 
invasive breast cancer in the absence of treatment to yield an increase in the net 
benefit of risk prediction. Because measuring breast density has little cost or 
harm, this test tradeoff would likely be considered acceptable. 
 
2.8 Computing the test tradeoff with two-stage risk prediction 
 
Costs of additional marker testing can be reduced at some loss of performance by 
testing for the additional marker in only persons in the target population with 
intermediate levels of risk scores under Model 1. The Model 2* risk scores are the 
sorted (from smallest to largest) union of Model 1 risk scores not in the 
intermediate category with the Model 2 risk scores for individuals whose Model 1 
risk scores are in the intermediate category (Figure 1).  This version of two-stage 
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risk prediction supersedes that in Baker et al. (2009) which implicitly required 
that Model 2 risk scores in the intermediate category were within the range of 
Model 1 risk scores in the intermediate category.   
 The choice of intermediate levels of risk score for Model 1 needs to be 
specified in advance.  The smaller the range of intermediate levels, the greater the 
cost savings, but also the less informative the Model 2* risk scores. Generally the 
intermediate levels would correspond to risk scores in a range where there is 
considerable debate over treatment or no treatment, such as in cardiovascular 
disease prevention (Ridker, et al. 2007). 
 
 
 
 
 
 
 
 
 
Figure 1  Two-stage risk prediction to compute Model 2* risk scores in the target 
population.  
 

Let ∆NB*t  = NBt[Model 2*]  –  NBt[Model1].  Let f denote the fraction of 
persons in the intermediate category. The expected cost of testing for the 
additional marker in the population is f /∆UTest. The version of the Fundamental 
Rule for two-stage risk prediction is 
 
 Fundamental Rule Version 8: 
 Benefit-cost input is T.   
 Select Model 2 if  B /∆UTest   > f / ∆NB*t|UTest=0, 
 
where the optimal cutpoint t solves Rt = T.  If  f / ∆NB*(t)|UTest=0 < 1/ ∆NBt|UTest=0 ,  
two-stage risk prediction is preferable to single-stage risk prediction, because the 
test tradeoff is lower.   
 
2.9 Sensitivity analysis for risk thresholds 
 
As a sensitivity analysis, the test tradeoff is computed at different risk thresholds. 
It helps to anchor the range of risk thresholds at a level accepted in practice. If the 
level accepted in practice is not known, a good approximation may be obtained by 
modifying the accepted risk threshold for a different treatment or  disease to 

Model 1 risk scores  |← low →|←intermediate → |←  high  →  | 
    | relevant        relevant  
Model 2 risk scores           |←    relevant   → |   
                    
Model 2* risk scores   the sorted (smallest to largest) union of relevant  
    Model 1 risk scores (low and high) and  

  Model 2 risk scores (intermediate) 
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account for different levels of harm and benefit than in the situation of interest 
(Baker, 1998).   
 The default decision of treatment or no treatment in the absence of risk 
prediction provides information about the relevant range of risk thresholds for a 
sensitivity analysis, called the relevant region (Baker et al, 2009).  If the default 
strategy is no treatment, the relevant region is the set of risk thresholds greater 
than the probability of developing disease, which is implied by UNoTreat > UTreat.  
Conversely, if the default strategy is treatment, the relevant region is the set of 
risk thresholds less than the probability of developing disease, which is implied 
by UNoTreat < UTreat.. Thus, the sensitivity analysis should involve risk thresholds 
in a subset of the relevant region. 
 
2.10 Population versus individual risk thresholds 
 
The test tradeoff is a summary measure of the “value” of an additional marker in a 
population.  It assumes that a policy decision is made that all individuals with 
estimated risks greater than or equal to the population risk threshold are 
recommended for treatment and all other individuals are not recommended for 
treatment.  The reason that the test tradeoff (and relative utility and decision 
curves) refer to a population quantity is that the false and true positive rates at 
given risk score are population quantities. The test tradeoff (and relative utility 
and decision curves) could also apply to a subset of the population with a 
particular risk threshold and the same distribution of risk scores as in the 
population.  Thus the sensitivity analysis for various values of risk threshold T 
could apply to either (i) uncertainty in specifying a single population risk 
threshold or (ii) a range of risk thresholds among various subsets of the 
population with each subset having the same distribution of risk scores as in the 
population.  
 In contrast, an individual may have different utilities than the population 
averages and this leads to an individual risk threshold.  The individual can 
compare his individual risk score j* with his individual risk threshold T*. If j* > 
T*, the individual should receive treatment and otherwise not receive treatment 
(Appendix D). This type of decision making is implicitly made in practice.  
 

