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Instruments and Bounds for Causal Effects
under the Monotonic Selection Assumption

Masataka Taguri and Yasutaka Chiba

Abstract
Noncompliance with assigned treatment is an important problem of randomized clinical trials.

In this situation, the structural mean model (SMM) approach focuses on the average treatment
effect among patients actually treated (ATT). In contrast, the principal stratification (PS) approach
addresses the effect on a certain subgroup defined by latent compliance behavior. While these
approaches target different causal effects, the estimators have the same form as the classical
instrumental variable estimator, under the assumption of no effect modification (NEM) and
monotonic selection. In this article, we clarify the relation between SMM and PS under the
monotonic selection assumption. Specifically, we translate the NEM assumption for the SMM
estimator into the words of the PS approach. Then, we propose a new bound for the ATT by
making a possibly more plausible assumption than the NEM assumption based on the PS approach.
Furthermore, we extend these results to the average treatment effect for the entire population.
The proposed bounds are illustrated with applications to a real clinical trial data. Although our
assumption cannot be empirically verified, the proposed bounds can be considerably tighter than
those previously proposed.
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1. INTRODUCTION 

In randomized clinical trials, researchers are often interested in estimating the 
causal effect of a treatment on some outcome. However, patients often fail to 
adhere to their assigned treatment and select other trial treatments. Such 
noncompliance to assigned treatments is a common feature of clinical trials. 
Several approaches to estimate the causal treatment effects under the presence of 
noncompliance have been proposed in the causal inference literature (e.g., Sato, 
2006; Bellamy et al., 2007; Pearl, 2009; Chiba, 2011). The average treatment 
effect is often discussed on the entire study population (average treatment effect 
for the entire population; ATE); researchers would also be interested in the 
average treatment effect on the patients actually treated (average treatment effect 
among the treated; ATT). These are estimated using the structural mean model 
(SMM) (Robins, 1989, 1994). The estimator of the ATT (i.e., the SMM estimator) 
has the same form as the classical instrumental variable (IV) estimator under the 
assumption of no effect modification (NEM). Moreover, the ATE has the same 
form as the IV estimator under somewhat stronger NEM assumptions than that for 
the SMM estimator (Robins, 1989). 

Recently, Clarke and Windmeijer (2010) investigated the SMM estimator, 
in which the NEM assumption was highlighted. They showed that the NEM 
assumption depends crucially on the unknown causal model that generated the 
data by using the nonparametric structural equation model (Pearl, 2009). In this 
article, we discuss the NEM assumption in the framework of the principal 
stratification (PS) approach (Frangakis and Rubin, 2002; Rubin, 2004). Such 
discussions have not been conducted in Clarke and Windmeijer (2010). First, we 
translate the NEM assumption for the SMM estimator into the words of the PS 
approach. Second, we propose new bounds for the ATT by making a possibly 
more plausible assumption than the NEM assumption based on the PS approach. 
Finally, we extend these results to the ATE. 

To achieve these objectives, this article is organized as follows. In Section 
2, we present the framework used in this article. In Section 3, the NEM 
assumptions for the ATT and ATE are translated into the words of the PS 
approach. In addition, new bounds for the ATT and ATE are proposed with new 
assumptions based on the PS approach. Although our assumption cannot be 
empirically verified, the proposed bounds can be considerably tighter than those 
previously proposed. In Section 4, the proposed bounds are illustrated using a 
classic randomized trial. Section 5 concludes with a discussion. 

1

Taguri and Chiba: Instruments and Bounds for Causal Effects under Monotonicity

Published by De Gruyter, 2012



2. FRAMEWORK 

We present the notations and assumptions used through this article in Section 2.1 
and review the PS approach in Section 2.2. 

2.1. Notation and assumptions 

We employed the potential outcomes or the counterfactual framework (Rubin, 
1974, 1978, 1990). Let Z denote the randomization-assigned indicator, with Z = 1 
and Z = 0 indicating the test treatment and the control treatment, respectively. Let 
X denote the corresponding indicator for the treatment actually received. Here, X 
= 1 if the test treatment was received, and X = 0 if the control treatment was 
received. Y denotes the observed outcome. We assume that observed data (Yi, Xi, 
Zi) (i = 1, …, n) are n independent and identically distributed random vectors. 

In contrast to the observed outcome variable Y, we define Y(x, z) to be the 
potential outcome if the treatment assigned and received (Z, X) had been set to the 
values (z, x). Similarly, let X(z) denote the potential treatment if Z was set to z. We 
make the following four assumptions: 

(i) The stable unit treatment value assumption (Rubin, 1990) or the 
no-interference assumption (Cole and Hernán, 2008) states that the 
potential outcome Y(x, z) for an individual does not depend on the 
treatment assigned or the treatment actually received by any other patient. 

(ii) Exclusion restriction Y (x, z) = Y (x) constrains the effect of the treatment 
assignment to the study outcome only through its effect on the treatment 
choice. 

(iii) Consistency assumption Y(X) = Y, i.e., the value of Y that would have 
been observed if X had been set to its actual value is equal to the actually 
observed value of Y. Therefore, the only potential outcome for an 
individual being observed is the potential outcome Y(x), that is, the value 
of Y that would have been observed if X was set to its actual value. 
Similarly, X(Z) = X. 

