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Abstract

The attributable fraction of a disease due to an exposure is the fraction of disease cases in a
population that can be attributed to that exposure. We consider the attributable fraction for a semi-
continuous exposure, that is an exposure for which a clump of people have zero exposure and the
rest of the people have a continuously distributed positive exposure. Estimation of the attributable
fraction involves estimating the conditional probability of having the disease given the exposure.
Three main approaches to estimating the probability function are (1) a classical method based on
sample averages; (2) parametric regression methods such as logistic regression models and power
models; and (3) nonparametric regression methods including local linear smoothing and isotonic
regression. We compare performance of these methods in estimating the attributable fraction for a
semi-continuous exposure in a simulation study and in an example.
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1 Introduction

The attributable fraction of a disease due to an exposure is the proportion of disease
cases which would be eliminated if everybody’s exposure was set to zero. The AF is
an important measure of the public health impact of the exposure on disease burden
(Deubner, Wilkinson, Helms, Tyroler, and Hames, 1980, Rothman and Greenland,
1998, Benichou, 2001). In this paper, we compare the performance of different
methods of estimating the AF when the exposure is semi-continuous. An exposure
is semi-continuous when a clump of people have zero exposures and the rest of
the people have continuously distributed positive exposures. For example, malaria
parasites in children is a semi-continuous exposure; we will estimate the AF for
fever due to malaria parasites in a malaria endemic area in Section 3.

If there are no confounders of the exposure-disease relationship (or if we are
considering the AF within a stratum of confounders), then the AF is the following
(Benichou, 2005, Chen, 2008):

P(Disease) — P(Disease|Exposure = 0)

AF = -
P(Disease)

(1
The classical estimate of AF is given by plugging sample proportions of P(Disease)
and P(Disease|Exposure=0) into (1) (Benichou, 2005, Chen, 2008). Smith, Schel-
lenberg, and Hayes (1994) pointed out that when the proportion of subjects with
zero exposure is small, it will be hard to estimate P(Disease|Exposure = 0) and
the classical estimate of AF will have wide confidence limits. For the exposure
of malaria parasites in a malaria endemic area, parasite prevalence in young chil-
dren may exceed 80 percent so that the proportion of children with zero exposure
is small. When the proportion of people with zero exposure is small, one way to
improve precision is to assume that low exposure is equivalent to zero exposure and
estimate P(Disease|Exposure = 0) by the sample proportion of people with disease
with zero or low exposure. However, the resulting estimate may strongly rely on
the definition of low exposure; see the example provided by Smith et al. (1994) for
estimating the attributable fraction of fever due to malaria parasites. If the disease
probability is increasing as the exposure increases even at low exposures, the AF
will be underestimated by grouping low exposure with zero exposure.

To borrow strength in estimating P(Disease|Exposure = 0) without assum-
ing that P(Disease|Exposure=0) = P(Disease|Exposure is 0 or low), regression mod-
els for P(Disease|Exposure) can be used to estimate P(Disease|Exposure=0). Lo-
gistic regression is a frequently applied regression method to estimate the AF (Bruzzi,
Green, Byar, Brinton, and Schairer, 1985, Greenland and Drescher, 1993, Drescher
and Schill, 1991, Smith et al., 1994). In practice, the mechanism of the exposure
on the disease is usually unknown and can be very complicated, and so the true
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model is not necessarily in a logistic form. Power models extend logistic regres-
sion by considering transformations of the exposure variable such as logarithm and
fractional polynomials (Royston, Ambler, and Sauerbrei, 1999, Royston, Sauerbrei,
and Becher, 2010, Smith et al., 1994).

An alternative to parametric regression for estimating the AF is nonparamet-
ric modeling of P(Disease | Exposure), particularly when no prior knowledge about
the shape of the true curve is available. To our knowledge, nonparametric regression
has not been used to estimate the AF previously. However, nonparametric methods
have often been applied to analyze medical or health-related data, for example, to
estimate the effective dose level of dose-response curves (Bhattacharya and Kong,
2007, Dette, Neumeyer, and Pilz, 2005, Miiller and Schmitt, 1988, Park and Park,
2006), to estimate the relative risk functions in case-control studies (Zhao, Kristal,
and White, 1996) and to study the relationship between biomarker and disease risk
(Ghosh, 2007). In nonparametric regression, it improves efficiency to incorporate
any known shape constraints on the regression function.