3 Graphical insights 
 
Traditionally ROC curves have been used to compare additional markers 
(Tzoulaki, et al., 2009).  A comparison of ROC curves for Models 1 and 2 has two 
downsides from a medical decision-making perspective. First ROC curves 
measure only classification performance and not relative utility (or net benefit of 
decision curves). Second, comparing classification performance at the same FPR 
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(the usual procedure) can be misleading because the same FPR’s on different 
ROC curves usually corresponds to different ROC slopes and risk thresholds. 
 It may thus be surprising that an ROC curve can be translated into a 
relative utility curve using only one piece of additional information, namely the 
probability of developing disease. The key is that ROC and relative utility curves 
are connected by equation (10) with UTest = 0, namely, 
 
                          (1–FPR) –  (1 – TPRt ) / ROCSlopet  ,   if  T  <  P, 
   RUt|Utest=0 = { 
                           TPRt  –  FPRt  ×  ROCSlopet,               if  T  ≥ P.                  (14) 
 
Equation (14) corresponds to the graphical relationship in Figure 2, which extends 
a plot in Baker et al. (2009) to a comparison of two models.  

123

4

5

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

false positive rate

tr
ue

po
si

tiv
e

ra
te

ROC curve

5

4

3

2
1 5

4

3
2

1
0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

risk threshold

re
la

tiv
e

ut
ili

ty
RU curve

 
Figure 2 Translating from ROC to RU curves for Model 1 (lower curves) and 
Model 2 (upper curves). With P= 0.2, the slope of 1 of the red lines on the left 
side yields a risk threshold of T = 0 which corresponds to the red point on the 
right side.  
 

Equation (14) implies that the tangent of the ROC curve at a given slope 
gives the relative utility on the horizontal line at TPR=1 (the first case) or the 
vertical line at FPR=0 (the second case). 
  Figure 2 illustrates the second case in equation (14). Consider the top 
ROC curve (for Model 2) on the left side of Figure 2 with TPR3 =0.95, FPR3 = 
0.35 and the ROCSlope3  = 1, which corresponds to the red line segment from t=3 
to t=4. The tangent of the ROC curve at t=3 is extended to the left vertical line at 
FPR=0 to give RU3|Utest=0 = 0.6; this value of relative utility corresponds to the top 
green point which is then translated horizontally to the right side of Figure 2.  
Because the probability of developing disease is set at P= 0.2, then following 
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equation (6), the risk threshold derived from ROCSlope3  = 1 is R3 =0.2. This risk 
threshold is indicated by the red point on the right side of Figure 2.  
 Figure 2 has two main implications.  First with only one additional piece 
of information (namely, the probability of developing disease) the relative utility 
curve is more informative than the ROC curve, as it allows a vertical comparison 
of relative utilities for each risk threshold. Second, if the ROC curves for Models 
1 and 2 are similar, the relative utility curves for Models 1 and 2 will be similar.  
Thus small changes in ROC curves for Model 1 to Model 2 indicate little clinical 
utility for including an additional marker in the risk prediction model. 
 

4 Estimation  
 
So far we have described the theoretical underpinnings of the medical decision- 
making approach to evaluating an additional marker using risk thresholds in the 
target population. Now we turn to estimation.  
 The general scheme is outlined in Figure 3. The goal is to estimate the test 
tradeoff at various risk thresholds in the target population.  A favorable test 
tradeoff would lead to a recommendation that individuals in the target population 
estimate their risk of developing disease to determine whether to receive 
treatment. The details of Figure 3 will be discussed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Estimation overview 

Development sample (individual-level data):   Fit risk prediction model 
 
Validation sample (individual-level data):       
    Step 1. Compute risk score (basic or adjusted) by applying risk 
     prediction model to individual-level data. 
    Step 2. Estimate risk (predicted or observed) from risk score   
    Step 3. Adjust estimated risk if different probability of developing disease 
    Step 4  Estimate test tradeoff (predicted, observed, or hybrid) at various     
     risk thresholds based on estimated risks and observed outcomes.  
     (This is main goal of this analysis). 
 
Target population (individual-level data)   
 (This is a future application if the test tradeoff is favorable). 
   Step 1.  Compute risk score (basic or adjusted) by applying risk prediction  
         model to individual-level data   
    Step 2   Estimate individual risk (either risk score or risk score    
                 translated to an estimate via the risk mapping plot).  
    Step 3   Individuals decide on treatment based on individual risk and   
                 individual risk threshold 
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4.1 Risk scores 
 
Two types of risk scores are considered.  A basic risk score is the risk score 
obtained by applying the risk prediction model from the development sample 
directly to predictors in the validation sample.  Let xVAL(hq) denote predictor q for 
person h in the validation sample. Let aDEV and bDEVq denote parameter estimates 
from the development sample. Let expit(x)=exp(x) /{1+exp(x)}. One form for the 
basic risk score is 
 
 JB(h)  = expit(aDEV + Σq xVAL(hq) bDEVq).     (15) 
  

An adjusted risk score is the risk score obtained by fitting the basic risk 
score to the validation sample using an intercept and slope (Cox, 1958; Steyerberg 
et al. 2004).  One form of the adjusted risk score is 
 
           JR(h)  = expit{aVAL + bVAL logit(JB(h))}.      (16) 
 
where aVAL  and bVAL are parameter estimates from the validation sample. The 
notation J refers to either JB(h) or  JR(h), after ordering from smallest to largest risk 
scores.   
 
4.2 Estimated risks 
 
There are two estimates of risk in the validation sample: 
 
 rPRED(j)  = j is the predicted estimate of risk,  
 
  rOBS(i)  is the observed estimated risk for the ith interval of ordered risk 
 scores, which is based on the outcomes in the validation sample. 
 