(iv) Independence assumption, which states that Z is independent of the 
potential treatment X(z) and the potential outcome Y(x) (Holland, 1986). 
This assures that expectations of the potential outcomes are constant 
across the sub-populations of subjects assigned to different treatment 
arms; E[Y(x) | Z = 1] = E[Y(x) | Z = 0]. Similarly, E[X(z) | Z = 1] = E[X(z) | 
Z = 0]. 
In addition to these four assumptions that are made in the causal inference 

literature, we require the monotonic selection assumption, that is, X(1) ≥ X(0) for 
all individuals. Sometimes, this is called “monotonicity assumption.” 
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2.2. Principal stratification 

We applied the principal stratification approach (Frangakis and Rubin, 2002; 
Rubin, 2004). This approach considers four types of participants that define four 
principal strata. 
‐ Always-takers: individuals who would receive the test treatment regardless of 

the assigned treatment arm, that is, X(1) = X(0) = 1. 
‐ Never-takers: individuals who would receive the control treatment regardless 

of the assigned treatment arm, that is, X(1) = X(0) = 0. 
‐ Compliers: individuals who would receive the test treatment if assigned to the 

test treatment arm, but would receive the control treatment if assigned to the 
control arm, that is, X(1) = 1 and X(0) = 0. 

‐ Defiers: individuals who would receive the control treatment if assigned to 
the test treatment arm, but would receive the test treatment if assigned to the 
control arm, that is, X(1) = 0 and X(0) = 1. 

If we use the notation πst ≡ Pr(X(1) = s, X(0) = t) (≥ 0), then 
 

1
1

0

1

0


 s t

st , 

 
and the relationships between πst and pz ≡ Pr(X = 1 | Z = z) are 

 
π10 + π11 = p1, π00 + π01 = 1 – p1, π11 + π01 = p0, and π10 + π00 = 1 – p0, 
 

respectively, because Pr(X(z) = x) = Pr(X(z) = x | Z = z) = Pr(X = x | Z = z). 
E[Y(x) | X = 1, Z = 1] can be expressed by the weighted sum of E[Y(x) | 

X(1) = 1, X(0) = 0] and E[Y(x) | X(1) = X(0) = 1] because the subgroup with Z = 1 
and X = 1 includes compliers and always-takers but does not include never-takers 
or defiers. Here, the weights are the proportions of compliers and always-takers in 
these two strata. Therefore, E[Y(x) | X = 1, Z = 1] can be expressed as 
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Likewise, E[Y(x) | X = x, Z = z] can be expressed as the weighted sum of E[Y(x) | 
X(1) = s, X(0) = t] as follows: 
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Here, we apply the monotonic selection assumption that X(1) ≥ X(0) for all 

individuals. This assumption implies that no defier exists, that is, π01 = 0 because 
X(1) = 0 and X(0) = 1 cannot hold simultaneously under X(1) ≥ X(0). Therefore, 
π00 = 1 – p1, π11 = p0 and π10 = p1 – p0, and the above four equations can be 
re-written as follows: 
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where it is assumed that π10 = p1 – p0 > 0, that is, at least a complier exists. Let us 
use Exz to denote E[Y | X = x, Z = z], and zE  to denote E[Y | Z = z]. Equations (1) 
and (2) with x = 1 yield 

 
E[Y(1) | X(1) = X(0) = 1] = E10, (5) 
 
E[Y(1) | X(1) = 1, X(0) = 0] = (p1E11 – p0E10)/(p1 – p0), (6) 
 

and equations (3) and (4) with x = 0 yield 
 
E[Y(0) | X(1) = X(0) = 0] = E01, (7) 
 
E[Y(0) | X(1) = 1, X(0) = 0] = {(1 – p0)E00 – (1 – p1)E01}/(p1 – p0). (8) 
 

Thus, the difference between equations (6) and (8) yields 
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δ10 = (E･1 – E･0)/(p1 – p0), 
 

where δst ≡ E[Y(1) – Y(0) | X(1) = s, X(0) = t]. This equation means that the 
average treatment effect for compliers (complier-specific average treatment effect; 
CATE) is identified and equal to the IV estimand under the monotonic selection 
assumption (Angrist, Imbens, and Rubin, 1996a). Similarly, the ratio of equation 
(6) to (8) yields the CATE on the multiplicative scale. However, the ATT and 
ATE are not generally identified even under the monotonic selection assumption. 

3. AVERAGE CAUSAL EFFECTS UNDER THE PRINCIPAL STRATIFICATION 

APPROACH 

We translate the ATT and ATE into the words of the PS approach, and propose 
new bounds for the ATT and ATE by making a possibly more plausible 
assumption based on the PS approach. In this section, we discuss the difference 
measures. These are extended to the ratio measures in Appendix 1. The ATT is 
discussed in Section 3.1, and the results are extended to the ATE in Section 3.2. 

3.1. Average treatment effect among the treated 

The ATT can be formalized using the following nonparametric (saturated) 
additive SMM: 

 
E[Y | X, Z] – E[Y(0) | X, Z] = (ψ0 + ψ1Z)X, (9) 
 

where ψ0 and ψ1 are unknown causal parameters. ψ0 = E[Y(1) – Y(0) | X = 1, Z = 
0] and ψ0 + ψ1 = E[Y(1) – Y(0) | X = 1, Z = 1] are the ATT with Z = 0 and Z = 1, 
respectively. It is clear that neither of the SMM parameters in (9) can be identified 
because we have only one moment restriction with two unknown parameters. 
However, ψ0 is identified and equal to the IV estimand under the following NEM 
assumption (Hernán and Robins, 2006; Clarke and Windmeijer, 2010):  
 

ASSUMPTION 1. E[Y(1) – Y(0) | X = 1, Z = 0] = E[Y(1) – Y(0) | X = 1, Z = 1]; 
that is, ψ1 = 0. 
 

