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Abstract
Traditional resampling-based tests for homogeneity in covariance matrices across multiple

groups resample residuals, that is, data centered by group means. These residuals do not share
the same second moments when the null hypothesis is false, which makes them difficult to use
in the setting of multiple testing. An alternative approach is to resample standardized residuals,
data centered by group sample means and standardized by group sample covariance matrices. This
approach, however, has been observed to inflate type I error when sample size is small or data are
generated from heavy-tailed distributions. We propose to improve this approach by using robust
estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and
a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be
expressed in terms of standardized errors under the null hypothesis. These methods are extended
to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the
robust resampling approach provides comparable or superior performance, relative to traditional
approaches, for single testing and reasonable performance for multiple testing. The proposed
methods are applied to data collected in an HIV vaccine trial to investigate possible determinants,
including vaccine status, vaccine-induced immune response level and viral genotype, of unusual
correlation pattern between HIV viral load and CD4 count in newly infected patients.
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1 Introduction

For HIV-infected patients, there is interest in understanding how clinical re-
sponses covary over time. Although increasing viral load tends to be associated
with decreasing CD4 T lymphocyte count, the reasons for variability in this
relationship are not understood. The inverse relationship arises because viral
replication is associated with death of CD4 T lymphocytes, but Yu et al.(1994)
showed that the replication rate does not entirely determine the death rate of
CD4+ T lymphocytes. Below we investigate genetic factors that may account
for some of this variability, by developing statistical tests to detect determi-
nants associated with unusual covariation of viral RNA level and CD4 cell
count.

The problem of testing for homogeneity in covariance/correlation ma-
trices across pre-defined groups arises in multivariate analysis of variance and
in discriminant analysis; asymptotic tests based on likelihood ratio for Gaus-
sian data have been extensively studied (Box, 1949; Bartlett, 1951; Manly
and Rayner, 1987). However, asymptotic tests are known to be incapable
of controlling type I error for heavy-tailed error distributions with worsening
performance as sample size increases (Brown, 1974). More recent develop-
ment within this framework involves robust estimation for dispersion, such as
winsorization and deviation from the median (Tiku and Balakrishnan, 1985;
O’brien, 1992) designed to reduce the sensitivity of the tests to nonnormality
in data.

Resampling-based approaches for testing covariance and correlation
have received much less attention than their counterparts for testing mean
structures. Zhang and Boos (1992) proposed the use of the Bartlett statistic,
a function of determinants of sample covariance matrices and closely related
to the log likelihood ratio for Gaussian data, and a bootstrap procedure that
resamples centered responses. The resampling approach does not require an
assumption of normality. Zhu et al.(2002) suggested an alternative test statis-
tic, which essentially compares the eigen-values of sample covariance matrices
across groups. They showed the superiority of the eigenvalue-based statistics
over the determinant-based statistic for responses of relatively high dimension.
In both methods, responses are centered by group-specific sample means, but
are not standardized by group-specific sample covariance matrices.

In their discussion of testing equal univariate variances, Westfall and
Young (1993) pointed out the importance of standardizing centered responses
with group-specific sample standard deviations, so that the resampling-based
null distributions remain correct regardless of whether the hypothesis under
consideration is true or false. This suggestion can be viewed as an extension
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to hypothesis testing of the general resampling method for interval estimation
proposed by Wu (1986), in which standardized residuals are resampled to in-
duce the bias-robustness of an estimator against variance heteroscedasticity of
the errors. Generalizing their previous approach to a broader class of null hy-
potheses, Zhang and Boos (1993) developed a procedure called ”separate boot-
strap plan”, which indeed resamples residuals standardized by group-specific
sample covariance matrices. However, this approach appears to inflate type I
errors at least for small-size samples or heavy-tailed error distributions.

Resampling standardized residuals is particularly appealing in the con-
text of multiple-testing of homogeneity in covariance or correlation matrices.
These residuals are free of the data-generating second-order moments, and are
therefore exchangeable across groups under the assumption that the residuals
share higher moments after standardization. As a result, all residuals can be
used throughout a stepwise procedure for multiple comparisons, regardless of
which hypotheses are rejected. In contrast, centered responses from groups for
which the null hypotheses have been rejected during previous steps can not be
used in subsequent steps, leading to a shrinking pool of useable residuals for
resampling along a stepwise procedure.

We propose to improve the ”separate bootstrap plan” of Zhang and
Boos (1993) with robust estimation for group-specific means and covariance
matrices, to attain better control of type I error in the test of equal covariance
across groups. In this approach, both the test statistic and residuals are cal-
culated from robust moment estimates. We also modify the eigenvalue-based
test statistic of Zhu et al.(2002) in such a way that, under the null hypothesis,
the new statistic can be written as a function of standardized random errors
whose distribution is independent of the moments under testing.

After replacing the sample covariance with the sample correlation ma-
trices, both statistics are extended to the problem of testing equal correla-
tion matrices across groups. Simulation studies are conducted to evaluate
the performance of the proposed robust bootstrap test For both single- and
multiple-testing settings, simulation studies compare the performance of the
proposed robust bootstrap test that resamples standardized residuals to that
of the traditional bootstrap test that resamples centered responses, as well
as the performance of the determinant-based statistic to that of the modi-
fied eigenvalue-based statistic. The proposed approaches are applied to data
from an HIV vaccine trial to identify possible genetic patterns associated with
unusual correlation between viral load and CD4 response in new infections.
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2 Methods

Consider a sample stratified into J groups, each of size nj, j = 1, . . . , J , with

a total sample size of n =
∑J

j=1 nj. There are L clinical responses, denoted by

Y jk = (Yjk1, Yjk2, . . . , YjkL)τ , observed for the kth individual in the jth group,
k = 1, . . . , nj, j = 1, . . . , J . For the methods we consider, L � minjnj. The
class of models we consider is

Y jk = µj + εjk, k = 1, . . . , nj, j = 1, . . . , J, (1)

where µj = (µj1, . . . , µjL)τ = E(Y jk) is the mean responses in group j, and
εjk = (εjk1, . . . , εjkL)τ is the vector of random errors. The errors are assumed
independent across individuals. Let Diag(x) denote a diagonal matrix with
diagonal elements given by x if x is a vector or by the diagonal elements of x
if x is a matrix. We further make the following assumptions about moments
of errors:

(a) E(εjk) = 0;
(b) Cov(εjk, εjk) = V j = DjRjDj, where σj = (σj1, . . . , σjL)τ is the vector

of standard deviations, Dj = Diag(σj), and Rj is the correlation matrix.
V j and Rj are positive definite for all j;

(c) The distributions of the errors, after appropriate standardization, are iden-
tical for all j and k. The standardization can be based on, for example,
the Cholesky or spectral decomposition of V j’s.