With a binary outcome, rOBS(i) equals the fraction of persons in the ith interval  of 
risk scores who develop disease. With a survival outcome, rOBS(i) equals 1 minus 
the Kaplan-Meier estimate of surviving the outcome to a pre-specified time. 
Unlike the observed risk, the predicted risk can be a biased in the validation 
sample because it is based on a model derived in the development sample.  Define 
rPREDINT(i)  = ∑j(i) rPRED(j) / ni where j(i)  are risk scores in the ith interval  of risk 
scores.  A minimal requirement for unbiased estimation of the predicted risk is the 
 
 Calibration Condition:  rPREDINT(i)   rOBS(i).  
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Often the Calibration Condition is graphically checked by a plot of 
rPREDINT(i)  versus rOBS(i), called a calibration plot. The necessary degree of 
similarity between rPREDINT(i)  and rOBS(i) is difficult to specify. The Homer-
Lemeshow test is sometimes used to test this similarity (Homer and Lemeshow, 
2000). Alternatively the estimated parameters for intercept and slope in equation 
(16) to compute adjusted risk scores can provide information on the plausibility of 
the Calibration Condition. However, use of adjusted risk scores does not 
necessarily guarantee the Calibration Condition will hold. 
 
4.3 Modified risk estimates due to sampling 
 
For rare diseases, study costs can be reduced by creating the validation sample by 
taking a random sample from the target population of persons who did not 
develop disease and including all persons who developed disease. When using 
this sampling procedure, it is necessary to modify estimates of risk.  In this 
regard, it helps to define the validation population as the population from which 
the validation sample is a random draw, as distinguished from the target 
population for which the validation sample is a random draw by disease status.  
Estimates of risk in the validation sample apply directly to the validation 
population but need to be modified for the target population. By definition, the 
validation and target populations have the same distribution of risk scores 
conditional on the indicator D of whether disease occurred, 
 
 pr(J=j | D=d, target population) = pr(J=j |  D=d, validation population).  (17) 
 
For the validation population, we define the following parameters 
 
    rj = pr(D=1| J=j, validation population)  
        = risk of disease in validation population at risk score j, 
   
    wj = pr(J=j | validation population) 
        = probability of risk score j in validation population, 
 
     p = pr(D=1|  validation pop)  = ∑j rj wj   

         = probability of developing disease in validation population.  
 
Using equation (17), the probability of risk score j in the target population is 
  
Wj= pr(J=j |  target population)  
    =  pr(J=j | D=1, target population) P + pr(J=j |D=0,target population) (1 – P),    
    =  pr(J=j | D=1, validation  population) P 
  + pr(J=j |D=0,validation population) (1 – P),      (18) 
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Using equations (17) and (18), the risk in the target population is related to 
the risk in the validation population by the following formula (e.g., Baker, 2009; 
Rousson and Zumbrunn, 2011), 
 
 Rj =  pr(D=1 | J=j, target population) 
     = {pr(J=j | D=1, target population) P} /  Wj, 
     = {pr(J=j | D=1, validation  population) P} /  Wj, 
     =   (rj wj P /p) / {rj wj P / p + (1 – rj) wj (1 – P) /(1 –p)}        
       =   (rj P /p) / {rj P / p + (1 – rj) (1 – P) /(1 –p)}.    (19) 
    ≡  RiskAdjust(rj, P, p) 
 
See Figure 4 for a summary of this modification.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Risk parameters in validation and target populations.  
 

Let n denote the number of persons in the validation sample, and let ni 
denote the number of persons in the ith interval of ordered risk scores in the 
validation sample.  Based on equation (19), the estimated risks in the target 
population corresponding to the predicted and observed risks in the validation 
sample are 
 
      RPRED(j) =   RiskAdjust(rPRED(j), P, pPRED), where 
        wPRED(j) = 1 / n   and   pPRED =  ∑j rPRED(j) / n,   (20) 
 
       ROBS(i) =   RiskAdjust(rOBS(i), P, pOBS), where  
                wOBS(i)= ni / ∑i  ni  and  pOBS =  ∑i rOBS(i)  wOBS(i).   (21) 
 

Based on equations (18), (A.2), and (A.3), the false and true positive rates 
are the same for the validation and target populations: 
 

   Validation sample 
  rPRED(j)  is the predicted estimate of risk  
   rOBS(i)  is the observed estimated risk 
   ↑        ↑                                                     
      (random draw)               (random draw by disease status) 
   ↑        ↑                                                     
  Validation population                  Target population    
p =pr(developing disease)           P=pr(developing disease) 
rj = pr(developing disease| risk score j)     Rj = pr(developing disease| risk score j) 

      =   RiskAdjust(rj, P, p) 
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FPRs =   ∑ s≥j   (1– rj ) wj / (1–p) =   ∑ s≥j   (1– Rj ) Wj / (1–P),   (22)  
 
TPRs =  ∑s≥j  rj wj / p =  ∑s≥j  Rj Wj / P.     (23) 
 
4.4 Predicted estimate of test tradeoff  
 
The predicted estimate of the relative utility curve is the estimate obtained by 
using only predicted risks.  Let j index the ordered risk score in the validation 
sample. The predicted estimates of false and true positive rates and ROC slope are 
 