Under certain circumstances, it is often thought that P(Disease | Exposure)
is a monotone increasing function of the exposure level. For instance, the probabil-
ity of suicide ideation is thought to be an increasing function of the level of hope-
lessness and depression (Wetzel, 1976). The probability of developing lung cancer
is thought to be an increasing function of cigarettes smoked per day (Morabia and
Wynder, 1991). The probability of death is assumed to be a monotone function of
the severity of burn injury (Wolfe, Roi, and Margosches, 1981). A dose response
curve is often assumed to be non-decreasing (Bhattacharya and Kong, 2007, Dette
et al., 2005, Miiller and Schmitt, 1988, Park and Park, 2006). Higher levels of a
biomarker are often assumed to be associated with monotone increasing disease
risk (Ghosh, 2007). For estimating the AF in a logistic regression framework ac-
counting for interactions, incorporating the monotonicity constraint on the exposure
has been found improving the accuracy substantially (Traskin*, Wang*, Have, and
Small, first published online June 21, 2012).

We consider various nonparametric estimators that incorporate the mono-
tonicity constraint in this article. The purpose of this paper is to compare the per-
formance of various parametric and nonparametric estimates of the AF for semi-
continuous exposures via simulation studies and in an example. The rest of the
article is organized as follows. Section 2 introduces some notation and lists the
competing estimators. In Section 3, we apply these estimators to estimate the pro-
portion of fever cases attributable to malaria parasites. Simulations studies are pre-
sented in Section 4. A summary is given in Section 5.
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2 Estimators

Let Y denote presence (1) or absence (0) of the disease and let X denote the expo-

sure. The conditional probability of disease at exposure level x is P(Y = 1|X = x).

We assume that there are no confounders of the disease-exposure relationship or

that we are considering the AF within a stratum of confounders. Benichou (2001)

discusses ways to estimate the AF for the entire population based on estimates of the

AF within each stratum of confounders; we provide further discussion in Section 5.
Under the assumption of no confounders, the AF is

PY=1)—P(Y =1|X =0)
PY =1)

1
— P(X >0|Y=1) (l_z_e)’ )

where R is the relative risk of disease with exposure greater than zero compared to
zero exposure. The classical estimate of the AF is to plug the sample proportions
P(Y =1) and P(Y = 1|X = 0) into the left hand side of (2), or equivalently the

sample proportion P(X > 0|Y = 1) and R = %
of (2) . We denote this classical estimate based on sample averages by S. S is a
nonparametric estimate of the AF.

To estimate the AF using regression methods, we note that the AF (2) can

be written as P(Y = 1[X = 0)
AF:/{I—P(Y:HX:deF()dY:l), 3)

where F(x|Y = 1) is the conditional distribution of the exposure in the subpopula-
tion of people with disease (Benichou and Gail, 1990, Deubner et al., 1980, Green-
land and Drescher, 1993). Based on (3), from a random sample of size N from the
population, one can estimate the AF by

1 N [1_15(1/,-:1|X,~:O)]
Z?[zll{Yizl} i=1Y;=1 P(Yi=1X;=x)]’

into the right hand side

AF =

“)

where P(Y; = 1|X; = x;), P(Y; = 1|X; = 0), i = 1,...,N, are estimates from a re-
gression model of the conditional probability of disease at exposure levels. Using
a regression model, we are not limited to categorical exposures. If the exposure is
continuous, one can use it directly or categorize the exposure.

Let py, = P(Y; = 1|X; = x;). Assume p,, is equal to the truth p,. Under
regularity conditions, an informal justification of AF converging to the AF on the
left hand side of (2) is the following.