(d) The fourth moment is finite.

2.1 Testing homogeneity in covariance

The hypothesis to be tested is

H0 : V 1 = V 2 = . . . = V J = V vs. Ha : V j 6= V k, ∃j, k. (2)

Let U j and U be the lower triangle Cholesky decomposition of V j and

V respectively, that is, V j = U jU
τ
j and V = UU τ . Let V

−1/2
j and V −1/2

be the usual square roots of V −1j and V −1 respectively based on spectral
decomposition. We define the following quantities derived from observed data:

• ε̂jk = Y jk − Y j = εjk − 1
nj

∑nj

l=1 εjl, where Y j = 1
nj

∑nj

l=1 Y jl, the

residual.
• V̂ j = 1

nj−1
∑

k ε̂jkε̂
τ
jk, the sample covariance matrix for group j, j =

1, . . . , J .
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• V̂ = 1
n−J

∑
j(nj−1)V̂ j, the estimate for the common covariance matrix

under H0.
• Û j and Û , the lower triangle Cholesky decomposition of V̂ j and V̂ .

• V̂
−1/2
j and V̂

−1/2
, the square roots of V̂

−1
j and V̂

−1
.

The determinant-based test statistic One plausible statistic for testing
H0 in (2) is the modified Bartlett’s determinant-based statistic:

TV d =
J∑
j=1

(nj − 1) log
|V̂ |
|V̂ j|

, (3)

This statistic is the log likelihood ratio when the error distribution is Gaussian
except for the use of unbiased estimates for sample covariances. Large values
of the statistic imply departure from the null hypothesis. We only consider
data with invertable V̂ and V̂ j for all j. Under H0 in (2), we have U j = U
for all j and

TV d =
J∑
j=1

(nj − 1) log
|U−1V̂ U−1τ |
|U−1V̂ jU

−1τ |

=
J∑
j=1

(nj − 1) log
| 1
n−J

∑
j,k(U

−1ε̂jk)(U
−1ε̂jk)

τ |
| 1
nj−1

∑
k(U

−1ε̂jk)(U
−1ε̂jk)τ |

=
J∑
j=1

(nj − 1) log
| 1
n−J

∑
j,k(ηjk − η̄j)(ηjk − η̄j)τ |

| 1
nj−1

∑
k(ηjk − η̄j)(ηjk − η̄j)τ |

,

(4)

where ηjk = U−1ε̂jk and η̄j = 1
nj

∑
l ηjl. Clearly, ηjk’s are standardized errors

and are thus i.i.d. across individuals. Other approaches to standardization
could also be used, for example, replacing U−1j with V

−1/2
j .

The eigenvalue-based test statistic Let Λ(X) be the vector of eigenval-
ues of matrix X, and |x| be the average of absolute values of the elements of
vector x. An alternative test statistic is

TV e =
2

J(J − 1)

J−1∑
j=1

J∑
l=j+1

∣∣∣Λ(Û−1(V̂ j − V̂ l)Û
−1 τ)∣∣∣ , (5)

This statistic is a modified version of the one proposed in Zhu et al.(2002)

which uses Λ
(
V̂
−1/2

(V̂ j−V̂ l)V̂
−1/2)

. Let Chol(X) be Cholesky decomposition
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of matrix X. Under the null,

Û
−1

(V̂ i − V̂ j)Û
−1 τ

=Chol
(
U−1V̂ U−1

τ)−1 × (U−1V̂ iU
−1τ −U−1V̂ jU

−1τ)
× Chol

(
U−1V̂ U−1

τ)−1 τ

,

(6)

and U−1V̂ jU
−1τ = 1

nj−1
∑

k(ηjk − η̄j)(ηjk − η̄j)τ . Hence, this eigenvalue-

based statistic under the null is also a function of standardized errors. This
formulation is not available for the original statistic in Zhu et al.(2002), because

V̂
− 1

2 (V̂ i − V̂ j)V̂
− 1

2

6=
{
V −

1
2 V̂ V −

1
2

}− 1
2 ×

(
V −

1
2 V̂ iV

− 1
2 − V −

1
2 V̂ jV

− 1
2

)
×
{
V −

1
2 V̂ V −

1
2

}− 1
2 .

The bootstrap procedure The null distribution of a test statistic is ob-
tained by resampling the standardized errors in its formulation under H0 from
the pool of standardized residuals given by

η̂jk =

√
nj

nj − 1
Û
−1
j ε̂jk, (7)

where the factor
√

nj

nj−1 is to force its variance components to be close to 1.

Alternatively, the residuals can also be standardized as η̂jk = Û
−1
ε̂jk, which

approximate the true errors only under H0 but will better preserve type I
error. We refer to this method as the hypothesis-dependent (H-D) bootstrap
test and the previous one (using (7)) as the hypothesis-independent (H-I)
bootstrap test.

For a chosen test statistic T , the bootstrap test proceeds as follows:

1. Calculate V̂ j, V̂ and the observed test statistic T .

2. Standardize ε̂jk with either Û j (H-I) or Û (H-D) to obtain η̂jk’s.
3. For i = 1, . . . , N , at the ith iteration, bootstrap from

{η̂jk : k = 1, . . . , nj, j = 1, . . . , J},

substitute the samples for ηjk’s in the formulation of T under the null,

and denote the resulted statistic by T#
i .

4. The p-value is given by 1
N

∑
i I(T#

i ≥ T ), where I(·) is the indicator
function.
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The H-D bootstrap test is equivalent to a test based on bootstrapping
centered observations in Zhang and Boos (1992). The H-I bootstrap test is
nearly equivalent to the ”separate bootstrap plan” in Zhang and Boos (1993)
except that they bootstrapped standardized errors within groups, whereas we
do so across groups. If validity of assumption (c) is of concern, resampling
should be done within groups, i.e., ηjk is resampled from {η̂jl : l = 1, . . . , nj}.

