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Instruments and Bounds for Causal Effects
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Abstract

Noncompliance with assigned treatment is an important problem of randomized clinical trials.
In this situation, the structural mean model (SMM) approach focuses on the average treatment
effect among patients actually treated (ATT). In contrast, the principal stratification (PS) approach
addresses the effect on a certain subgroup defined by latent compliance behavior. While these
approaches target different causal effects, the estimators have the same form as the classical
instrumental variable estimator, under the assumption of no effect modification (NEM) and
monotonic selection. In this article, we clarify the relation between SMM and PS under the
monotonic selection assumption. Specifically, we translate the NEM assumption for the SMM
estimator into the words of the PS approach. Then, we propose a new bound for the ATT by
making a possibly more plausible assumption than the NEM assumption based on the PS approach.
Furthermore, we extend these results to the average treatment effect for the entire population.
The proposed bounds are illustrated with applications to a real clinical trial data. Although our
assumption cannot be empirically verified, the proposed bounds can be considerably tighter than
those previously proposed.
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1. INTRODUCTION

In randomized clinical trials, researchers are often interested in estimating the
causal effect of a treatment on some outcome. However, patients often fail to
adhere to their assigned treatment and select other trial treatments. Such
noncompliance to assigned treatments is a common feature of clinical trials.
Several approaches to estimate the causal treatment effects under the presence of
noncompliance have been proposed in the causal inference literature (e.g., Sato,
2006; Bellamy et al., 2007; Pearl, 2009; Chiba, 2011). The average treatment
effect is often discussed on the entire study population (average treatment effect
for the entire population; ATE); researchers would also be interested in the
average treatment effect on the patients actually treated (average treatment effect
among the treated; ATT). These are estimated using the structural mean model
(SMM) (Robins, 1989, 1994). The estimator of the ATT (i.e., the SMM estimator)
has the same form as the classical instrumental variable (IV) estimator under the
assumption of no effect modification (NEM). Moreover, the ATE has the same
form as the IV estimator under somewhat stronger NEM assumptions than that for
the SMM estimator (Robins, 1989).

Recently, Clarke and Windmeijer (2010) investigated the SMM estimator,
in which the NEM assumption was highlighted. They showed that the NEM
assumption depends crucially on the unknown causal model that generated the
data by using the nonparametric structural equation model (Pearl, 2009). In this
article, we discuss the NEM assumption in the framework of the principal
stratification (PS) approach (Frangakis and Rubin, 2002; Rubin, 2004). Such
discussions have not been conducted in Clarke and Windmeijer (2010). First, we
translate the NEM assumption for the SMM estimator into the words of the PS
approach. Second, we propose new bounds for the ATT by making a possibly
more plausible assumption than the NEM assumption based on the PS approach.
Finally, we extend these results to the ATE.

To achieve these objectives, this article is organized as follows. In Section
2, we present the framework used in this article. In Section 3, the NEM
assumptions for the ATT and ATE are translated into the words of the PS
approach. In addition, new bounds for the ATT and ATE are proposed with new
assumptions based on the PS approach. Although our assumption cannot be
empirically verified, the proposed bounds can be considerably tighter than those
previously proposed. In Section 4, the proposed bounds are illustrated using a
classic randomized trial. Section 5 concludes with a discussion.
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2. FRAMEWORK

We present the notations and assumptions used through this article in Section 2.1
and review the PS approach in Section 2.2.

2.1. Notation and assumptions

We employed the potential outcomes or the counterfactual framework (Rubin,
1974, 1978, 1990). Let Z denote the randomization-assigned indicator, with Z =1
and Z = 0 indicating the test treatment and the control treatment, respectively. Let
X denote the corresponding indicator for the treatment actually received. Here, X
= 1 if the test treatment was received, and X = 0 if the control treatment was
received. Y denotes the observed outcome. We assume that observed data (15, X;,
Z) (i=1, ..., n) are n independent and identically distributed random vectors.

In contrast to the observed outcome variable Y, we define Y(x, z) to be the
potential outcome if the treatment assigned and received (Z, X) had been set to the
values (z, x). Similarly, let X(z) denote the potential treatment if Z was set to z. We
make the following four assumptions:

(i) The stable unit treatment value assumption (Rubin, 1990) or the
no-interference assumption (Cole and Hernan, 2008) states that the
potential outcome Y(x, z) for an individual does not depend on the
treatment assigned or the treatment actually received by any other patient.