- 1 N
S
Yilily=1}) imiy=1 Pxi
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M [ L]
— 1—— | Liy_
Z?]:II{YZ‘:l}i:l Dx; =t}
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= —_— | = 1 —— | I;y—

1
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Elfy—1) DPx;
_ ! _n_g( P
- = 1= 0 E (o)
1

where the last equality follows from expressing Elyy._qy as E(py,) by conditional
expectation. Thus, a good estimate of the regression model may be of importance
for estimating AF.

We will consider the following regression estimators of AF based on plug-
ging into (4) the estimates of the following different regression models: logistic re-
gression (Lg), power model (P), local linear smoothing (L), isotonic regression (I),
local linear smoothing followed by isotonic regression (LI), and isotonic regression
model followed by local linear smoothing (IL). The logistic regression model is
linear in the exposure x, i.e., logit[P(Y = 1|X = x)] = a + Bx. The power model is
logit[P(Y = 1|X =x)] = oo+ B(x)* (Royston et al., 1999, 2010, Smith et al., 1994).
We consider equally spaced grid points of 7 from —10 to 10 with logx being used
in place of x°. We choose the increment for the grid as 0.1 to ease interpretation and
for T < 0, we use the shifted exposure 1+ x; to avoid a 0 denominator. We choose
the 7 that minimizes the deviance.

Local linear smoothing is a popular nonparametric regression technique.
In our setting, local linear smoothing borrows information on the disease cases
from a neighborhood of a given exposure to estimate the conditional probability
at the given exposure. In local linear smoothing, a bandwidth parameter con-
trols the smoothness of the fit. The asymptotically optimal bandwidth involves
unknown quantities and practically it is not directly applicable. A common strat-
egy for choosing the bandwidth is to use leave-one-out cross validation, but it is
also computationally intensive. Here we apply the rule of thumb proposed by Rice
(1984) (see also Dette et al. (2005), Dette and Scheder (2010), Miiller and Schmitt
(1988)). Let 62 =YV 1(Yiy1 — Y:)?/[2(N — 1)]. The bandwidth is chosen via a
grid search of equally spaced points at which the following quantity is minimized
YV i—-BYi=1X= x,-))2 /N 4362 /(2Nh). Following Dette et al. (2005), we
use the Epanechnikov kernel. It is possible that the local linear estimator may go
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beyond 1 or below 0. In such case, truncation is then applied (Aragaki and Altman,
1997, Signorini and Jones, 2004).

For obtaining a monotone estimate of the regression function P(Y = 1|X =
x), a classical method is isotonic regression (Barlow, Bartholomew, Bremner, and
Brunk, 1972, Bhattacharya and Kong, 2007). The obtained estimate behaves like
a step function, being flat in certain regions and then having jumps. Individuals in
the same flat region share a common estimated probability value and thus the same
relative risk.

The local linear estimator may not be monotone and the isotonic regres-
sion estimate may not be smooth. A hybrid approach is to combine local linear
smoothing and isotonic regression to obtain a smooth, monotonic estimate. In this
approach, two estimators can be constructed: local linear smoothing an isotonic es-
timate or isotonizing a local linear estimator, where the monotonicity constraint is
preserved for the latter. For constructing the IL and LI estimators, we use the same
grid points as the local linear estimator L. Sometimes the estimate L is monotone
itself in which case we take LI as L. without the additional isotonization step.

Besides the hybrid approach, other approaches have also been proposed for
monotone smoothing (Dette et al., 2005, Miiller and Schmitt, 1988, Park and Park,
2006). Dette et al. (2005) also show that their estimator has exactly the same first-
order asymptotic properties as that of Miiller and Schmitt (1988). The authors also
compare their estimator with the LI estimator and found no clear ordering between
the LI estimator and their estimator. Dette and Scheder (2010) conduct a detailed
numerical comparison to estimate the effective dose in quantal bioassay for estima-
tors of Dette et al. (2005), Miiller and Schmitt (1988), Park and Park (2006). The
authors consider repeated and non-repeated measurement designs, and find in both
cases the comparison of the estimates yields a similar picture. We will only consider
the LI and IL approaches to monotone smoothing henceforth.