The bootstrap sampling procedure in Zhu et al.(2002) using the original
eigenvalue-based statistic is similar to the H-D procedure using the modified

statistic except that the standardization factor V̂
−1/2

was fixed at values based
on observed data. we expect the H-D bootstrap procedure to perform better
than the one in Zhu et al.(2002) because the former accounts for uncertainty
in the standardization factor.

2.2 Testing homogeneity in correlation

The hypothesis to be tested is

H0 : R1 = R2 = . . . = RJ = R vs. Ha : Rj 6= Rk, ∃j, k. (8)

Define ξjk = D−1j εjk as the error vector scaled by the group-specific stan-
dard deviation matrix Dj = Diag(σj1, . . . , σjL) so that ξjk has variance 1
but preserves the correlation among the components. Let P j and P be the
lower triangle Cholesky decomposition of Rj and R respectively. Define the
following sample estimates for the correlation-related quantities:

• D̂j = Diag(σ̂j1, . . . , σ̂jL), where σ̂2
jl = 1

nj−1
∑

k ε̂
2
jkl, l = 1, . . . , L;

• ξ̂jk = D̂
−1
j ε̂jk, the scaled residual vector.

• R̂j = 1
nj−1

∑
k ξ̂jkξ̂

τ

jk, the sample correlation matrix for group j, j =

1, . . . , J .
• R̂ = 1

n−J
∑

j(nj−1)R̂j, the estimate for the common correlation matrix
under H0.
• P̂ j and P̂ , the lower triangle Cholesky decomposition of R̂j and R̂.

Analogous to (3) and (5), two possible test statistic for H0 : R1 = . . . =
RJ = R0 are

TRd =
J∑
j=1

(nj − 1) log
|R̂|
|R̂j|

(9)
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and

TRe =
2

J(J − 1)

J−1∑
j=1

J∑
l=j+1

∣∣∣Λ(R̂−1/2(R̂j − R̂l)R̂
−1/2)∣∣∣. (10)

Under H0 in (8), expand ξ̂jk as the following:

ξ̂jk = D̂
−1
j ε̂jk =

{
D̂
−1
j Dj

}
P
{
P−1D−1j ε̂jk

}
=
{ 1

nj − 1

nj∑
k=1

Diag2(PP−1D−1j ε̂jk)
}−1/2

P
{
P−1D−1j ε̂jk

}
=
{ 1

nj − 1

nj∑
k=1

Diag2
(
P (ηjk − η̄j)

)}−1/2
P (ηjk − η̄j).

(11)

where ηjk = U−1j εjk = P−1D−1j εjk is the standardized error. We sample ηjk’s
from the residuals

η̂jk =
√
nj/(nj − 1)P̂

−1
j ξ̂jk (H-I), or

η̂jk =
√
nj/(nj − 1)P̂

−1
ξ̂jk (H-D)

over all groups to generate the null distribution of TRd or TRe. As the statistics
depend on the unknown value of P under H0, we estimate P with P̂ and fix
its value throughout the resampling procedure.

2.3 Robust testing

When the data are contaminated with outliers, e.g., the error distribution is
heavy-tailed, robust estimation may be necessary for appropriate inference.
In particular, outliers are much more influential for the H-I bootstrap test
as only the data in each group are available to estimate the group-specific
covariance/correlation matrices. Among various robust estimation procedures,
we choose the one in Campbell (1980) for its simplicity. We use the test for
equal covariance as an example; extension to the test for equal correlation is
straightforward. The robust estimator for V j is given by

V̈ j =
1∑

k ω
2
jk − 1

∑
k

ω2
jkε̈jkε̈

τ
jk (12)
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where

ε̈jk = Y jk − f̂(Xjk)−
1∑
l ωjl

∑
l

ωjl
(
Y jl − f̂(Xjl)

)
≈ εjk −

1∑
l ωjl

nj∑
l=1

ωjlεjl

(13)
is the robust estimator for εjk. The weights ωjk’s are determined using an
iterative procedure described in Campbell (1980) and also in appendix A. It
is natural to derive robust estimates for other quantities from V̈ j’s and ε̈jk’s,
for example,

• V̈ = 1
(
∑

j,k ω
2
jk)−J

∑
j

(
(
∑

k ω
2
jk)− 1

)
V̈ j;

• D̈j = Diag(σ̈j1, . . . , σ̈jL), where σ̈2
jl = 1

nj−1
∑

k ε̈
2
jkl, l = 1, . . . , L;

• ξ̈jk = D̈
−1
j ε̈jk;

• R̈j = 1
nj−1

∑
k ξ̈jkξ̈

τ

jk;

• R̈ = 1
(
∑

j,k ω
2
jk)−J

∑
j

(
(
∑

k ω
2
jk)− 1

)
R̈j;

The robust version of test statistics can be defined accordingly. Take for
example the determinant-based statistic for testing equal covariance,

T̈V d =
J∑
j=1

(nj − 1) log
|V̈ |
|V̈ j|

,

Under H0 in (2), the robust version of (4) is

T̈V d =
J∑
j=1

(nj − 1) log
| 1
(
∑

j,k ω
2
jk)−J

∑
j,k ω

2
jk(ηjk − η̄j)(ηjk − η̄j)τ |

| 1
(
∑

k ω
2
jk)−1

∑
k ω

2
jk(ηjk − η̄j)(ηjk − η̄j)τ |

,

where η̄j = 1∑
k ωjk

∑
k ωjkηjk. The same notation is used for both unweighted

and weighted means, but the distinction is clear from the context. Note that
the weights ωjk’s depend on the data; therefore, resampling of the ηjk’s and
fixing ωjk’s is not appropriate. In Campbell’s procedure, the weights depend

on data via the Mahalanobis distance ε̈τjkV̈
−1
j ε̈jk; hence, the weights are inde-

pendent of the underlying true mean and covariance. That implies that the
weights remain unaltered for data generated with different first two moments
but without changes in other generation mechanisms — a property equivalent

8
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to affine equivariance for the covariance estimator (Wilcox, 2005). As a re-
sult, the null distribution of the test statistic can be appropriately obtained
by resampling ηjk’s from standardized residuals

η̈jk =

{
(
∑

l ωjl)
2∑

l ω
2
jl + (

∑
l ωjl)

2 − 2ωjk
∑

l ωjl

}1/2

Ü
−1
j ε̈jk (14)

and recalculating the weights based on the resampled residuals. We recom-
mend the use of robust techniques for the H-I bootstrap test in all settings, be-
cause, as indicated in the simulation study (below), such use helps controlling
type I error not only for heavy-tailed distributions, but also for non-heavy-
tailed distributions when the sample size is small.