We can derive the following proposition by using the words of the PS 
approach: 
 

PROPOSITION 1. Suppose that the monotonic selection assumption holds. Then, 
Assumption 1 holds if and only if δ10 = δ11 holds. 
 

PROOF. Substituting equations (2) and (1) into equation (9) yields 
 
ψ0 = δ11, 
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ψ0 + ψ1 = {(p1 – p0)δ10 + p0δ11}/p1. 
 

Suppose that Assumption 1, that is, ψ1 = 0, holds. Then, the difference between 
these two equations yields (p1 – p0)(δ10 – δ11) = 0. Because p1 – p0 > 0 by 
assumption, δ10 = δ11. Conversely, suppose that δ10 = δ11 = δ. Then, the difference 
between these two equations yields ψ1 = {(p1 – p0)δ + p0δ}/p1 – δ = 0.     □ 
 

Proposition 1 implies that, under the monotonic selection assumption, 
Assumption 1 is equivalent to common treatment effects for compliers and 
always-takers, and the additive SMM derives the IV estimator under δ10 = δ11. 
This result was implied by Angrist, Imbens, and Rubin (1996b) in their reply to 
the comments of Heckman (1996). Conversely, if δ10 ≠ δ11, the IV estimator is a 
biased estimator of the ATTs with Z = z. We note that δ10 = δ11 = δ01 

 
ψ1 = 0 

holds without the monotonic selection assumption; however, the converse does 
not hold. 

It is obvious that the upper bounds on ψ0 and ψ0 + ψ1 are δ10 if δ10 ≥ δ11 
from the proof of Proposition 1. However, it would be difficult to speculate that 
δ10 is larger or smaller than δ11. Thus, we propose an alternative assumption to 
derive new bounds for the ATT. 
 

ASSUMPTION 2. Either (a) E[Y(x) | X(1) = X(0) = 1] ≥ E[Y(x) | X(1) = 1, X(0) = 
0] or (b) E[Y(x) | X(1) = X(0) = 1] ≤ E[Y(x) | X(1) = 1, X(0) = 0] holds for x = 0, 1. 
 

Under the monotonic selection assumption, E[Y(1) | X(1) = 1, X(0) = 0] 
and E[Y(1) | X(1) = X(0) = 1] can be estimated by equations (6) and (5), 
respectively. Thus, Assumption 2(a) or 2(b) with x = 1 can be evaluated from the 
observed data based on whether the value of E10 – E11 is positive or negative 
because 

 
E[Y(1) | X(1) = X(0) = 1] – E[Y(1) | X(1) = 1, X(0) = 0] 
= E10 – (p1E11 – p0E10)/(p1 – p0) 
= p1(E10 – E11)/(p1 – p0). 
 

PROPOSITION 2. Suppose that the monotonic selection assumption holds. Then, 
under Assumption 2(a), the upper bounds for ψ0 = E[Y(1) – Y(0) | X = 1, Z = 0] 
and ψ0 + ψ1 = E[Y(1) – Y(0) | X = 1, Z = 1] are 

 

0 0
B  , 

 

1000110 )( ppEE B   , 

 

6

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 24



where )(})1({ 0100111010 ppEEpEpB   . Moreover, the upper bound for 

ATT is 
 

)1Pr(})1Pr(){(]1|)0()1([E 0001   XpZEEXYY B . (10) 
 

Under Assumption 2(b), these results apply with the inequality signs reversed. 
 

PROOF. As shown in the proof of Proposition 1, ψ0 = δ11 under the monotonic 
selection assumption. Applying Assumption 2(a) to this equation yields 
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The inequality holds by Assumption 2(a), and the third equation holds from 
equations (5) and (8). Likewise, the upper bound of ψ0 + ψ1 = {(p1 – p0)δ10 + 
p0δ11}/p1 becomes 

 

1
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Furthermore, from these results, the upper bound of E[Y(1) – Y(0) | X = 1] 
becomes 

 
E[ (1) (0) | 1]Y Y X   

1

0

[ (1) (0) | 1, ]Pr( | 1)
z

E Y Y X Z z Z z X
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

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X

pZEE B
. 

 
Under Assumption 2(b), these inequalities hold with the inequality signs reversed. 
□ 
 

We note that E[Y(1) – Y(0) | X = 1] is also equal to the IV estimand under 
Assumption 1. This is obvious because E[Y(1) – Y(0) | X = 1] = ψ0 when ψ1 = 0 
from equation (11). 

3.2. Average treatment effect on the entire population 

We extend Propositions 1 and 2 in Section 3.1 to the ATE. The ATE, E[Y(1) – 
Y(0)], is equal to the IV estimand under the following somewhat stronger 
assumption than Assumption 1 (Robins, 1994): 
 

ASSUMPTION 3. E[Y(1) – Y(0) | X = x, Z = 0] = E[Y(1) – Y(0) | X = x, Z = 1] for 
x = 0, 1. 
 