(i) Exclusion restriction Y (x, z) = Y (x) constrains the effect of the treatment
assignment to the study outcome only through its effect on the treatment
choice.

(ii1) Consistency assumption Y(X) = 7V, i.e., the value of Y that would have
been observed if X had been set to its actual value is equal to the actually
observed value of Y. Therefore, the only potential outcome for an
individual being observed is the potential outcome Y(x), that is, the value
of Y that would have been observed if X was set to its actual value.
Similarly, X(Z) = X.

(iv) Independence assumption, which states that Z is independent of the
potential treatment X(z) and the potential outcome Y(x) (Holland, 1986).
This assures that expectations of the potential outcomes are constant
across the sub-populations of subjects assigned to different treatment
arms; E[Y(x) | Z= 1] = E[Y(x) | Z=0]. Similarly, E[X(z) | Z= 1] = E[X(2) |
Z=0].

In addition to these four assumptions that are made in the causal inference
literature, we require the monotonic selection assumption, that is, X(1) > X(0) for
all individuals. Sometimes, this is called “monotonicity assumption.”



Taguri and Chiba: Instruments and Bounds for Causal Effects under Monotonicity

2.2. Principal stratification

We applied the principal stratification approach (Frangakis and Rubin, 2002;
Rubin, 2004). This approach considers four types of participants that define four
principal strata.

- Always-takers: individuals who would receive the test treatment regardless of
the assigned treatment arm, that is, X(1) = X(0) = 1.

- Never-takers: individuals who would receive the control treatment regardless
of the assigned treatment arm, that is, X(1) = X(0) = 0.

- Compliers: individuals who would receive the test treatment if assigned to the
test treatment arm, but would receive the control treatment if assigned to the
control arm, that is, X(1) = 1 and X(0) = 0.

- Defiers: individuals who would receive the control treatment if assigned to
the test treatment arm, but would receive the test treatment if assigned to the
control arm, that is, X(1) = 0 and X(0) = 1.

If we use the notation 7, = Pr(X(1) = s, X(0) = ¢) (= 0), then

1

Yy, =1,

s=0 =0
and the relationships between 7, and p. = Pr(X=1| Z=z) are
T + w1 = p1, moo + o1 = 1 — p1, w1 + mo1 = po, and mio + meo = 1 — po,

respectively, because Pr(X(z) =x) =Pr(X(z) =x | Z=z) =Pr(X=x | Z=2).

E[Y(x) | X =1, Z = 1] can be expressed by the weighted sum of E[¥(x) |
X(1) =1, X(0) = 0] and E[Y(x) | X(1) = X(0) = 1] because the subgroup with Z =1
and X = 1 includes compliers and always-takers but does not include never-takers
or defiers. Here, the weights are the proportions of compliers and always-takers in
these two strata. Therefore, E[Y(x) | X=1, Z= 1] can be expressed as

By (| x =1,7 =1 - T IO =] X(O); O];”“E[Y(x) X =X0)=1]

Likewise, E[Y(x) | X = x, Z = z] can be expressed as the weighted sum of E[Y(x) |
X(1)=s, X(0) = £] as follows:

7 E[Y ()| X(1) =0, X(0) = 1]+ 7, E[Y () | X (1) = X (0) =1]

2

E[Y(x)| X =1Z=0]= —
01 11
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B[Y (o) X =0, = 1] = PP 01 X () = X(0) = 0]+ 7, FLY ()| X (1) =0, X(0) =1]

T + 70y,

7o ELY (%) | X (1) = X(0) = 0]+ 7, E[Y (%) | X (1) =1, X(0) =0]

HY(x)| X=0,Z=0]=
Too t 70

Here, we apply the monotonic selection assumption that X(1) > X(0) for all
individuals. This assumption implies that no defier exists, that is, 7o; = 0 because
X(1) = 0 and X(0) = 1 cannot hold simultaneously under X(1) > X(0). Therefore,
oo = 1 — p1, @1 = po and w9 = p1 — po, and the above four equations can be
re-written as follows:

= 2 EY()| X () =1, X(0) =0]