 FPRPRED(j)  =  ∑j<u (1 – rPRED(u) ) wPRED(u)  / (1 – pPRED),      (24)  
 
TPRPRED(j) = ∑j≥u   rPRED(u)  wPRED(u)  /  pPRED,        (25)         
 
 ROCSLOPEPRED(j) = {pPRED / (1 – pPRED)}{ (1 – rPRED(j)) / rPRED(j)}.  
         = {P / (1 – P)}{ (1 – RPRED(j)) / RPRED(j)}.     (26) 
 

Predicted estimates of relative utility curves and test tradeoff are based on 
RPRED(j), FPRPRED(j), and TPRPRED(j) . 
 
4.5 Observed estimate of test tradeoff 
 
The observed estimate of the relative utility curve is the estimate obtained using 
only observed risks.  To compute observed risks, a preliminary set of intervals, i = 
1, 2, …,  I, is selected where, for example, each interval might correspond to a  
decile of predicted risk. A problem is that a preliminary estimate of the ROC 
curve derived from the observed risks, 
   
 FPROBS(i)  =  ∑i<u (1 – rOBS(u) ) wOBS(u)  / (1 – pOBS),    (27) 
  
 TPROBS(i) = ∑i≥u   rOBS(u)  wOBS(u)  /  pOBS,     (28) 
 
may not be concave, violating the Risk Score Assumption.  
 A solution is to construct a concave ROC curve from the preliminary 
estimate of the ROC curve.  There are at least four approaches to constructing a 
concave ROC curve from a non-concave preliminary ROC curve: (i) a parametric 
model, (ii) a semi-parametric model (e.g. Wan and Zhang, 2007), (iii) isotonic 
regression on the risks as a function of risk score (Lloyd, 2002), and (iv) a 
concave envelope (sometimes called convex hull) of the ROC points (Egan, 1975; 
Provost and Fawcett, 2001). We use the last approach because it gives the 
performance of a superior set of classification rules (as will be discussed). 
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Figure 5 Construction of concave ROC curves. The plot of corresponding risks is 
constructed from the slopes of the ROC curve and the probability of developing 
disease.  
 
 The concave envelope of the ROC curve is constructed from the 
preliminary ROC curve by successively drawing a line from each point to the 
point on its right, so that the line connecting the two points has the largest slope. 
For example in Figure 5 (top), a preliminary non-concave ROC curve includes 
points 4, 5, and 6. In Figure 5 (bottom), a concave envelope of ROC points is 
obtained by drawing a line from point 6 to point 4, bypassing point 5 because the 
slope of the line from point 6 to point 4 is greater than the slope of the line from 
point 6 to point 5. The risk scores in Figure 5 (bottom right) are computed from 
the slopes of the ROC curve in Figure 5 (bottom left) and the probability of 
developing disease (P = 0.20).  
 The concave envelope of the ROC curve measures the performance of 
classification rules created by a random selection of cutpoints; this performance is 
better than the performance of classification rules summarized by the preliminary 
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ROC curve. For example, consider a classification rule based on the random 
selection of cutpoint j6 (corresponding to point 6) with probability  and cutpoint 
j4 (corresponding to point 4) with probability (1–), for 0   1. The false and 
true positive rates associated with this random selection are FPRM =  FPR6 + (1–
) FPR4 and TPRM =  TPR6 + (1–) TPR4. As   varies from 0 to 1, a line is 
created connecting points 6 and 4 on the ROC curve. This line has a higher true 
positive rate at the same false positive rate than classification based on the 
cutpoint corresponding to point 5, indicating superior classification performance. 
 Let FPROBSC(i), TPROBSC(i), and ROCSLOPEOBSC(i) denote estimates of false 
positive rate, true positive rate, and ROC slope based on the ordered cutpoint i  of 
the concave envelope of the ROC curve.  Let ROBSC(i) denote the observed 
estimate of risk derived from ROCSLOPEOBSC(i) and P.  Observed estimates of 
relative utility curves and test tradeoff are based on ROBSC(i), FPROBSC(i), and 
TPROBSC(i). 
 
4.6 Hybrid estimate of test tradeoff 
 
Vickers and Elkin (2006) proposed an estimate of decision curves that can also be 
applied to the relative utility curve, which we call a hybrid estimate.  The hybrid 
estimate uses outcomes in the validation sample to estimate false and true positive 
rates but uses the predicted estimate of risk that does not involve outcomes in the 
validation sample.  Let FPROBS(j) and TPROBS(j) denote the observed estimates of 
false and true positive rates based on ordered risk score j. With binary outcomes 
FPROBS(j) and TPROBS(j) are the usual fractions. With survival data, Vickers, et al. 
(2008) computed FPROBS(j) and TPROBS(j) using a Kaplan-Meier estimates for  risk 
score j.  Because this type of estimate can yield ROC curves that do not increase 
monotonically, Heagerty, Lumley, and Pepe (2000) introduced an estimate that 
avoids this drawback. Hybrid estimate of relative utility and test tradeoff are 
based on RPRED(j), FPROBS(j),  and TPROBS(j). 