For x = 1, Assumption 3 is a restatement of Assumption 1. We note that 
although Heckman (1997) used the alternative assumption E[Y(1) – Y(0) | X = 0, Z 
= z] = E[Y(1) – Y(0) | X = 1, Z = z] for z = 0, 1 instead of Assumption 3, this 
assumption is equivalent to Assumption 3 (Hernán and Robins, 2006). We can 
derive the following proposition as an extension of Proposition 1. 
 

PROPOSITION 3. Suppose that the monotonic selection assumption holds. Then, 
Assumption 3 holds if and only if δ10 = δ11 = δ00 holds. 
 

PROOF. The proof of E[Y(1) – Y(0) | X = 1, Z = 0] = E[Y(1) – Y(0) | X = 1, Z = 1] 


 
δ10 = δ11 follows the proof of Proposition 1. The proof of E[Y(1) – Y(0) | X = 

0, Z = 0] = E[Y(1) – Y(0) | X = 0, Z = 1]
 
  δ10 = δ00 is also similar to that of 

Proposition 1. From equations (3) and (4), we have 
 
E[Y(1) – Y(0) | X = 0, Z = 1] = δ00, 
 
E[Y(1) – Y(0) | X = 0, Z = 0] = {(1 – p1)δ00 + (p1 – p0)δ10}/(1 – p0). 
 

Assume that E[Y(1) – Y(0) | X = 0, Z = 0] = E[Y(1) – Y(0) | X = 0, Z = 1] holds. 
Then, the difference between the above two equations yields (p1 – p0)(δ10 – δ00) = 
0. Because p1 – p0 > 0 by assumption, δ10 = δ00. Conversely, assume that δ10 = δ00 
= δ. Then, the difference between the two abovementioned equations yields  

 
E[Y(1) – Y(0) | X = 0, Z = 1] – E[Y(1) – Y(0) | X = 0, Z = 0] 
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= {(1 – p1)δ + (p1 – p0)δ}/(1 – p0) – δ 
= 0.  
 

Because Assumption 3 is that E[Y(1) – Y(0) | X = x, Z = 0] = E[Y(1) – Y(0) | X = x, 
Z = 1] holds for both x = 0 and 1, the proof of Proposition 1 and the information 
given above complete the proof of Proposition 3.     □ 
 

We note that, similar to Proposition 1, δ10 = δ11 = δ00 = δ01 implies that 
Assumption 3 holds without the monotonic selection assumption; however, the 
converse does not hold. 

In order to derive the new bound for the ATE, we extend Assumption 2 as 
follows: 
 

ASSUMPTION 4. Either (a) E[Y(x) | X(1) = X(0) = 1] ≥ E[Y(x) | X(1) = 1, X(0) = 
0] ≥ E[Y(x) | X(1) = X(0) = 0] or (b) E[Y(x) | X(1) = X(0) = 1] ≤ E[Y(x) | X(1) = 1, 
X(0) = 0] ≤ E[Y(x) | X(1) = X(0) = 0] holds for x = 0, 1. 
 

As mentioned in Section 3.1, whether E[Y(1) | X(1) = X(0) = 1] – E[Y(1) | 
X(1) = 1, X(0) = 0] is positive or negative can be evaluated from the observed data 
according to whether the value of E10 – E11 is positive or negative. Likewise, 
whether E[Y(0) | X(1) = 1, X(0) = 0] – E[Y(0) | X(1) = X(0) = 0] is positive or 
negative can be evaluated from the observed data according to whether the value 
of E00 – E01 is positive or negative because from equations (7) and (8), we obtain 

 
E[Y(0) | X(1) = 1, X(0) = 0] – E[Y(0) | X(1) = X(0) = 0] 
= {(1 – p0)E00 – (1 – p1)E01}/( p1 – p0) – E01 
= (1 – p0)(E00 – E01)/( p1 – p0). 
 

Thus, we can partly evaluate Assumption 4(a) or 4(b) with x = 0, 1 from the 
observed data. If both E10 – E11 and E00 – E01 take positive values, then 
Assumption 4(a) could be assumed. If both E10 – E11 and E00 – E01 take negative 
values, then Assumption 4(b) could be assumed. If one of them takes a positive 
value and the other is a negative value, Assumption 4 cannot be assumed. 
 

PROPOSITION 4. Suppose that the monotonic selection assumption holds. Then, 
under Assumption 4(a), the upper bound for the ATE is 

 
E[Y(1) – Y(0)] ≤ {(1 – p0)p1(E11 – E00) – p0(1 – p1)(E10 – E01)}/(p1 – p0). (12) 

 
Under Assumption 4(b), the result applies with the inequality sign reversed. 
 

PROOF. Because π01 = 0 under the monotonic selection assumption, we have 
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E[Y(1) – Y(0)] = π00δ00 + π10δ10 + π11δ11. 
 

Applying Assumption 4(a) to this equation yields 
 
      E[Y(1) – Y(0)] 

≤ (1 – p1){E[Y(1) | X(1) = 1, X(0) = 0] – E[Y(0) | X(1) = X(0) = 0]} 
+ (p1 – p0)E[Y(1) – Y(0) | X(1)= 1, X(0) = 0] 
+ p0{E[Y(1) | X(1) = X(0) = 1] – E[Y(0) | X(1) = 1, X(0) = 0]} 

= (1 – p0)E[Y(1) | X(1) = 1, X(0) = 0] + p0E[Y(1) | X(1) = X(0) = 1] 
– p1E[Y(0) | X(1) = 1, X(0) = 0] – (1 – p1)E[Y(0) | X(1) = X(0) = 0]. 