3 Example: Attributable Fraction of Fever Due to
Malaria

Malaria is an infectious disease caused by a parasite that is a major public health
problem in many countries. Fever is the most characteristic clinical feature of
malaria. However, fevers caused by malaria parasites often cannot be distinguished
on the basis of clinical features from fevers caused by other common childhood in-
fections such as the common cold, pneumonia, influenza, viral hepatitis or typhoid
fever (Hommel, 2002, Koram and Molyneux, 2007). One aid to deciding whether
a fever is caused by malaria parasites is to measure the density of malaria parasites
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in the child’s blood. But even if a child has fever and has a high parasite density,
the fever might still be caused by another infection. Estimation of the proportion of
fever attributable to malaria parasite is important for understanding the burden of
the disease and changes in the burden.

We consider data from repeated cross-sectional surveys of parasitaemia and
fever among 408 children up to 1 year old in a village in the Kilombero district
in Tanzania. The data were described in (Kitua, Smith, Alonso, Masanja, Urassa,
Menendez, Kimario, and Tanner, 1996) and analyzed by Vounatsou, Smith, and
Smith (1998). For each sampled child, the child’s axillary temperatures was mea-
sured and fever was defined as an axillary temperature of 37.5° C (99.5° F) or
higher. Also, a finger prick blood sample of the child’s blood was taken and, after
being dried and stained, was examined under a light microscope for malaria para-
sites. The malaria parasite density per cubic milliliter (ul) was assessed by counting
how many parasites were found for the first approximately 200 white blood cells
counted, and then multiplying by (8000/number of white blood cells counted), un-
der the assumption that there are 8000 white blood cells per ul.

Let Y be the response of having a fever (Y = 1) or not (Y = 0) and let X
represent the parasite density. Many of the parasite densities are clustered around O
while the rest range continuously up to the maximum 399,952. To investigate the
relationship between fever and parasite, we first summarize the data by calculating
the averages of Y within intervals of X in Table 1. Due to the sparsity of high para-
site densities, the intervals are constructed such that the lengths are almost doubled
and each interval contains at least 30 observations. In Table 1, we see that the fever
rates are increasing as the parasite density increases except for the last interval. For
parasite densities less than or equal to 25,781, there were 161 fever cases were
observed among 304 children. Among the total 104 children with parasite densi-
ties greater than 25,781, there were 103 fevers cases and a single non-fever case at
X =138,677.

In Figure 1, we plot the fever rates and 95% confidence intervals against the
right end point of the intervals on a logarithm base 10 scale in Table 1. The con-
fidence intervals are computed by the “Wilson” method for binomial probabilities
(Agresti and Coull, 1998). The plot suggests the fever rate increases sharply for
low exposures (the original scale of x) and then approach a constant around 1 for
high exposures. Overall, the plot suggests a monotone pattern of the conditional
probability P(Y = 1|X = x).

Figure 2 shows P(Y = 1|X = x) on a logarithm base 10 scale of X from
estimators I, IL, L, LI, Lg, P. For the power model estimator P, the power 7 is
estimated to be 0.7. Grid points of & for estimators L, /L and LI are equally spaced
from 1 to the maximum of x on a grid of length 1000. Bandwidth chosen for the
three estimators are respectively 23,221, 23,622 and 23,221. In the plot, we see
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Table 1: Distribution of malaria parasite densities and fever rates in children sam-
pled in Kilombero District, Tanzania in 1993-1994.
Parasite density =~ Number of  Fever
(parasites/ul) observations  rate

0 116 0.457

1-3000 77 0.468
3001-7000 32 0.594
7001-15,000 40 0.650
15,001-30,000 42 0.714
30,001-60,000 35 1.000
60,001-120,000 36 1.000
120,001-399,952 30 0.967

that all the estimators suggest a similar pattern of a sharply increasing rate of the
probability that approaches 1. The local linear estimator L gives an estimated value
of 1 of the probability at 4.69, but then dips below 1 starting around 5.07. The fit
of L is clearly affected by the outlier at log;ox = log;( 138,677 ~ 5.14 where we
see a valley of the fit occurs. Estimator / gives estimated probability of 1 right after
the outlier. Fitted probabilities given by estimators Lg and P are very close to each
other, and so are those given by estimators /L and LI. Estimator /L replaces the
sudden jump of estimator / at 5.14 by a smooth increasing step. On the other hand,
estimator L/ seems to be a compromise between / and L: filling up the valley and
then increasing smoothly to 1.