 

4.7 Comparison of estimates of test tradeoff  
 
We compare the three types of estimates of test tradeoff under four criteria 
summarized in Table 2.  
 Criterion 1 (necessity of Calibration Condition for unbiased estimation). 
The predicted and hybrid estimates of test tradeoff require the Calibration 
Condition for unbiased estimation because they involve predicted estimates of 
risk. The hybrid estimate is less sensitive to violations of the Calibration 
Condition than the predicted estimate because estimates of false and true positive 
rates do not involve predicted estimates of risk.  The observed estimate of test 
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tradeoff does not require the Calibration Condition for unbiased estimation 
because it is a function of only observed estimates of risk.  
 
 Criterion 1 Criterion 2 Criterion3 Criterion 4 
Estimate of 
test tradeoff 
(estimates of 
risk and false 
and true  
positive rates) 
 

Unbiased 
without 
Calibration 
Condition? 

Do bootstrap 
confidence 
intervals from 
validation 
sample 
capture all 
variability of 
outcomes? 

Compatibility 
of estimates 
of R with 
estimates of 
FPRj , TPRj  

Estimated 
risk in target 
population 

Predicted 
(RPRED(j), 
FPRPRED(j) 

TPRPRED(j) ). 
 
 

no,  
requires 
Calibration 
Condition for 
RPRED(j), 
FPRPRED(j) 

TPRPRED(j) 

no, 
RPRED(j), 
FPRPRED(j) 

TPRPRED(j) do 
not involve 
outcomes 

yes risk score 

Observed 
(ROBSC(i), 
FPROBSC(i), 
TPROBSC(i)) 
 
 

yes 
 

yes   yes risk score 
used with risk 
mapping plot 

Hybrid 
(RPRED(j) 
FPROBS(j), 
TPROBS(j)) 
 

no,  
requires 
Calibration 
Condition for 
RPRED(j) 

no, RPRED(j) 
does not 
involve 
outcomes 

no risk score 

Table 2  Comparison of estimates 
 
 Criterion 2 (role of bootstrap confidence intervals).  Confidence intervals 
for the estimated test tradeoff are computed by bootstrapping the data (baseline 
variables and outcomes) in the validation sample. (Often data from the 
development sample are not available). For the observed estimate of test tradeoff, 
the confidence interval captures all the variability of outcomes in the validation 
sample because the observed estimate of test tradeoff is a function of only 
observed estimates of risks.  For the predicted estimate of test tradeoff, the 
confidence interval does not fully capture variability because predicted estimates 
of Rj, FPRj ,and TPRj do not depend on outcomes in validation sample.  For the 
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hybrid estimate of test tradeoff, the confidence interval does not fully capture 
variability because the predicted estimate of Rj does not depend on outcomes in 
the validation sample. Consequently, the bootstrap confidence interval is widest 
for the observed estimate of test tradeoff and narrowest for the predicted estimate 
of test tradeoff.   
 Criterion 3 (compatibility of estimates of risk, and false and true positive 
rates).  A desirable property of estimates of risk and false and true positive rate is 
that they satisfy the fundamental relationship in equations (22) and (23). This 
property holds for predicted and observed estimates and ensures smooth relative 
utility curves.  Generally this property does not hold for hybrid estimates, leading 
to relative utility curves that may be jagged with possibly large fluctuations in 
estimates of test tradeoff for small changes in the risk threshold. 
 Criterion 4  (risk estimates in the target population).  If the test tradeoff is 
favorable, risk estimates would be computed for individuals in the target 
population in a future application. With predicted or hybrid estimates of test 
tradeoff, the predicted risk estimates in the target population are simply the risk 
scores, which is the conventional approach.  With an observed estimate of test 
tradeoff, the risk scores need to be converted to an observed risk without the 
benefit of an observed outcome. This conversion may be accomplished via a risk 
mapping plot estimated from the validation sample. The horizontal axis of the risk 
mapping plot is the risk score and the vertical axis is the observed risk. An 
individual in the target population would use the plot to obtain the observed 
estimate of risk associated with his risk score.  The risk mapping plot for the 
example in Section 6 is given in Figure 6. 
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Figure 6  Mapping of risk score to observed risk estimate. 
 
 The predicted estimate of test-trade off is most appropriate if the 
Calibration Condition holds, smooth relative utility curves are desired,  
confidence intervals are not of interest, and risk scores are used to estimate risk in 
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future individuals . The hybrid estimate is most appropriate in the same situation 
as the predicted estimate but without a smooth relative utility curve and with a 
likely smaller bias from a violation of the Calibration Condition. The observed 
estimate is most appropriate when the Calibration Condition is questionable and 
confidence intervals are desired. 
 

5 Simulation  
 
To investigate the performance of different estimates, we randomly generated 
data under different logistic regression models in the development and validation 
samples.  Under the simulation, the true risk in development population is  
 
  logit(pr(Yi =1|x) = 0.5 + 1.5 xi1 + 1.5 xi2 + 1.5 xi3,    

 
and the true risk in the validation population is 
 
  logit(pr(Yi =1|x) = 0.1 + 0.5 xi1 +0.52 xi2+  0.5  xi3 .  