 

After substituting equations (5)(8) into this inequality, some algebra yields 
inequality (12). The lower bound under Assumption 4(b) holds with the inequality 
signs reversed.     □ 
 

In practice, if one is willing to use our proposed bounds (Proposition 2 or 
4), one should first consider the plausibility of the monotonic selection 
assumption and Assumption 2 or 4 based on the subject matter grounds. As noted 
above, we can partly evaluate Assumption 2 or 4 from the observed data by 
assessing the sign of E10 – E11 and E00 – E01. Then, our bounds would be used in 
conjunction with those proposed before (e.g., the monotone treatment response 
(MTR) assumption presented in the next section) to obtain narrower bounds. 

4. ILLUSTRATION 

For illustration, bounds proposed in Section 3 are applied to data from the 
Multiple Risk Factor Intervention Trial (MRFIT) (MRFIT Research Group, 
1982). The MRFIT was a large field trial to test the effect of a multifactorial 
intervention program on mortality from coronary heart disease (CHD) in 
middle-aged men with sufficiently high risk-levels resulting from cigarette 
smoking, high serum cholesterol, and high blood pressure. Intervention consisted 
of hypertension medication, smoking cessation counseling, and dietary advice on 
ways of reducing blood cholesterol. All subjects were randomly assigned to the 
intervention program or the control group. 

For this illustration, attention is restricted to the effects of cessation of 
cigarette smoking. This restriction followed Mark and Robins (1993) and was 
applied because of the paucity of differences achieved for the other risk factors. 
Table 1 summarizes the incidence of subject mortality due to CHD during the 
7-year follow-up period based on the assigned treatment and the actual subject 
smoking status one year after the study entry. Z represents the assigned group (Z = 
1 for the test group and Z = 0 for the control group); X is the actual smoking status 
one year after entry (X = 1 for smoking cessation and X = 0 for continued 

10

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 24



smoking); and Y is the incidence of CHD deaths (Y = 1 for dead and Y = 0 for 
alive). The usual IV analysis yielded a risk difference of –0.82 × 10–2 (95% 
confidence interval [CI]: –4.59 × 10–2, 2.95 × 10–2) and a risk ratio of 0.58 (95% 
CI: 0.07, 4.82). The variance formulas are found in Greenland (2000) and Chiba 
(2010). 

Table 1. The status of cigarette smoking and the incidence of mortality due to CHD in the MRFIT 
during a 7-year follow-up period. 

Group 
No. of 
Subjects 

CHD 
deaths 

Smoking status 
at 1 year 

No. of 
subjects 

CHD 
deaths 

Test 3833  69 Quit  991 11 

   Not quit 2842 58 

Control 3830  74 Quit  374  4 

   Not quit 3456 70 

Totals 7663 143    

 
However, the IV estimate would be biased because no one can assure that 

δ11 = δ10, that is, the average treatment effects for always-takers (who would quit 
smoking regardless of the assigned group) is equal to that for the compliers (who 
would quit smoking if assigned to the test group and would continue smoking if 
assigned to the control group). Therefore, we yielded bounds on the ATT and 
ATE under Assumption 4 (or under Assumption 2 for the ATT). Here, we note 
that in this trial, defiers are participants who would continue smoking if assigned 
to the test group and would quit smoking if assigned to the control group; such 
participants would not exist, although this cannot be confirmed from the observed 
data. Never-takers are participants who would continue smoking regardless of the 
assigned group. We further note that whether Assumption 4 (or 2) holds cannot 
also be confirmed from the observed data. Thus, it is important to discuss its 
plausibility. It seems likely that the mortality proportion for always-takers tended 
to be lower than that for never-takers and compliers because always-takers would 
be health-conscious individuals in comparison with never-takers and compliers. 
Conversely, the mortality proportion for never-takers would tend to be higher than 
that for always-takers and compliers. This observation shows that Assumption 
4(b) is reasonable. The data yielded E10 – E11 = –0.04 × 10–2 < 0 and E00 – E01 = 
–0.02 × 10–2 < 0. 

In order to assess the extent to which the bounds are narrowed by posing 
the assumptions, we compare the proposed bounds with those presented in the 
past literature. We here consider 3 types of bounds. First, when the outcome Y has 
finite range ([0,1] in this example), we can draw bounds without any assumptions 
other than the basic assumptions (i)-(iv) in Section 2.1. For the ATT, bounds are 
derived by substitution of 0 or 1 for E[Y(0) | X = 1]. Because observed data 
contains no information about E[Y(0) | X = 1], the width of bounds for E[Y(1) – 
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Y(0) | X = 1] is always 1. For the ATE, we can use bounds proposed by Balke and 
Pearl (1997) and those by Robins (1989) and Manski (1990). In Appendix 2, we 
show that the proposed bounds improve the Robins-Manski bounds under the 
monotonic selection assumption. Although the Balke-Pearl bounds can be 
narrower than the Robins-Manski bounds in some situations, they gave the same 
results in our application. 