2.4 Multiple comparisons

The bootstrap tests are particularly useful in the setting of multiple compar-
isons, for which an asymptotic test properly accounting for correlation among
test statistics is generally not available. Let us consider simultaneous tests of
J hypotheses regarding equal correlation,

H0j : Rj = R0, j = 1, . . . , J, (15)

where R0 is the correlation matrix for the reference group which is indexed by
0. In genetic analyses, we are often interested in identifying groups, defined
by genotype, whose phenotypes differ substantially from those of a referent
group. For microbes, the referent group maybe comprised of those with wild-
type genotype; for humans, the appropriate referent may be those with the
most common genotype in the population(s) of interest. The non-robust test
statistics for H0j is

T
(j)
Rd = nj log

|R̂j0|
|R̂j|

+ n0 log
|R̂j0|
|R̂0|

,

T
(j)
Re =

∣∣∣Λ(P̂−1j0 (R̂j − R̂0)P̂
−1
j0

τ)∣∣∣,
where R̂j0 = 1

nj+n0

{
njR̂j + n0R̂0

}
and P̂ j0 is the lower triangular matrix

such that R̂j0 = P̂ j0P̂
τ

j0, j = 1, . . . , J . To obtain the joint null distribution,
resampling proceeds the same way as in section 2.2 except that P in (11) is

fixed by P̂ j0.

9
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With the H-I bootstrap, the standardized residuals from different groups
share the same distribution asymptotically, under the assumptions (a)–(d).
For any given subset of hypotheses, if hypotheses in this subset are true, the
joint null distribution of test statistics in the subset obtained by resampling
standardized residuals across all groups does not depend on whether hypothe-
ses not in the subset are true – a property called subset pivotality. This prop-
erty ensures that the free step-down procedure introduced in Westfall and
Young (1993) provides asymptotic strong control of type I familywise error
rate (FWE) in the resampling setting. With the H-D bootstrap, standardized
residuals from different groups share the same asymptotic distribution only
when the null hypotheses hold for these groups. Asymptotic strong control is
attainable if, at each step of the step-down procedure, resampling is restricted
to standardized residuals in the groups for which the null hypotheses have not
been rejected yet. This restriction brings two disadvantages: (1) computa-
tional burden is increased by performing resampling at each step; and (2) the
pool of standardized residuals available for resampling shrinks as more and
more hypotheses are rejected, which may affect the performance of the test.

3 Simulation Study

For selected settings of dimension of response, error distribution and sample
size, we compare the performances of the four combinations of the two test
statistics, determinant-based versus eigenvalue-based, and the two resampling
procedures, H-D bootstrap versus robust H-I bootstrap, for testing equal co-
variance or correlation matrices. The robust estimation procedure in Campbell
(1980) involves two control parameters, a and b, for weighting observations in
the calculation of moment estimates. Specifically, a sets a threshold for the
Mahalanobis distance from an observation to the sample mean beyond which
the observed value can be considered as an outlier. The value of b determines
how fast the weight decreases as the observed distance increases, with larger
values implying less robustness. The parameter setting a = 2.0 has an asymp-
totic interpretation, but the value of b is empirically determined, e.g., b = 1.25
was recommended in Campbell (1980). We vary b over 1.25, 2.5 and 5.0 to
evaluate the impact of b.

Three error distributions are examined: multivariate normal (MN),
multivariate T with 5 degree of freedom (MT) and multivariate Laplace (ML),
with the latter two representing heavy-tailed distributions. Normal errors are
sampled from N(0,V j). Student errors are constructed as Zjk/Wjk, where
Zjk ∼ N(0,V j) and Wjk ∼ χ2

5. Laplace errors are generated by sampling each
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component of Zjk = (Zjk1, . . . , ZjkL)τ independently from Laplace(0, 1), and
setting εjk = U jZjk/

√
2, where U j is the lower triangle Cholesky decomposi-

tion of V j. The MN and MT settings are the same as those used in Zhang and

Boos (1992; 1993) and Zhu et al.(2002). Let V j =

{
σ2
j1 ρjσj1σj2

ρjσj1σj2 σ2
j2

}
be

the data-generating covariance matrix of group j, j = 1, . . . , J . The exact
values of V j’s are given in corresponding figures and tables. Results are based
on 5000 simulations, each with N = 5000 resamplings. Nominal significance
level is set to 0.05.

3.1 Single testing

3.1.1 Testing equal covariance

Figure 1 present the results of testing equal covariance matrices for bivariate re-
sponses (L = 2). In general, for a given resampling approach, the determinant-
based statistic tends to be more conservative (i.e., yielding lower type I errors)
than the eigenvalue-based one. The effect is more evident when the error dis-
tribution is heavy-tailed. The determinant-based statistic has slightly lower
statistical power to detect differences in correlation components but slightly
higher power to detect differences in variance components. When the sample
size is small and the error distribution is heavy-tailed, the H-I bootstrap needs
a higher robustness level, such as b=1.25, to control type I error, whereas the
H-D bootstrap always attains reasonable control. This is not surprising, as
the H-D bootstrap utilizes twice as much information for the standardization
of residuals when the null hypothesis is true. The power of the H-I bootstrap
with b = 1.25 is comparable to that of the H-D bootstrap. Higher power
could be attained for the H-I bootstrap by setting larger values of b, but the
price is inflated type I error. With the sample size increased from 40 to 80,
a strong robustness level seems unnecessary for the H-I bootstrap, as b = 5
gives reasonable type I error and comparable power to the H-D bootstrap.