Y| X=1Z=1]= . 1
HIw)| . {+ PHY ()| X()=X(0)=1] }/ M
E[Y(x)| X =1,Z = 0] = E[¥(x)| X(1) = X (0) =1], @)
E[Y(x)| X =0,Z =1] = E[Y(x) | X(I) = X(0) = 0], (3)

(1- p)ELY(0)| X (1) = X(0) =0]

Y()| X=0,Z=0]= 1-py) 4

e ) {+ » —po)E[Yoc)|X<1):1,X(0>=0]} =) ®)

where it is assumed that ;o = p; — po > 0, that is, at least a complier exists. Let us
use E,. to denote E[Y | X=x, Z=z],and E.. to denote E[Y | Z = z]. Equations (1)
and (2) with x = 1 yield

E[Y(1) | X(1) = X(0) = 1] = E\o, (5)

E[Y(1) | X(1) = 1, X(0) = 0] = (p1£11 — poE10)/(P1 — Po), (6)
and equations (3) and (4) with x = 0 yield

E[Y(0) | X(1) = X(0) = 0] = Eq1, (7)

E[Y(0) | X(1) = 1, X(0) = 0] = {(1 — po)Eoo — (1 = p1)Eo1}/(p1 — po). ~ (8)

Thus, the difference between equations (6) and (8) yields
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o10=(E.1 — E.0)/(p1 — po),

where d; = E[Y(1) — Y(0) | X(1) = s, X(0) = ¢]. This equation means that the
average treatment effect for compliers (complier-specific average treatment effect;
CATE) is identified and equal to the IV estimand under the monotonic selection
assumption (Angrist, Imbens, and Rubin, 1996a). Similarly, the ratio of equation
(6) to (8) yields the CATE on the multiplicative scale. However, the ATT and
ATE are not generally identified even under the monotonic selection assumption.

3. AVERAGE CAUSAL EFFECTS UNDER THE PRINCIPAL STRATIFICATION
APPROACH

We translate the ATT and ATE into the words of the PS approach, and propose
new bounds for the ATT and ATE by making a possibly more plausible
assumption based on the PS approach. In this section, we discuss the difference

measures. These are extended to the ratio measures in Appendix 1. The ATT is
discussed in Section 3.1, and the results are extended to the ATE in Section 3.2.

3.1. Average treatment effect among the treated

The ATT can be formalized using the following nonparametric (saturated)
additive SMM:

E[Y[X, Z] - E[X(0) | X, Z] = (yo + y12)X, )

where o and y; are unknown causal parameters. o = E[Y(1) - Y(0) | X =1, Z=
0] and yo + y1 =E[X(1) - Y(0) | X=1,Z=1] are the ATT withZ=0and Z=1,
respectively. It is clear that neither of the SMM parameters in (9) can be identified
because we have only one moment restriction with two unknown parameters.
However, y is identified and equal to the IV estimand under the following NEM
assumption (Herndn and Robins, 2006; Clarke and Windmeijer, 2010):

ASSUMPTION 1. E[¥(1)-Y(0) | X=1,Z=0]=E[Y(1)- Y(0) | X=1,Z=1];
that is, y; = 0.

We can derive the following proposition by using the words of the PS
approach:

PROPOSITION 1. Suppose that the monotonic selection assumption holds. Then,
Assumption 1 holds if and only if 619 = 011 holds.

PROOF. Substituting equations (2) and (1) into equation (9) yields
Wo = 011,
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wo + w1 = {(p1 — po)oio + pooi1}/pi.

Suppose that Assumption 1, that is, w; = 0, holds. Then, the difference between
these two equations yields (p; — po)(010 — d11) = 0. Because p; — po > 0 by
assumption, d;p = d;;. Conversely, suppose that d;9p = d;; = . Then, the difference
between these two equations yields y; = {(p1 — po)o + pod}/p1 — 0 = 0. i

Proposition 1 implies that, under the monotonic selection assumption,
Assumption 1 is equivalent to common treatment effects for compliers and
always-takers, and the additive SMM derives the IV estimator under d;o = 01;.
This result was implied by Angrist, Imbens, and Rubin (1996b) in their reply to
the comments of Heckman (1996). Conversely, if d19 # d11, the IV estimator is a
biased estimator of the ATTs with Z = z. We note that ;0 = d1; =dyy = w1 =0
holds without the monotonic selection assumption; however, the converse does
not hold.