 
The sample size was 600.  Model 1 is a model fitted to xi1 and xi2. Model 2 

is a model fitted to xi1, xi2, and xi3.  As expected, the basic risk score was poorly 
calibrated. The adjusted risk score was also poorly calibrated for Model 1, 
although to a lesser degree than the basic risk score (Figure 7).  

When computed from basic risk scores, the relative utility curves differed 
considerably among the different estimates (Figure 8). When computed from 
adjusted risk scores, the relative utility curves were more similar among the 
different estimates (Figure 9). The relative utility curve for the observed estimate 
is the same for the basic and adjusted risk scores because it depends only on the 
ranks of the risk scores, which are the same for basic and adjusted risk scores.  
 Estimates of test tradeoff were computed for three risk thresholds with 
confidence intervals computed using 2000 bootstrap replications of the validation 
sample. Results are shown for adjusted risk scores (Table 3). The observed or 
hybrid estimate of the maximum acceptable testing harm can be less than zero 
because these estimates involve outcomes in the validation sample. When the 
maximum acceptable testing harm is less than zero, the test tradeoff is labeled as 
“harm.”  
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Figure 7  Calibration plots for simulated data.  
 
 
 
Estimate 

Risk thresholds 
0.58 0.66 0.75 

Predicted  15 (12, 19)  13 (11, 17)  13 (11, 16)  
Observed   13 ( 9, 34)  12 (9, 26)  14 (9, 39)  
Hybrid   11 (7, 23)  10 (7, 19)  23 (10, harm)  

 
Table 3  Estimated test tradeoff (95% confidence intervals) in simulated data with 
adjusted risk scores.  
 
 For the risk threshold of 0.58 the estimated test tradeoff was similar for the 
three estimates, but there was a considerable difference in the widths of the 
bootstrap confidence intervals for reasons explained in Criterion 2 of estimation.  
For risk threshold 0.75, the hybrid estimate differed from the observed estimate, 
which may be related to Criterion 3 of estimation.  
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Figure 8  ROC and relative utility curves derived from basic risk scores in 
simulated data. Vertical lines correspond to risk thresholds in Table 3. 
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Figure 9  ROC and relative utility curves derived from adjusted risk scores in 
simulated data. Vertical lines correspond to the risk thresholds in Table 3. 
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6 Application to cancer risk prediction 
 
We applied the methodology to a risk prediction model for the presence of 
residual tumor tissue in patients who received chemotherapy for testicular cancer 
(Steyerberg, et al., 1995; Vergouwe, et al., 2007). The development and validation 
samples consisted of 544 and 550 participants respectively. The fraction with 
disease (residual tumor) was 0.67.  In the absence of risk prediction, patients 
receive treatment, so the relevant region for risk thresholds is less than 0.67. 
Treatment is removal of lymph nodes. Model 1 involves three predictors: an 
indicator of teratoma in the primary tumor, the size of the residual mass, and the 
change in mass size induced by chemotherapy. Model 2 also includes the levels of 
two markers in the blood, AFP and HCG.  The goal is to decide if the additional 
markers of AFP and HCG should be included in the risk prediction model when 
considering risk prediction in a target population of eligible patients.  The 
validation sample is viewed as a random draw from the target population. The 
calibration plot (Figure 10) shows good calibration, particularly for the adjusted 
risk scores. 
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Figure 10 Calibration plots with cancer data 
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Figure 11   ROC and relative utility curves derived from adjusted risk scores for 
men with testicular cancer. Vertical lines correspond to the risk thresholds in 
Table 4 
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 Figure 11 shows ROC and relative utility curves for adjusted risk scores. 
Because the ROC curves were similar for Models 1 and 2, it is not surprising, in  
light of results in Section 4, that the relative utility curves are similar.  
 The estimates of test tradeoff are shown in Table 4 for adjusted risk 
scores.  As a sensitivity analysis, risk thresholds in the range from 0.2 to 0.4 are 
considered for the risk of residual tumor, in line with a formal decision analysis 
(Steyerberg, et al., 1999). Confidence intervals were based on 2000 bootstrap 
replications of outcomes in the validation sample. The predicted estimates have 
the narrowest confidence intervals because they are not based on outcomes of the 
validation sample. 
 As an example of the interpretation of results consider the observed 
estimate of test tradeoff for the risk threshold of 0.30, namely 169 with 95% 
confidence interval of (40, “harm”).  The test tradeoff of 169 can be interpreted as 
follows: at least 169 marker tests need to be traded for an additional true positive 
to yield an increase in net benefit of risk prediction with the additional markers.  
Because ascertaining these markers has small monetary costs and little harm, the 
cost of 169 marker ascertainments seems well worth the benefit of removing 
lymph nodes from one patient with a residual tumor in a lymph node.  However 
there is one major caveat, namely the upper bound on the estimated test tradeoff 
of “harm.”  Thus, there is considerable uncertainty in this estimate of test tradeoff, 
and researchers would need to consider the possibility that the addition of markers 
could make the outcomes worse for patients in the validation population. 
 