These observations also hold in general for relatively high-dimensional
responses (L = 5), as shown in Figure 2. The only difference is that, with
a moderately large sample size and heavy-tailed distributions, it is necessary
to choose a weak robustness level to avoid too much compromised power.
The performance of the determinant-based statistic is sensitive to the data
dimension when the sample size is small, with a much lower type I error and
somewhat lower statistical power in detecting differences in correlation compo-
nents than the eigenvalue-based statistics. This phenomenon was noted before
in Zhang and Boos (1992; 1993) and Zhu et al.(2002). However, even with a
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moderately large sample size, the difference in power between the two statis-
tics is small for both the H-D bootstrap and the weakly robust H-I bootstrap.
Unlike the low-dimensional case, the increase in sample size did not bring the
type I errors much closer to the desired level when the error distribution is t5.
Although the H-D bootstrap controls type I error asymptotically with both
statistics (Zhang and Boos, 1992; Zhu et al.., 2002), the pattern of type I
errors revealed the relative slow convergence of these resampling methods for
high-dimensional responses in the presence of a heavy-tailed error distribution.
With a sample size of 1000 and a t5 error distribution, the type I error is 0.024
for the H-D bootstrap with the determinant-based statistic but ranges from
0.045 to 0.051 for other combinations of bootstrap approaches, test statistics
and robustness levels.

3.1.2 Testing equal correlation

The results of testing equality of correlation matrices are shown for bivariate
responses (L = 2) in Figure 3 and for relatively high-dimensional responses
(L = 5) in Figure 4. Once again, the determinant-based statistic appears to be
conservative. With the normal error distribution, the H-D bootstrap is quite
conservative. In contrast, the robust H-I bootstrap with b = 1.25 controls
type I error at the desired level and offers slightly higher power regardless
of the type of statistic. Higher values of b (less robust) only mildly inflate
the type I error. For the t5 distribution, the robustness level must be fairly
strong, e.g., b = 1.25, to control type I error for the H-I bootstrap. The
statistical power is comparable between the two resampling approaches. For
the Laplace (1) distribution, the H-D bootstrap appears to be too conservative,
whereas the H-I bootstrap with a weak robustness level (b = 5) controls type
I error satisfactorily with substantially improved power. With a larger sample
size of 80, the performance is similar between the H-D bootstrap and the
H-I bootstrap with b = 5. An inflation in type I error is observed for both
resampling approaches with the t5 distribution, and setting b = 1.25 lowers
the type I error for the H-I bootstrap without much compromising the power.
Figure 4 demonstrates that, for relatively high-dimensional responses, nearly
all combinations of bootstrap approaches, test statistics and robustness levels
are able to control type I error below or near the desired level. A weakly
robust H-I bootstrap with the eigenvalue-based statistic attains higher power
than other combinations, in particular when the sample size is small.
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3.2 Multiple testing

In this simulation study, the four robust resampling-based testing methods to
be compared are formed by combining the determinant-based statistic and the
eigenvalue-based statistic with b = 1.25 and b = 5.0. The H-D bootstrap is
not considered for multiple testing. Each simulated population has five groups,
including a reference group to which other groups are compared; and all five
groups share the same mean and variances. The correlation coefficients are set
to 0 for three groups including the reference group and 0.5 for the remaining 2,
creating 2 true null hypotheses out of 4. Adjusted p-values are evaluated using
a step-down procedure described in Westfall and Young (1993). Performance
of the methods is assessed by type I and II family-wise errors (FWE) as well
as the probability of detecting at least one false null hypothesis to which we
refer as power. Type I (II) FWE is defined as the probability of rejecting
(accepting) at least one true (false) null hypothesis. One minus type II FWE
reflects the statistical power of detecting all false null hypotheses. Tables 1
and 2 summarize the results for testing equal covariance and for testing equal
correlation, respectively.

3.2.1 Testing equal covariance

For the normal error distribution, both statistics preserve type I FWE very
well, regardless of the robustness level, the sample size or the dimension of
response. The eigenvalue-based statistic provides slightly better power than
its determinant-based counterpart. In particular, we would not recommend
the determinant-based statistic with b = 1.25 when the sample size is small
(nj = 20, j = 1, . . . , 5), as it has about 10-25% lower power than the other
three methods.

For the heavy-tailed distributions, the performance of the methods dif-
fers somewhat by sample size. As in the single testing scenario, for a small
sample size (nj = 20, j = 1, . . . , 5), a strong robustness level (b = 1.25) is
needed to control type I FWE for both statistics. The eigenvalue-based statis-
tic gives better power in general, but it still inflates the type I FWE for heavy-
tailed error distributions even with b = 1.25, especially for high-dimensional
responses. When sample size is large (nj = 60, j = 1, . . . , 5), the less robust
methods with b = 5.0 not only offer better power but also better control of the
type I FWE; this pattern is more evident for high-dimensional responses, e.g.,
for the t5 distribution at L = 5 and nj = 60. This phenomenon suggest that
the relationship between the robustness level and the type I FWE is not always
monotonic – a fact that is confirmed by further simulations (not given in the
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table) showing an increase in the type I FWE with b = 20, compared to b = 5,
for the t5 distribution at L = 5 and nj = 60. The non-robust H-I bootstrap
test gives type I FWEs of about 0.1 for the Laplace distribution and 0.2 for
the t5 distribution, confirming the usefulness of robustization. With a large
sample size, the eigenvalue-based statistic also attains slightly higher power
than the determinant-based statistic, except when the response dimension is
high and the robustness level is low.

3.2.2 Testing equal correlation

For all three error distributions, the two statistics have very similar perfor-
mance for bivariate responses, regardless of sample size, or for 5-dimensional
responses when the sample size is large. When the sample size is small and
the dimension of response is high, the eigenvalue-based statistic improves the
power by 10-20% as compared to the determinant-based statistic, holding the
robustness level constant. Different from the testing for covariance, inflation
of type I FWE is only seen for the t5 distribution in the setting of L = 5,
nj = 20 and b = 5, where the eigenvalue-based statistic has much more severe
inflation than the determinant-based one.
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Figure 1: Type I error and power for testing equal covariance matrices of 2-
dimensional responses between two groups by error distribution and sample
size. For each combination of error distribution and sample size, the four
columns from left to right are: (1) H-D bootstrap with the determinant-based
statistic (circles), (2) robust H-I bootstrap with the determinant-based statistic
(circles) (3) H-D bootstrap with the eigenvalue-based statistic (squares), and
(4) robust H-I bootstrap with the eigenvalue-based statistic (squares). For the
robust H-I tests, three values are used for the robustness control parameter b,
1.25, 2.5 and 5.0 represented by black, grey and white colors. Type I error is
examined in top panels with ρ1 = ρ2 = 0.5, and σ2

jl = 1, j = 1, 2, l = 1, 2.
Power in detecting difference in correlation components is examined in middle
panels with ρ1 = 0.0, ρ2 = 0.5. and σ2

jl = 1, j = 1, 2, l = 1, 2. Power
in detecting difference in variance components is examined in bottom panels
with ρ1 = ρ2 = 0.0, σ11 = σ12 = 1, σ2