Second, with bounded outcome, we could improve nonparametric bounds 
described above by posing the monotonic selection assumption. For binary 
outcomes, the bounds for the ATT are as follows:  

 
 0 00 1 01 0(1 ) (1 ) Pr( 1)

E[ | 1]
Pr( 1)

p E p E Z p
Y X

X

    
 



             
E[ (1) (0) | 1]Y Y X    

 0 00 1 01(1 ) (1 ) Pr( 1)
E[ | 1] .

Pr( 1)

p E p E Z
Y X

X

   
  


 (13) 

 
The derivation is given in Appendix 3. For the ATE, the monotonic selection 
assumption does not improve the Balke-Pearl bounds, as noted by Robins and 
Greenland (1996) and Angrist, Imbens, and Rubin (1996b). 

Third, we could assume further unverifiable assumptions based on the 
subject-matter considerations. We yielded the bounds under the assumptions of 
(a) the monotone treatment response (MTR), Y(1) ≤ Y(0) for all participants and 
(b) the monotone treatment selection (MTS), E[Y(x) | X = 1] ≤ E[Y(x) | X = 0] and 
E[Y(x) | X = 1, Z = z] ≤ E[Y(x) | X = 0, Z = z] for x = 0, 1 and z = 0, 1 (Manski, 
1997; Manski and Pepper, 2000; Chiba, 2011). See Chiba (2011) for the 
discussion of the plausibility of these assumptions on the MRFIT data. Under 
these assumptions, bounds for the ATT and ATE are as follows without the 
monotonic selection assumption: 

 
E[Y | X = 1] – E[Y | X = 0] ≤ E[Y(1) – Y(0) | X = 1] ≤ 0, 
max{E11, E10} – min{E01, E00}  
≤ E[Y(1) – Y(0)] ≤ min{E･1 – E･0, E･0 – E･1}, 
 

where the lower bounds are derived under the MTS and the upper bounds are 
derived under the MTR (Chiba, 2011). With the monotonic selection assumption, 
the MTR improves the upper bound for the ATT as follows: 
 

)1Pr(

)1Pr(})1()1{(
]1|[E]1|)0()1([E 100011000





X

EpZEpEp
XYXYY , (14) 
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while it may not improve the upper bound for the ATE. The derivation of 
inequality (14) is given in Appendix 4. The upper bound given in (14) is smaller 
than that given in (13) without MTS. 

The results for bounds under various assumptions are summarized in Table 
2 for the difference and in Table 3 for the ratio measures, with bootstrap 95% 
confidence intervals (CIs). The bound formulas for ratio measures are given in 
Appendix 1. Tables 2 and 3 showed that bounds under the basic assumptions with 
or without monotonicity had very broad widths, and thus they did not provide 
enough information on the ATT and ATE. However, MTS + MTR gave 
considerably narrower bounds for both the ATT and ATE. The proposed bounds 
further improved the lower bounds under the MTS, though their 95% CIs were 
broader than those by MTS + MTR. In addition, the MTR with monotonic 
selection considerably improved the upper bounds for the ATT. Moreover, we 
note that unlike our Assumptions 2 and 4, MTS is not even partially identifiable 
from the observed data. We further note that the bootstrap CIs would not retain 
the nominal coverage because bounds are not smooth functionals of the empirical 
cumulative distribution function (Hall, 1992). 

 

Table 2. Bounds and their 95% confidence limits (in parentheses) for the ATT and ATE on the 
difference scale under basic assumptions only (the Balke-Pearl bounds for the ATE), monotonicity 
assumption, MTR + MTS without monotonicity, and MTR + Assumption 4(b) with monotonicity. 

 Bounds 
Assumptions Lower Upper Width 
ATT (×10–2) 

Basic assumptions 
–98.90 
(–99.41, –98.34) 

1.10 
(0.58, 1.66) 

100.00 
 

Monotonicity 
–54.60 
(–59.05, –50.04) 

0.22 
(–1.31, 1.69) 

54.82 
 

MTR + MTS 
–0.93 
(–1.54, –0.21) 

0.00 
(0.00, 0.00) 

0.93 
 

MTR + A4(b) 
–0.84 
(–4.51, 2.51) 

–0.51 
(–1.91, 1.25) 

0.33 
 

ATE (×10–2) 

Basic assumptions 
–11.31 
(–12.36, –10.33) 

72.60 
(71.51, 74.30) 

83.91 
 

Monotonicity 
–11.31 
(–12.36, –10.33) 

72.60 
(71.51, 74.30) 

83.91 
 

MTR + MTS 
–0.93 
(–1.31, –0.46) 

–0.13 
(–0.73, 0.46) 

0.80 
 

MTR + A4(b) 
–0.89 
(–2.15, 0.54) 

–0.13 
(–0.73, 0.46) 

0.76 
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Table 3. Bounds and their 95% confidence limits (in parentheses) for the ATT and ATE on the 
ratio scale under basic assumptions only, monotonicity assumption, MTR + MTS without 
monotonicity, and MTR + Assumption 4(b) with monotonicity. 