It is obvious that the upper bounds on o and wo + y; are ;o if d10 > o
from the proof of Proposition 1. However, it would be difficult to speculate that
010 1s larger or smaller than d;;. Thus, we propose an alternative assumption to
derive new bounds for the ATT.

ASSUMPTION 2. Either (a) E[Y(x) | X(1)=X(0)=1]>E[Y(x) | X(1) =1, X(0) =
0] or (b) E[Y(x) | X(1) =X(0) = 1] < E[Y(x) | X(1) = 1, X(0) = 0] holds for x =10, 1.

Under the monotonic selection assumption, E[Y(1) | X(1) = 1, X(0) = 0]
and E[Y(1) | X(1) = X(0) = 1] can be estimated by equations (6) and (5),
respectively. Thus, Assumption 2(a) or 2(b) with x = 1 can be evaluated from the
observed data based on whether the value of Ejy — E|; is positive or negative
because

E[Y(1) | X(1) = X(0) = 1] - E[¥(1) | X(1) = 1, X(0) = 0]
=Ei1o— (p1E11 — poE10)/(p1 — po)
=p1(E1o — E1)/(p1 — po).

PROPOSITION 2. Suppose that the monotonic selection assumption holds. Then,

under Assumption 2(a), the upper bounds for yy=E[Y(1) - Y(0) | X=1,Z=0]
and yo+y =E[Y(1)-Y0) | X=1,Z=1] are

v, ty, <(E, —E, +p0'//(f)/p1 ,
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where w; ={p,E,+(—p)E, —E.,}/(p, — p,). Moreover, the upper bound for
ATT is

E[Y(1)=Y(0)| X =1]<{(E,, —E,)P(Z =)+ pyw}[Pr(X =1).  (10)
Under Assumption 2(b), these results apply with the inequality signs reversed.

PROOF. As shown in the proof of Proposition 1, y = 0,1 under the monotonic
selection assumption. Applying Assumption 2(a) to this equation yields

v, =E[Y(1) | X(1)=X(0)=1]-E[Y(0)| X(1) = X(0)=1]
<E[Y()|X(1)=X(0)=1]-E[Y(0)| X(1) =1,X(0) =0]
(1= py)Ew —(1-p)E,,

:Elo -
P =Dy
_ pE,+(1-p)E, -E,
Py~ Do

The inequality holds by Assumption 2(a), and the third equation holds from
equations (5) and (8). Likewise, the upper bound of wy + w1 = {(p1 — po)dio +
Ppoo11}/p1 becomes

1 E,-E,
Yoty =—1(p—Py)———+ P,
P D — Dy
< E,-E, +p0‘//(1)3
D

Furthermore, from these results, the upper bound of E[¥(1) — ¥(0) | X=1]
becomes

E[Y(1)-Y(0)| X =1]

:iE[Y(l)—Y(O)|X:1,Z:z]Pr(Z:z]X=1)
Pr(Z =0) WP Pr(Z =1)

VP brx =) Pr(X =1) (11)

_ B
{wfpo Pr(z=0)+ L1 L0t PV iz 1)}

b

<
Pr(X =1)
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(Ey—E)PUZ =D+ pyy
Pr(X =1)

Under Assumption 2(b), these inequalities hold with the inequality signs reversed.
O

We note that E[Y(1) — Y(0) | X = 1] is also equal to the IV estimand under
Assumption 1. This is obvious because E[Y(1) — Y(0) | X = 1] = wo when y; =0
from equation (11).

3.2. Average treatment effect on the entire population

We extend Propositions 1 and 2 in Section 3.1 to the ATE. The ATE, E[Y(1) —
Y(0)], is equal to the IV estimand under the following somewhat stronger
assumption than Assumption 1 (Robins, 1994):

ASSUMPTION 3. E[Y(1) - Y(0) | X=x,Z=0]=E[Y(1)- Y(0) | X=x, Z=1] for
x=0,1.

For x = 1, Assumption 3 is a restatement of Assumption 1. We note that
although Heckman (1997) used the alternative assumption E[Y(1) — Y(0) | X=0, Z
=z]=E[Y(1) - 0) | X=1, Z=z] for z= 0, 1 instead of Assumption 3, this
assumption is equivalent to Assumption 3 (Herndn and Robins, 2006). We can
derive the following proposition as an extension of Proposition 1.