21 = 2, and σ2
22 = 4.
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Figure 2: Type I error and power for testing equal covariance matrices of 5-
dimensional responses between two groups by error distribution and sample
size. Within each combination of error distribution and sample size, the four
columns from left to right are: (1) H-D bootstrap with the determinant-based
statistic (circles), (2) robust H-I bootstrap with the determinant-based statistic
(circles) (3) H-D bootstrap with the eigenvalue-based statistic (squares), and
(4) robust H-I bootstrap with the eigenvalue-based statistic (squares). For the
robust H-I tests, three values are used for the robustness control parameter b,
1.25, 2.5 and 5.0 represented by black, grey and white colors. Type I error is
examined in top panels with ρ1 = ρ2 = 0.5, and σ2

jl = 1, j = 1, 2, l = 1, . . . , 5.
Power in detecting difference in correlation components is examined in middle
panels with ρ1 = 0.0, ρ2 = 0.5. and σ2

jl = 1, j = 1, 2, l = 1, . . . , 5. Power
in detecting difference in variance components is examined in bottom panels
with ρ1 = ρ2 = 0.0, σ11 = . . . = σ5 = 1, and σ2

21 = . . . = σ2
25 = 2.
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Figure 3: Type I error and power for testing equal correlation matrices of
2-dimensional responses between two groups by error distribution and sample
size. For each combination of error distribution and sample size, the four
columns from left to right are: (1) H-D bootstrap with the determinant-based
statistic (circles), (2) robust H-I bootstrap with the determinant-based statistic
(circles) (3) H-D bootstrap with the eigenvalue-based statistic (squares), and
(4) robust H-I bootstrap with the eigenvalue-based statistic (squares). For the
robust H-I tests, three values are used for the robustness control parameter b,
1.25, 2.5 and 5.0 represented by black, grey and white colors. Type I error is
examined in upper panels with ρ1 = ρ2 = 0.5, and power is examined in lower
panels with ρ1 = 0.0 and ρ2 = 0.5. Variances are set to σ2

jl = 1, j = 1, 2,
l = 1, 2.
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Figure 4: Type I error and power for testing equal correlation matrices of
5-dimensional responses between two groups by error distribution and sample
size. Within each combination of error distribution and sample size, the four
columns from left to right are: (1) H-D bootstrap with the determinant-based
statistic (circles), (2) robust H-I bootstrap with the determinant-based statistic
(circles) (3) H-D bootstrap with the eigenvalue-based statistic (squares), and
(4) robust H-I bootstrap with the eigenvalue-based statistic (squares). For the
robust H-I tests, three values are used for the robustness control parameter b,
1.25, 2.5 and 5.0 represented by black, grey and white colors. Type I error is
examined in upper panels with ρ1 = ρ2 = 0.5, and power is examined in lower
panels with ρ1 = 0.0 and ρ2 = 0.5. Variances are set to σ2

jl = 1, j = 1, 2,
l = 1, . . . , 5.
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4 Application

The HIV-1 envelope glycoprotein, gp120, is responsible for viral entry and is
a candidate target for vaccine development. A phase III trial (VAX004) of a
HIV-1 vaccine (AIDSVAX B/B) was conducted in 5403 subjects at high risk
of sexual transmission in North America and the Netherlands from 1998 to
2002 (rgp120 HIV vaccine study group, 2005). From 368 subjects who were
infected during the study, post-infection clinical responses, viral RNA load
and CD4 cell counts, were measured every four months following the day of
diagnosis of infection, with additional measurements at two weeks, one month
and two months. The vaccine showed neither protective efficacy against HIV-
1 infection (rgp120 HIV vaccine study group, 2005), nor a significant effect
on post-infection viral load (Gilbert and Jin, 2010). We investigate whether
the correlation among clinical responses is associated with vaccine status and
viral genotype among all infected subjects, or with immune responses among
infected vaccinees.

Among 368 infected subjects, 239 have the clinical responses mea-
sured at both two weeks and four months after diagnosis of infection. We
use as bivariate responses the changes of log(viral load) (Y1) and log(CD4)
(Y2) within this time frame. Departure of the responses from normality is
shown in appendix B. Missing clinical responses at four months and later
are mainly due to initiation of antiretroviral treatment (ART) – a fact that
implies data are not missing at random because ART initiation depends on
clinical responses. Gilbert et al.(2005) found that pre-ART viral load and
CD4 count at one month after diagnosis are independent predictors of ART
initiation; and adjusted for the two predictors in the comparison of longi-
tudinal mean clinical responses between vaccine and control groups. Simi-
larly, we adjust for the two predictors in our mean response models to re-
duce the bias caused by missing data. Scatter plots of the clinical responses
over the covariates (not shown) indicate that it is reasonable to assume lin-
ear covariate functions. Let xjk1 and xjk2 be the two predictors for indi-
vidual k in group j. Let βml be the coefficient associated with predictor
m for response l, m = 1, 2 and l = 1, 2. Define β1 = (β11, β12)

τ and
β2 = (β21, β22)

τ . The linear coefficients are estimated by fitting the model
Y jk = µj + εjk +Xjk1β1 +Xjk2βk2, k = 1, . . . , nj, j = 1, . . . , J , using itera-

tively re-weighted least squares, where Xjkm = Diag
(
(xjkm, xjkm)

)
, m = 1, 2.

In all of the analyses described below, ANOVA was used to test for an effect
of the factors under investigation on mean changes in log(CD4) count and in
log(RNA), but no effects were detected (not shown).

Overall p-values for single testing and group-specific adjusted p-values
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for multiple testing are given in Table ?? for both the determinant-based
and eigenvalue-based statistics. We use the robust H-I bootstrap test for this
investigation with two levels of robustness, b = 1.25 and b = 5.