 Bounds 

Assumptions Lower Upper Width 

ATT 

Basic assumptions 
0.01 
(0.01, 0.02) 

∞ 
 

∞ 
 

Monotonicity 
0.02 
(0.01, 0.03) 

1.24 
(0.00, 5.53) 

1.22 
 

MTR + MTS 
0.54 
(0.37, 1.26) 

1.00 
(1.00, 1.00) 

0.46 
 

MTR + A4(b) 
0.57 
(0.00, 2.46) 

0.69 
(0.00, 3.28) 

0.12 
 

ATE 

Basic assumptions 
0.01 
(0.01, 0.04) 

49.43 
(35.98, 63.04)  

49.42 
 

Monotonicity 
0.01 
(0.01, 0.04) 

49.43 
(35.98, 63.04) 

49.42 
 

MTR + MTS 
0.55 
(0.37, 1.26) 

0.93 
(0.66, 0.99) 

0.38 
 

MTR + A4(b) 
0.56 
(0.06, 1.34) 

0.93 
(0.66, 0.99) 

0.37 
 

 

5. DISCUSSION 

In this article, we first showed the meaning of NEM assumptions in SMMs 
from the PS framework under the assumption of monotonic selection. Clarke and 
Windmeijer (2010) have stated that NEM assumptions “depend crucially on the 
unknown causal model that generated the data; therefore, it is difficult to justify.” 
Indeed, NEM assumptions are equivalent to common treatment effects for 
compliers and always-takers, which we can never assure with certainty. A more 
realistic approach is to assume NEM conditional on baseline covariates because 
effect modification in these two subgroups can (at least partly) be attributed to 
measured baseline covariates. However, if we model causal effects conditional on 
many covariates, we must cope with model selection problems, as in classical 
regression confounding adjustment settings. In addition, even if we can use many 
baseline covariates, we cannot confirm whether the NEM assumption holds from 
the observed data due to the identification problems. If the NEM assumption does 
not hold, then neither the ATT nor ATE is identified. 

We derived the bounds for the ATT and ATE. Our proposed bounds could 
be useful if we can reasonably suppose further assumptions, which include the 
monotonic selection, in addition to the usual IV assumptions. Our illustration 
showed that proposed bounds can be dramatically tighter than the nonparametric 
bounds. This tendency would be clearer if the range of the outcome Y is broader. 
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Indeed, when Y is not bounded (i.e., has infinite range), nonparametric bounds are 
no longer obtained. Of course the tightening of bounds comes at the price of 
making a stronger assumption. Our results are limited insofar as the added 
assumptions are not identified from the data, and hence must be derived from 
contextual considerations. Although assumptions are not themselves identifiable, 
they are nonetheless reasonable in some situations. For example, when patients 
with a worse condition tend to prefer to receive the new treatment, it should be 
anticipated that the incidence proportion of a bad event (Y = 1) (e.g., death) will 
be highest for never-takers, followed in order by compliers, and always-takers. 

Unlike former studies, our proposed bounds explicitly use the monotonic 
selection assumption. Under this assumption, CATE is identifiable. Thus, we 
could expect that if most individuals in the target population were compliers, then 
p1 would be much larger than p0; thus, the proposed bounds could give much 
narrower bounds than the existing bounds, as inferred from the inequalities (10) 
and (12). In our illustration, the MRFIT was a preventive study, and thus the 
compliance of the intervention was not good. Indeed, estimates of π00, π11, and π10 
were 0.741, 0.098, and 0.161, respectively. These indicated that most of the study 
populations were never-takers, and the proportion of compliers was small. 
However, in many clinical trials, in order to evaluate the effect of a drug, the 
proportion of compliers would be much higher than the proportions of individuals 
in the other principal strata. Thus, our proposed bounds have the possibility of 
providing bounds with a very narrow width when the monotonic selection 
assumption holds. 

APPENDIX 1. Ratio measures 

In this appendix, we extend the propositions in Section 3 to ratio measures. The 
proofs of propositions derived in this appendix are similar to those in Section 3. 
Therefore, we give only the results below. 

Let us use the notation exp(φst) ≡ E[Y(1) | X(1) = s, X(0) = t] / E[Y(0) | X(1) 
= s, X(0) = t]. Then, the ratio between equations (6) and (8), that is, the ratio 
version of the IV estimator, is given by 

 
 exp(φ10) = (p1E11 – p0E10)/{(1 – p0)E00 – (1 – p1)E01}, (15) 
 

where it is assumed that (1 – p0)E00 – (1 – p1)E01 > 0 (Angrist, 2001). 
Similar to the additive SMM (9), the ATT can be formalized using the 

following nonparametric (saturated) multiplicative SMM: 
 
E[Y | X, Z] / E[Y(0) | X, Z] = exp{(θ0 + θ1Z)X}, 
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where exp(θ0) and exp(θ0 + θ1) are unknown causal parameters. The ATTs are 
exp(θ0) = E[Y(1) | X = 1, Z = 0] / E[Y(0) | X = 1, Z = 0] with Z = 0, and exp(θ0 + 
θ1) = E[Y(1) | X = 1, Z = 1] / E[Y(0) | X = 1, Z = 1] with Z = 1. The parameter θ0 is 
identified and is equal to equation (15) under the following NEM assumption for 
the multiplicative treatment effect (Hernán and Robins, 2006; Clarke and 
Windmeijer, 2010): 
 

ASSUMPTION 5. E[Y(1) | X = 1, Z = 0] / E[Y(0) | X = 1, Z = 0] = E[Y(1) | X = 1, 
Z = 1] / E[Y(0) | X = 1, Z = 1]; that is, θ1 = 0. 
 

PROPOSITION 5. Suppose that the monotonic selection assumption holds. Then, 
Assumption 5 holds if and only if φ10 = φ11 holds. 
 