Table 2 contains the estimated AF using these different methods. The es-
timated AFs range from 0.2691 to 0.3309. Estimator I gives the biggest AF and
estimator Lg gives the smallest estimate. Bootstrap percentile confidence intervals
are also reported. These confidence intervals were formed by resampling the orig-
inal data 1000 times with replacement and then looking at the lower 2.5%-th and
upper 97.5%-th quantiles of the AF’s. The length of the bootstrap confidence in-
terval is reported in the bottom row of the table. The logistic regression estimator
Lg has the smallest confidence interval. However, Lg is a parametric estimator
that can be biased if the logistic regression model is not true. As we shall see in
Section 4, Lg performs the worst in terms of mean squared error in our simula-
tion study. The nonparametric regression estimators L, IL and LI have somewhat
smaller confidence intervals than the classical nonparametric estimator S.
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Table 2: AF and the 95% bootstrap confidence intervals for different estimators.
Estimator S I Lg P L IL LI
AF 0.2939 0.3309 0.2691 0.3116 0.2732 0.2847 0.2731
Lower CI  0.1772 0.2485 0.2003 0.1928 0.1306 0.1305 0.1306
Upper CI ~ 0.4221 0.4408 0.3474 0.4104 0.3404 0.3582 0.3404
Lengthof CI  0.245 0.192 0.147 0.218 0.210 0.228  0.210

4 Simulation Study

In our simulation study, we will consider the effects of the sample size, the pro-
portion of subjects with zero exposure and the disease-exposure relationship P(Y =
1|X = x). We consider sample sizes, n = 30, 100, 500 and 1000; the relative per-
formance of the estimators for n = 1000 was very similar to that of n = 500 so we
only report results for n = 30,100 and 500. We simulate the exposure variable X
as being zero with probability ¢ and being uniform on [0, 1] with probability 1 — q.
For the proportion of zero exposures g, we consider values 0.1, 0.3 and 0.5.

The binary response Y is simulated according to the probability models
P(Y =1|X =x) =a+ (1 —a)f(x). For f(x), we consider the seven models:

fi = l—exp(—Vv12x),
o= Vv

B sin(27x)
f3 = x+ T >
fa = x,

1
fs =

1+exp(5—10x)’
fo = 0.9x*+0.1x,

fr = x.

Figure 3 shows the shapes of these function for @ = 0. The models include a Weibull
model (f1), a straight line (f4) and a logit model (f5). Models f| and f5 are also used
in (Dette and Scheder, 2010, Park and Park, 2006). These models can be roughly
classified into two groups according to their instantaneous rates of change at x = 0:
(1) £/(0) is greater than 1 for f1, f> and f3; (2) f'(0) is less than or equal to 1 for f,
/5, fe and f7. The instantaneous rates of change as P(Y = 1|X = x) approaches 1
for these models can also be roughly classified into two groups: one group with fi,
Jf>» and f5, and another group with f3, f1, f¢ and f;. The parameter a controls the
probability of disease at zero exposure, P(Y = 1|X = 0). The models in Figure 3
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have P(Y = 1|X = 0) = 0 but in practice there is likely to be some probability of
the disease due to causes other than the exposure so that P(Y = 1|X =0) > 0. So
to allow for P(Y = 1|X = 0) = a > 0, we linearly transform the probability models
f in Figure 3 by the “intercept” a and a “slope” 1 —a with a = 0.1, 0.3, 0.5 ,0.7
respectively. For instance for function f4 with a = 0.1, the transformed model is
P(Y = 1|X =x) = 0.9x+0.1. Note that a higher value of a also has the indirect
effect of decreasing the rate of change around x =0 of P(Y = 1|X = x).
The true AF value is calculated as