Correlation heterogeneity by vaccine status The sample correlations
suggest that vaccine reduced the negative correlation between viral load and
CD4 towards 0, but none of the tests show statistically significant effects. The
p-values differ in magnitude between the robustness levels.

Correlation heterogeneity by pre-infection immune response Using
samples collected prior to infection, two types of vaccine-induced immune re-
sponses were measured among infected vaccinees: the binding levels of neu-
tralizing antibodies, and the blocking levels of the CD4’s binding with vaccine
antigen mixture. While multiple measurements are available on a few subjects,
the last measurement before infection is used to characterize the immune re-
sponse level. The population of infected vaccinees is grouped by quartiles
of each immune response. Likely due to the high concordance between the
two immune responses (correlation coefficient is 0.81), the results are not very
different for these two analyses. Neither the binding levels of neutralizing an-
tibodies nor the CD4 blocking level seem to affect the pattern of correlation
among clinical responses.

Correlation heterogeneity by genotype The full genetic sequences of
the gp120 surface protein contain nearly 500 codons, necessitating dimension
reduction. We first dichotomize each codon into 0 (the most frequent AA) and
1 (otherwise). The dominant AA sequence, the reference in this analysis, and
its alignment with the GNE8 strain is shown in Appendix F. To further avoid
sparse genotypes, codons whose dominant AA has a frequency less than 30%
or greater than 70% are excluded. To attain reasonable statistical power from
a sample size of 186 subjects with both gp120 sequence and valid clinical re-
sponses, we only consider genotypic groups formed by two codons (site-double)
which have a sufficiently large number of observations. To choose a site-double
in which there is evidence of heterogeneity, we apply the asymptotic method
(Manly and Rayner, 1987) on each site-double to test the single hypothesis
in (8). We choose the site-double with the largest p-value from single testing
to perform multiple comparisons between genotypes of this site-double. Boot-
strap approaches can also be used in this screening procedure; they would, of
course, be much more computationally-demanding.
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Table 3: Data analysis: overall p-values for single testing and adjusted p-
values for multiple testing of equal correlation of changes in log(RNA) and
log(CD4) from two weeks to four months after diagnosis across vaccine as-
signment groups, pre-infection immune response levels among vaccinees, and
genotype groups formed by gp120 codons 360 and 426. Reference (0) and mu-
tant (1) amino acids at the two sites are given in the footnote, with the most
frequent mutant amino acid marked by ?.

Adjusted P-values
Grouping Sample Sample b = 1.25 b = 5.0
Factor Group Size Correlation Det. Eig. Det. Eig.
Vaccine Status

Placebo 72 -0.45
Vaccine 117 -0.34 0.13 0.16 0.27 0.29

Immune Response:
Antibody Binding

0–25% 23 -0.36
25–50% 23 -0.25 0.73 0.73 0.72 0.72
50–75% 37 -0.53 0.71 0.69 0.70 0.69
75–100% 34 -0.15 0.71 0.69 0.70 0.69
Overall 117 0.31 0.32 0.29 0.31

Immune Response:
CD4 Blocking

0 –25% 23 -0.39
25–50% 29 -0.50 0.83 0.83 0.83 0.82
50–75% 34 -0.04 0.37 0.38 0.36 0.37
75–100% 31 -0.50 0.83 0.83 0.83 0.82
Overall 117 0.14 0.17 0.12 0.15

Genotype:
Codons 360/426‡

0/0 56 -0.50
0/1 23 -0.66 0.57 0.58 0.53 0.55
1/0 73 -0.42 0.66 0.65 0.59 0.58
1/1 34 0.21 0.003 0.0018 0.0018 0.0006
Overall 186 0.0012 0.0006 0.001 0.0002

‡ Codon 360: 1={V}, 0={A, D, E, F, H, I?, K, N, Q, R, S};
Codon 426: 1={M}, 0={G, K, L, R?, T, V }

Among all possible site-doubles, the asymptotic test gives the smallest
p-value for the pair 360/426, and this site-double is thus chosen to form the
viral genotype groups for multiple testing. Codon 360 is near a segment of
codons that was found to strongly activate human complement system and
thereby enhance disease progression (Susal et al., 1996, codon 360 was num-
bered 363 in their alignment). Codon 426 is known to affect CD4 binding
(Kwong et al., 1998), and it appears quite often in the site-doubles we identi-
fied with small p-values. The sample correlation for the group of subjects with
the genotype with mutation at the two sites is unusual in that it is positive.
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The groupwise difference for this codon pair attains p-values of 0.0012 or less,
and the adjusted p-values specific to this mutant group are 0.003 or less, for
both test statistics and robustness levels. As we did not adjust for the multi-
ple tests from which we identified this codon pair, the results must be seen as
suggestive only; our goal was to illustrate the use of our method.

5 Discussion

We investigate a few resampling-based methods for testing homogeneity in
covariance or correlation matrices in both single- and multiple-testing settings.
The H-D and nonrobust H-I bootstrap approaches using the determinant-
based statistic for testing equal covariance are essentially equivalent to those
proposed by Zhang and Boos (1992; 1993), and our simulation results are
similar to theirs. Zhu et al.used a slightly different H-D bootstrap, which fixes

the scaling matrix V̂
1/2

at the observed value. We were not able to replicate
their simulation results, and therefore no comparison was made between our
methods and theirs.

For single testing, the ability of the H-I bootstrap to control type I error
is greatly improved by the use of robust sample moments and residuals. The
H-I bootstrap with an appropriate robustness level provides in general com-
parable and sometimes superior performance as compared to the H-D boot-
strap in our simulation settings. Robustization of the H-D bootstrap leads
to overconservative testing and is therefore not further investigated. More
importantly, the robust H-I bootstrap is much easier to implement for mul-
tiple testing than the H-D bootstrap, because the residuals are exchangeable
across groups under our assumptions, regardless of which hypotheses are true
or false. A general guideline for the use of the robust H-I bootstrap is to choose
a strong robustness level, or equivalently a small value of b, when the sample
size is small and the error distribution is heavy-tailed, and a weak robustness
level otherwise. Applying the robust H-I bootstrap test to the data from an
HIV vaccine clinical trial, the results suggest that the correlation pattern be-
tween short-term changes in HIV viral load and CD4 may vary across viral
genotype.