PROPOSITION 6. Suppose that the monotonic selection assumption holds. Then, 
under Assumption 2(a), the upper bounds for exp(θ0) = E[Y(1) | X = 1, Z = 0] / 
E[Y(0) | X = 1, Z = 0] and exp(θ0 + θ1) = E[Y(1) | X = 1, Z = 1] / E[Y(0) | X = 1, Z = 
1] are 

 

011000
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Moreover, the upper bound for the multiplicative ATT is 
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Under Assumption 2(b), these results apply with the inequality signs reversed. 
 

The ATE, E[Y(1)] / E[Y(0)], is equal to equation (15) under Assumption 6 
(Hernán and Robins, 2006) given below. 
 

ASSUMPTION 6. {E[Y(1) | X = x, Z = 0] / E[Y(0) | X = x, Z = 0]} = {E[Y(1) | X = 
x, Z = 1] / E[Y(0) | X = x, Z = 1]} for x = 0, 1. 
 

PROPOSITION 7. Suppose that the monotonic selection assumption holds. Then, 
Assumption 6 holds if and only if φ10 = φ11 = φ00 holds. 
 

PROPOSITION 8. Suppose that the monotonic selection assumption holds. Then, 
under Assumption 4(a), the upper bound for the multiplicative ATE is given by 
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Under Assumption 4(b), the result applies with the inequality sign reversed. 

APPENDIX 2. Proof that the proposed bounds improve the Robins-Manski 
bounds under the monotonic selection assumption 

Two of the four terms of the Balke-Pearl bounds for E[Y(x)] (x = 0, 1), which 
were proposed by Robins (1989) and Manski (1990), are given as follows: 
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We show that the new upper bound of the ATE under Assumption 4(b) is not 
larger than those of the Robins-Manski bounds under the monotonic selection 
assumption. By randomization, 

 
E[Y(1)] = E[Y(1) | Z = z] 
 = E[Y(1) | X = 0, Z = z]Pr(X = 0 | Z = 1) 
     + E[Y(1) | X = 1, Z = z]Pr(X = 1 | Z = z) (16) 
 

for z = 0, 1. The upper bounds on E[Y(1)] of the Robins-Manski bounds are 
obtained by substituting 1 into E[Y(1) | X = 0, Z = z] in equation (16). The new 
upper bound can be derived by substituting E[Y(1) | X (1) = 1, X (0) = 0] given in 
equation (6) into E[Y(1) | X = 0, Z = 0] in equation (16) with z = 0 by using 
equation (4). The new upper bound can also be derived by substituting E[Y(1) | X 
(1) = 1, X (0) = 0] into E[Y(1) | X = 0, Z = 1] in equation (16) with z = 1 by using 
equation (3). Under the monotonic selection assumption, equation (6) must be the 
same or smaller than 1. Thus, the new upper bound of E[Y(1)] is the same or 
smaller than the Robins-Manski bounds. Similarly, by randomization, 

 
E[Y(0)] = E[Y(0) | Z = z] 
 = E[Y(0) | X = 0, Z = z]Pr(X = 0 | Z = 1) 
     + E[Y(0) | X = 1, Z = z]Pr(X = 1 | Z = z)          (17) 
 

for z = 0, 1. The lower bounds on E[Y(0)] of the Robins-Manski bounds are 
obtained by substituting 0 into E[Y(0) | X = 1, Z = z] in equation (17). The new 
lower bound can be derived by substituting E[Y(0) | X (1) = 1, X (0) = 0] given in 
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equation (8) into E[Y(0) | X = 1, Z = 0] in equation (17) with z = 0 by using 
equation (2). The new upper bound can also be derived by substituting E[Y(0) | X 
(1) = 1, X (0) = 0] into E[Y(0) | X = 1, Z = 1] in equation (17) with z = 1 by using 
equation (1). Under the monotonic selection assumption, equation (8) must be the 
same or larger than 0. Thus, the new lower bound of E[Y(0)] is the same or larger 
than the Robins-Manski bounds. These facts complete the proof because the upper 
bound of the ATE is given by max{E[Y(1)]} – min{E[Y(0)]}. 

By the same way, we can show that the new lower bound of the ATE 
under Assumption 4(a) is not smaller than those of the Robins-Manski bounds. 
We note that our proposed bounds can be used in conjunction with the remaining 
two terms of the Balke-Pearl bounds.    

APPENDIX 3. Deviation of inequality (13) 

Under the monotonic selection assumption, we can represent E[Y(0) | X = 1] as 
follows: 
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where the third equality follows from equations (1) and (2) with x = 0, and the last 
equality follows from equation (8). Then, by substitution of 0 or 1 for E[Y(0) | 
X(1) = X(0) = 1] in equation (18), we obtain the upper and lower bounds of E[Y(0) 
| X = 1]. Because E[Y(1) | X = 1] = E[Y | X = 1], the difference between them 
derives inequality (13). 

APPENDIX 4. Deviation of inequality (14) 

Using the assumptions of monotonic selection and MTR, we have 
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(19) 

 
The first equality follows from (18), the inequality holds by the MTR, and the last 
equality is derived from equation (5). The difference between E[Y | X = 1] and 
equation (19) derives inequality (14). We note that, even when similar 
calculations are made for E[Y(1)] and E[Y(0)], these upper bounds cannot be 
improved. 
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