. P(Y =1|X =0)
gP(Y =1|X =0)+(1—q) [ooP(Y = 1|X =x)dx’

The grid points of 4 for estimators L, LI and IL are from 0.001 to 1 with increment
0.001. At every combination (n,a,q, f), we run 1000 simulations and calculate the
MSE for each estimator. The MSE of the estimator S is selected as a baseline and
the relative efficiencies (RE) of the other estimators are then obtained as the ratio of
their MSE’s to the baseline. To get an overall evaluation of the performance of these
estimators, we look at the averaged relative efficiency (ARE) at each (n, f), (n,a)
and (n,q). Specifically, at each (n, f), the ARE for an estimator is calculated as an
averaged value of the RE’s over the 12 combinations of (a,q). The ARE’s at each
(n,a) and (n,q) are calculated similarly and we summarize these ARE’s in Tables 3-
5 respectively. In each column of the table, the smallest ARE is in bold font and
the largest is italicized. Finally, we compare the ARE’s over all combinations of
(n,a,q, f) and list them in Table 6.

We first consider the effects of the shape of the disease-exposure relation-
ship and sample size in Table 3. In general, for fixed sample size, the regression es-
timators do better compared to S for functions fy, f5, fg and f7, for which f/(0) < 1,
than for functions fi, f> and f3, for which f/(0) > 1. The larger f’(0) is, i.e., the
steeper the rate of change of the probability of disease given exposure is at zero
exposure, the less information there is for the regression estimators to gain over S
from borrowing information around the neighborhood of zero exposure to estimate
the disease probability at zero exposure and the more potential there is for bias from
attempting to borrow information. Among all models, f; has the steepest increase
in disease rate at zero exposure. For f], most estimators except estimator I are
worse than S (i.e., have ARE greater than 1) for most sample sizes. The nonpara-
metric regression estimators L, LI and IL, which borrow information on Y values
from the neighborhood of x = 0 to estimate P(Y = 1|X = 0), tend to overestimate
P(Y = 1|X = 0) for small sample sizes and thus underestimate the AF. For n = 30,
estimator L has the largest ARE. However, for the larger sample size of n = 500,
bias in L, LI and IL are less of a problem; L and LI are only 9% worse than S and
IL is 4% better than S. The estimator I is a little better than S for all sample sizes
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for f1. The power model is comparable to S for all sample sizes for f;. Logis-
tic regression performs poorly for larger sample sizes for f1; for n = 500, logistic
regression has a MSE more than 10 times that of S. There are similar patterns in
comparisons among estimators for f> and f3 as for f;. However, for f, and f3, all of
the regression estimators perform better than S for the small sample size of n = 30,
and for f3, most are better than S for n = 100. Estimator I continues to perform
well and be better than S for all sample sizes for f> and f3. IL is better than I for
sample sizes n = 30 and n = 100 for f; and f3 but a little worse for n = 500. The
logistic regression estimator does not perform as badly for f, and f3 as for f; but
still has an ARE compared to S of around 2 for n = 500.

Table 3: The averaged relative efficiency (ARE) of the regression estimators com-
pared to S at each (n, f).
n h i) E! fa /5 fo 1
3 1 0.8412 0.7607 0.7246 0.7167 0.7311 0.7039 0.6733
0 IL 1.1306 0.5570 0.4297 0.4597 0.5190 0.4846 0.4712
L 1.3691 0.7111 0.5723 0.4878 0.4671 0.4417 0.3978
LI  1.3406 0.6740 0.5204 0.4472 0.4302 0.3903 0.2993
Lg 1.1224 0.6323 0.5425 0.4708 0.5353 0.4582 0.4385
P 0.9497 0.8474 0.8021 0.6753 0.5415 0.5798 0.6274