Estimate Risk thresholds for residual tumor 

0.20 0.30 0.40 
Predicted   712 (432, 1729)  63 (47, 91)  32 (24,49)  
Observed  harm (298, harm)  169 (40, harm)  22 (13,harm)  
Hybrid 188 (108,3245 )  50 (24, >104)  19 (11,59)  

 
Table 4  Estimated test tradeoff (95% confidence intervals) for testicular cancer 
data with adjusted risk scores.  
 

7 Discussion 
 
The test tradeoff at various risk thresholds is an appealing summary of the value 
of an additional marker in the risk prediction model. The general problem with 
using purely statistical measures to evaluate an additional marker is deciding how 
large a statistic is sufficient to declare the additional marker worthwhile.  In 
contrast, the test tradeoff has a direct interpretation, namely the minimum number 
of tests for a new marker that need to be traded for a true positive to yield an 
increase in the net benefit of risk prediction with the additional marker.  Thus the 
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test tradeoff accounts for the cost (monetary cost and harm) of marker 
ascertainment as well as the tradeoff between false and true positives summarized 
by the risk threshold.  The more information on risk thresholds, the more focused 
the sensitivity analysis.  The default of treatment or no treatment in the absence of 
risk prediction limits the range of risk thresholds to investigate. But even without 
any information to restrict the range of risk thresholds (which is when a purely 
statistical measure might be considered), a sensitivity analysis for the estimated 
test tradeoff could still be informative.  
   Somewhat remarkably, the test tradeoff is computed from relative utility 
curves that can be derived from ROC curves with only one piece of additional 
information, namely the probability of developing disease. If the ROC curves are 
similar the relative utility curves will be similar; However if the ROC curves 
differ, the relative utility curves (and the resulting test tradeoff) provide more 
meaningful information than the ROC curves.  
 Ultimately, a risk prediction model is used in a future application 
involving persons in a target population. The translation of risk scores into an 
estimated risk via a risk mapping plot (or functional equivalent) is unconventional 
but not difficult.  In this case, the observed estimate of test tradeoff is preferred 
over predicted and hybrid estimates because it does not require the Calibration 
Condition and bootstrap confidence intervals based on the validation sample are 
appropriate.  Generally individual-level data are needed; however, the observed 
estimate can be computed from tabular data (Baker, 2009).  With a more 
conventional use of risk scores as predicted risks in a target population, the hybrid 
or predicted estimate of test tradeoff is appropriate if the Calibration Condition 
holds and there is no interest in confidence intervals.  In this case, the hybrid 
estimate would usually be preferred over the predicted estimate because it is more 
robust to violations of the Calibration Condition.  A general limitation with all 
approaches for evaluating an additional marker for risk prediction is the 
requirement that the validation sample be a random sample or a random sample 
by disease outcome from the target population. 
 The examples discussed here involved risk prediction models based on 
logistic regression but more complex multivariate approaches can be used.  For 
example Baker (2010) created relative utility curves using a nearest-centroid 
analysis of microarray data (Baker, 2010). Software using Mathematica (Wolfram 
Research, Inc, 2010) (which also illustrates the calculations here) is available at 
http://dcppreview.cancer.gov/programs-resources/groups/b/software/newmarker. 
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Appendix A 
 
This appendix discusses some fundamental relationships between risk and false 
and true positive rates.  Let  
  
       Wj = pr(J =j) = probability of risk score j.   
 
Then the following mathematical identities hold, 
 
      P = ∑j Rj Wj,        (A.1) 
 
      TPRs =   ∑j≥s  Rj Wj / P,       (A.2) 
 
      FPRs =   ∑ j≥s  (1 –  Rj) Wj / (1 –   P),     (A.3)  
 
     ROCSLOPEs   =  (TPRs – TPR(s+1))/ (FPRs – FPR(s+1)) 
                            =    (Rs  Ws / P)/ {(1– Rs) Ws /  (1 – P)}.  
          =  {(1 – P) / P} × Rs / (1 – Rs).    (A.4) 
 
Figure 12 shows the link between the ROC curve and the risk scores under the 
Risk Score Assumption. 
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Figure 12  Relationship between the ROC curve and risk scores. Numbers next to 
points on the ROC curve refer to risk scores s= 1, 2, 3, 4, 5.  
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Appendix B 
 
This appendix proves that the expected utility of risk prediction is maximized at 
Rt = T when the Risk Score Assumption holds. The difference in expected utilities 
of prediction between risk score s and risk score (s +1) is 
 
     UPred(s)– UPred(s+1)  =  (UPred(s) – UNoTreat)  – (UPred(s+1) – UNoTreat) 
                              =  P × (TPR(s) –TPR(s+1)) × B 
            –   (1 – P) × (FPR(s) – FPR(s+1)) × C   
                                = {P × ROCSLOPEs × B – (1 – P) × C} 
                                     × {FPR(s) – FPR(s+1)}.         (B.1) 
 

If the Risk Score Assumption holds, ROCSLOPEs is increasing with s so 
that (B.1) equals 0 at only one point.  Setting equation (B.1) equal to zero and 
solving for ROCSLOPEs gives the slope of the ROC curve at which the expected 
utility is maximized when the Risk Score Assumption holds, 
 