The eigenvalue-based statistic generally provides higher statistical power
than the determinant-based statistic in detecting difference in correlation, but
such superiority is small, except when the response dimension is high and the
sample size is small, and often comes at the price of inflated type I error. We
found in additional simulation studies that when the number of groups (J) is
2, the eigenvalue-based statistic, TV e, is equivalent in performance to a more
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intuitive statistic

T ?V e =
2

J(J − 1)

J−1∑
j=1

J∑
l=j+1

∣∣∣Λ(Û−1jl V̂ jÛ
−1
jl

τ)
− Λ

(
Û
−1
jl V̂ lÛ

−1
jl

τ)∣∣∣ ,
where Û

−1
jl is the inverse of the lower-triangle Cholesky decomposition of the

joint sample covariance matrix of groups j and l, that is,

V̂ jl =
(
(nj − 1)V̂ j + (nl − 1)V̂ l

)
/(nj + nl − 2).

This statistic provides a distance measure between eigenvalues of the matrices

V̂ j and V̂ l after they are standardized by Û
−1
jl . More interestingly, empirical

evaluation shows that the two standardized matrices share the same eigenvec-
tors and differ only in eigenvalues. In fact, it seems that the inverse of the
cholesky decomposition of any V̂ jl = wV̂ j + (1 − w)V̂ l with 0 < w < 1 can
rotate the samples of the two groups into a space expanded by the same eigen-
vectors; therefore the new sample covariance matrices only differ in eigenvalues.
Such rotation can also be attained using spectral decomposition. When J > 2,
TV e and T ?V e are not equivalent, but their performance is similar as revealed
by additional simulations (not shown).

For the H-I bootstrap test, our choice of the robustness level control
parameter b is based on studies in Campbell (1980) and our simulation study;
this choice may not be appropriate for error distributions not discussed here.
In additional simulations with a relatively large number of groups and small or
moderate sample size, even a small value of b may not be adequate to control
type I error, regardless of test statistic. For example, to test the hypothesis (2)
with (L = 2, J = 8, nj = 40, b = 1.25) using the determinant-based statistic,
the type I errors are 0.07 for the normal distribution and 0.11 for the t5 distri-
bution. The reason may be that the probability of misclassification of regular
observations and of outliers among resampled standardized residuals increases
with the number of groups, as these residuals are imperfect estimates of the
errors, especially with smaller sample sizes. To correct this inflation, one can
use a lower robustness level for the calculation of the observed statistics and
a higher robustness level for the resampled statistic. In this example, if we
use b = 5 and b = 1.25 for the observed and resampled statistics respectively,
the type I errors drop to 0.053 for the normal distribution and 0.061 for the t5
distribution, and the statistical power is higher than the H-D bootstrap. How
to find the optimal differential robustness levels is worth future investigation.

The problem of robust estimation for location and scale is more or less
equivalent to that of detecting outliers; therefore, principle component anal-
ysis and other search algorithms over appropriately chosen directions in the
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sample space may be also used to improve the estimation, especially for high-
dimensional responses (Campbell, 1980; Pena and Prieto, 2001; Maronna and
Zamar, 2002). These enhanced covariance estimates can be used to standardize
residuals. However, the use of robust test statistic in combination with these
methods requires scrutiny to assure that affine equivariance holds; otherwise,
the bootstrap test may not be valid.

We have assumed that L � minj nj, or in the asymptotic sense, L =

o(n), for the purposes of (1) η̂jk
P→ ηjk as n → ∞ and nj/n → ρj for

0 < ρj < 1, j = 1, . . . , J , and (2) the sample covariance or correlation
matrices are invertable and thus the test statistics are continuous functions
of the ηjk’s under the null. These conditions are needed, together with the
moment assumptions (a)–(d), for the test statistics as functions of the ηjk’s
and those as functions of bootstrap samples of η̂jk’s to converge to the same
distribution. When L � minj nj does not hold, the sample covariance may
be ill-conditioned and not invertable. A possible remedy is to use shrinkage
estimators, for example, the optimal linear shrinkage estimator proposed by
Ledoit and Wolf (2004). In our case, the optimal linear coefficients for weight-

ing the sample covariance and the identity matrix may be estimated using V̂
for the H-D bootstrap or V̂j for the H-I bootstrap, and be treated as fixed
during the resampling. This linear shrinkage estimator is a consistent estima-
tor for covariance even if L = O(n). Further study is needed to evaluate the
performance of this practice.

How best to handle missing measurements also warrants consideration,
because complete-case analysis may be biased unless data are missing com-
pletely at random. A possible solution is to weight each completely observed
individual by the inverse probability of observation assuming data are missing
at random. This assumption implies that, conditioning on observed quanti-
ties, the missing mechanism does not depend on the missing values (Tsiatis,

2006). In the calculation of summary statistics, such as R̂j and V̂ j, observed
individuals would be weighted using inverse probabilities given by an appro-
priate regression model. Further research is required to establish whether the
weights should also be used in resampling standardized residuals. Multiple
imputation (Little and Rubin, 2002) may also be used, probably at the price
of substantial increase in computational time.
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6 Supplementary Materials

6.1 Appendix A: Robust estimation for covariance

We follow the M-estimation procedure in Campbell (1980) for robust esti-
maiton of the covariance matrix. The procedure is conducted for each group
independently.

1. Set a = 2, b = 1.25 and ωjk = 1, k = 1, . . . , nj.
2. Let ε̈jk = Y jk − 1∑

l ωjl

∑
l ωjl

(
Y jl

)
.

3. Let V̈ j = 1∑
k ω

2
jk−1

∑
k ω

2
jkε̈jkε̈

τ
jk.

4. Let d0 =
√
L + a/

√
2 and dk = {ε̈τjkV̈

−1
j ε̈jk}1/2. The weights are recal-

culated with

ωjk =

{
1, if dk ≤ d0,
dk
d0

exp
{
−1

2

(
dk−d0
b

)2}
, otherwise,

5. Repeat steps 2-4 till convergence in V̈ j.
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6.2 Appendix B: Departure of clinical responses from
normality in the data analysis

Figure 5: Histograms of the changes in (a) log10(Viral RNA) and (b) ln(CD4)
from week 2 to month four. The solid and dashed curves show the normal
densities with the mean and variance estimated from the data with and without
10% winsorization respectively.
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