I 1 0.9219 0.8572 0.8447 0.8513 0.8498 0.8408 0.8108
0 IL 14721 0.8472 0.5440 0.5378 0.6849 0.6384 0.6544
0 L 19139 1.0461 0.7460 0.5302 0.5280 0.4986 0.4609
LI 19046 1.0252 0.7226 0.5121 0.5045 0.4742 0.3833
Lg 23381 0.8434 0.7217 0.5094 0.7913 0.5671 0.5492
P 1.0069 1.0405 1.0855 0.8200 0.5164 0.5884 0.4323

I 09721 09472 0.9370 0.9345 0.9501 0.9362 0.9300
IL 09631 1.0979 0.9961 0.6191 0.9902 0.9925 1.1734
0 L 1.0860 1.2869 1.0978 0.6050 0.6933 0.6902 0.6822
LI  1.0857 1.2809 1.0929 0.5975 0.6865 0.6850 0.6581
Lg 10.1670 2.2590 1.8206 0.6529 2.2242 1.1847 1.3129
P 1.0025 1.1281 1.2886 0.9129 0.5262 0.6389 0.2153

9}

o

For the functions fi1, f5, fe and f7, we would expect that the regression
estimators would perform relatively better compared to S than for f1, f> and f3
because the more slowly increasing rate of P(Y = 1|X = x) in x means there is more
to gain from borrowing information around the neighborhood of x = 0 to estimate
P(Y = 1|X = 0). This is indeed the case, and for the functions f4, fs, fs and f7,
the regression estimators generally perform better than S. The estimator I continues
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to always perform better than S. However, the estimator I, which performed well
compared to other regression estimators for fi, f, and f3, is generally the worst
among the regression estimators for f4, f5, fg and f7. The estimator LI is generally
the best among the nonparametric regression estimators, followed by L and IL.
Logistic regression performs better than S for the smaller sample sizes of n = 30
and n = 100 for f1, f5, f¢ and f7 and for n = 500 for f; but worse for n = 500
for fs, f¢ and f7. The power model estimator P generally does well and is the best
estimator for n = 500 for f5, fs and f7.

We now examine the effect of the parameter a, the probability of disease
given zero exposure, in Table 4. As a increases, the rate of change of the probability
of disease at zero exposure decreases. We expect that as the rate of change of the
probability at zero exposure decreases, (i.e., a increases), there is more to gain from
borrowing information from the neighborhood of zero to estimate the probability of
disease at zero exposure and that the regression estimators will do better compared
S. This is indeed the case in Table 4 for all of the regression estimators except /,
which does worse compared to S as a increases.

Next, we examine the effect of the parameter g, the probability of zero expo-
sure, in Table 5. In general, as g increases, the efficiency of the regression estimators
compared to S decreases (i.e., the ARE increases). When ¢ is larger, the sample av-
erage estimate of P(Y = 1|X = 0) that S uses is more accurate and there is less to
gain from borrowing information from the neighborhood around zero exposure.

Our simulation study indicates that performance of the estimators usually
depends on f, a, g and n. Table 6 presents the overall average relative efficiency
over all the settings in the simulation study. The estimator LI performs the best.
IL, L and P are a little worse, but considerably better than S. I is better than S
but somewhat worse than LI, IL, L and P. Lg is considerably worse than S. The
estimator LI also had the smallest ARE the most times over the different settings.
We also note that LI was better than L for all f, a, g and n, although the gain was
often small, indicating that incorporating monotonicity provides a consistent but
small gain.

5 Summary

Estimation of the attributable fraction essentially depends on estimation of the un-
derlying conditional probability of disease given the exposure. We have studied the
performance of several different estimators when the exposure is semi-continuous,
in particular the estimators S (based on sample averages), I (isotonic regression), IL
(isotonic regression followed by local linear smoothing), L (local linear smoothing),
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LI (local linear smoothing followed by isotonic regression), Lg (logistic regression)
and P (power model).