      ROCSLOPEs = {(1 – P) / P} × {C / B} 
                            = {(1 – P) / P} × {T / (1–T)}.    (B.2) 
 

Appendix C 
 
Recall the formula for relative utility is 
 
              (UPred(t) – UTreat) / (UPerfPred – UTreat),     if UNoTreat <  UTreat, 
 RUt = { 
              (UPred(t) –UNoTreat) / (UPerfPred  – UNoTreat),   if  UNoTreat ≥ UTreat.,    (C.1) 
 
The numerators in the formulas for the relative utility are 
 
  UPred(t) – UNoTreat  = P × TPRt  × B  –  (1 – P) × FPRt × C  +  UTest,  (C.2) 
 

  UPred(t) – UTreat = (1 – P) × (1–FPRt) × C –  P × (1–TPRt) × B + UTest. (C.3) 
 

The denominators in the formula for the relative utility are 
 
   UPerfPred – UNoTreat =  {P × U(treat,dis)  +  (1 – P) × U(no treat,no dis)} 
                                   –{P  ×U(no treat, dis)   + (1 – P) × U(no treat, no dis)} 
                =  P × {U(treat,dis)  – U(no treat, dis)}  
                  =  P × B,        (C.4) 
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UPerfPred – UTreat =  {P × U(treat,dis)  +  (1 – P) × U(no treat,no dis)}   
                                 –{ P × U(treat,dis)+ (1 – P) × U(treat, no dis)}   
                          =  (1 – P) × {U(no treat,no dis) – U(treat, no dis)}   
      =   (1 – P) × C.      (C.5) 

 
Therefore the relative utility when UNoTreat <  UTreat can be written 
 
RUt =  (UPred(t) – UTreat )/ (UPerfPred – UTreat) 
      ={(1 – P) × (1–FPRt)  × C  –  P × FNRs  × B +UTest  }/ {(1 – P) × C} 
      = (1–FPRt)  –  (1–TPRt) × P/(1 – P)  ×B /C+  UTest  / {(1 – P) × C}       
      = (1–FPRt)  –  (1–TPRt) × P/(1 – P)  ×{(1–T)/T}  +UTest   / {(1 – P) × C}  
     = (1–FPRt)  – (1–TPRt) / ROCSlopet +UTest   / {(1 – P) × C}.  (C.6)  
 
Also the relative utility when UNoTreat ≥ UTreat can be written 
 
RUt =  (UPred(t) – UNoTreat  )/ (UPerfPred – UNoTreat) 
       ={ P × TPRt  × B  –  (1 – P) × FPRt × C  +  UTest } / (P × B)   

       = TPRt  –  FPRt  {(1 – P) / P}   ×  (C /B)  +  UTest  / (P × B)    
       = TPRt   –  FPRt  {(1 – P) / P}   ×  {T /(1–T)}  +  UTest  / (P × B)  
       = TPRt   –  FPRt   ROCSlopet    +  UTest  / (P × B).                           (C.7)  
 
The condition for these two cases in the relative utility formula depends on 
 
   UTreat – UNoTreat = P × B – (1 – P) × C.     (C.8)  
        

The first case of UNoTreat <  UTreat  successively implies UTreat – UNoTreat > 0,  
P /(1 – P)  > C /B, P /(1 – P)  > T / (1–T), and T  <  P. Similarly UNoTreat ≥ UTreat  
implies T  ≥ P.  Substituting the above results into the definition of relative utility 
in (C.0) gives the formula in the text, 
 
           (1–FPRt) – (1–TPRt) / ROCSlopet  +UTest /{(1 – P) × C}, if  T  <  P, 
RUt ={ 
            TPRt  –  FPRt ×  ROCSlopet +UTest / (P × B),             if T  ≥ P.  (C.9) 
 

Appendix D 
 
The following derivation of an individual’s risk threshold follows Pauker and 
Kassirer (1975) with the addition of a utility for testing costs.  Let subscript “*” 
denote an individual’s utilities. For an individual with risk score j* the expected 
utility of no treatment is 
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UNoTreat = pr(D=1|J=j*) × U*(no treat, dis)   + pr(D=0|J=j*) × U*(no treat, no dis),   (D.1) 
 
and the expected utility of treatment is  
 
UTreat = pr(D=1|J=j*) × U*(treat,dis)+ pr(D=0|J=j*)× U*(treat, no dis) + U*Test. (D.2) 
 

Let B* = U*(treat,dis) – U*(no treat, dis) and  C* = U*(no treat, no dis)  – U*(treat, no dis).  
The individual risk threshold T* at which there is indifference between no 
treatment and treatment is obtained by setting equation (D.1) equal to equation 
(D.2) and solving for pr(D=1| J=j*) to obtain 
 
  T*  = {U*(no treat, no dis)  –U*(treat,dis)  + U*Test} / 
          {U*(treat,dis) –U*(no treat, dis)   + U*(no treat, no dis)  –U*(treat,dis)  + U*Test} 
       = (C*/B* + UTest /B*)/ (1+ C*/B* ). 
 
An individual with risk threshold T* should receive treatment if his estimated risk 
is greater than T* and no treatment if his estimated risk is less than T*. 
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