The comparison among estimators depends on the sample size, the true con-
ditional probability model, the value of the conditional probability at zero exposure,
and the proportion of zero exposures. Based on our simulation study, we make the
following recommendations:

e The classical estimate S can be improved upon by regression estimators, in
particular when the change in the probability of disease given exposure at
Zero exposure is not steep.

e However, the logistic regression estimator L.g, where the logit of the probabil-
ity is linear in the exposure, should be avoided. It is not robust to deviations
from the logistic regression model being true and was worse than the classical
estimate S in our study.

e The power model that was proposed by Smith et al. (1994) for estimating AFs
generally works well and did considerably better than the classical estimate
S in our study.

e Nonparametric regression estimators work well and improve considerably on
the classical estimate S when the change in the probability of disease given
exposure at zero exposure is not steep. When the change in the probability
of disease given exposure at zero exposure is steep, the nonparametric re-
gression estimators are sometimes a little worse and sometimes a little better
than S. The nonparametric regression estimators performed similarly overall
to the power model. The LI estimator was slightly better overall than the
power model.

e There is a small, but consistent across different settings, gain to incorporat-
ing the constraint that the probability of disease is monotonically increasing
in exposure into the nonparametric regression estimators, assuming this con-
straint is believed to be true.

6 Discussion

We have focused on estimating the AF when there are no confounders or when we
are interested in estimating the AF within a stratum of confounders. When there
are J strata of confounders, the overall AF can be estimated by combining the es-
timates of the AF within strata 1,...,J using the weighted sum method (Benichou,
2001, Whittemore, 1982): AF = Zle w jAAF j where w; is the proportion of dis-
eased individuals in stratum j and AF j 1s the AF estimate for stratum j. Properties
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of the combined estimate need investigation and the argument may be based on the
informal justification below (4).

We have considered cohort studies in this paper. The odds ratio from a
case-control study approximates the relative risk from a corresponding cohort study
when the disease is rare (Greenland and Drescher, 1993, Drescher and Schill, 1991),
and consequently the attributable fraction can be estimated using (3) by plugging in
regression model estimates of the odds ratio Odds(Y; = 1|X; =0)/0dds(Y; = 1|X; = x;)
for the case-control study for the relative risk P(Y; = 1|X; = 0) /P(Y; = 1|X; = x;) in
(3) (Benichou, 2001, Bruzzi et al., 1985, Drescher and Schill, 1991). It would be
useful to study in future work how the parametric and nonparametric estimates of
the attributable fraction for a semi-continuous exposure considered in this paper for
cohort studies perform in case-control studies.
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Fever rate vs. parasite density
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Figure 1: Fever rates for the intervals in Table 1 and the associated 95% confidence
intervals. The fever rate is plotted versus the right end point of the interval in

Table 1. A logarithmic (base 10) scale is used for the x (parasite density) axis.
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Figure 2: Estimated probability of having a fever from different regression estima-
tors: I, IL, L, LI, Lg and P. A logarithmic (base 10) scale is used for the x (parasite

density) axis.
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Figure 3: Models of P(Y = 1|X = x) used in simulations.
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Table 5: The averaged relative efficiency (ARE) of the regression estimators com-

pared to S at each (n,q).

30 100 500

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
I 0.5729 | 0.7845 | 0.8504 || 0.7649 | 0.8834 | 0.9131 || 0.9037 | 0.9510 | 0.9770
IL || 0.3826 | 0.6365 | 0.7174 || 0.6765 | 0.7942 | 0.8346 | 0.8445 | 1.0203 | 1.0633
L | 04747 | 0.6865 | 0.7445 || 0.8108 | 0.8137 | 0.8285 || 0.8087 | 0.8871 | 0.9362
LI || 0.4144 | 0.6395 | 0.7040 || 0.7665 | 0.7913 | 0.8106 || 0.7938 | 0.8821 | 0.9326
Lg || 0.3846 | 0.6482 | 0.7672 | 0.8523 | 0.9778 | 0.8785 || 3.7163 | 2.8984 | 1.7945
P || 0.5139 | 0.7859 | 0.8530 || 0.6678 | 0.8201 | 0.8649 || 0.7576 | 0.8276 | 0.8630

Table 6: The overall averaged relative efficiency (ARE) of the estimators.

S

I

IL

L

LI

Lg

p

1.0000 0.8445 0.7744 0.7768 0.7483

1.4353 0.7726
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