PROPOSITION 3. Suppose that the monotonic selection assumption holds. Then,
Assumption 3 holds if and only if 19 = 611 = o holds.

PROOF. The proof of E[Y(1) - Y(0) | X=1,Z=0]=E[X(1)-Y(0) | X=1,Z=1]
< 0J10 = 011 follows the proof of Proposition 1. The proof of E[Y(1) — Y(0) | X =
0,Z=0]=E[Y(1)-Y(0) | X=0,Z=1] < 010 = doo 1s also similar to that of
Proposition 1. From equations (3) and (4), we have

E[¥(1) - Y(0) | X= 0, Z= 1] = Joo,

E[¥(1) - Y(0) | X =0, Z= 0] = {(1 — p1)doo + (1 — Po)d10}/(1 — po).
Assume that E[¥(1) — ¥(0) | X =0, Z = 0] = E[¥(1) — ¥(0) | X = 0, Z = 1] holds.
Then, the difference between the above two equations yields (p; — po)(d10 — doo) =

0. Because p; — po > 0 by assumption, d;o = dgo. Conversely, assume that d;p = doo
= 0. Then, the difference between the two abovementioned equations yields

E[¥(1) - Y(0) | X=0,Z=1]-E[¥(1) - ¥(0) | X=0, Z=0]



Taguri and Chiba: Instruments and Bounds for Causal Effects under Monotonicity

= {(1 =p1)d+ (p1 = po)o}/(1 —po) —
0.

Because Assumption 3 is that E[Y(1) — Y(0) | X=x, Z=0] = E[Y(1) — Y(0) | X=x,
Z = 1] holds for both x = 0 and 1, the proof of Proposition 1 and the information
given above complete the proof of Proposition 3. i

We note that, similar to Proposition 1, d;9 = d;1 = doo = do1 implies that
Assumption 3 holds without the monotonic selection assumption; however, the
converse does not hold.

In order to derive the new bound for the ATE, we extend Assumption 2 as
follows:

ASSUMPTION 4. Either (a) E[Y(x) | X(1) = X(0) = 1]> E[¥(x) | X(1) = 1, X(0) =
0] > E[¥(x) | X(1) = X(0) = 0] or (b) E[Y(x) | X(1) = X(0) = 1] < E[Y(x) | X(1) = 1,
X(0) = 0] < E[¥(x) | X(1) = X(0) = 0] holds for x =0, 1.

As mentioned in Section 3.1, whether E[¥(1) | X(1) = X(0) = 1] — E[¥(1) |
X(1)=1, X(0) = 0] is positive or negative can be evaluated from the observed data
according to whether the value of E;yp — E); is positive or negative. Likewise,
whether E[Y(0) | X(1) = 1, X(0) = 0] — E[¥(0) | X(1) = X(0) = 0] 1s positive or
negative can be evaluated from the observed data according to whether the value
of Eoo — Eo 1s positive or negative because from equations (7) and (8), we obtain

E[Y(0) | X(1) = 1, X(0) = 0] - E[¥(0) | X(1) = X(0) = 0]
= {(1 = po)Eoo — (1 = p1)Eo1}/( p1 — po) — Eoi
= (I = po)(Eoo — Eo1)/( p1 — po)-

Thus, we can partly evaluate Assumption 4(a) or 4(b) with x = 0, 1 from the
observed data. If both Ejy — Ej; and Ep — Eo take positive values, then
Assumption 4(a) could be assumed. If both E;9 — E1; and Eyo — Eo; take negative
values, then Assumption 4(b) could be assumed. If one of them takes a positive
value and the other is a negative value, Assumption 4 cannot be assumed.

PROPOSITION 4. Suppose that the monotonic selection assumption holds. Then,
under Assumption 4(a), the upper bound for the ATE is

E[Y(1) - Y(0)] < {(1 = po)p1(E11 — Eoo) — po(1 — p1)(E10 — Eo1) }/(p1 — po)- (12)
Under Assumption 4(b), the result applies with the inequality sign reversed.

PROOF. Because 7p; = 0 under the monotonic selection assumption, we have

Published by De Gruyter, 2012 9
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E[¥(1) — Y(0)] = moodoo + m10d10 + 11611
Applying Assumption 4(a) to this equation yields

E[X(1) - Y(0)]

= (1 —p){E[Y(D) | X(1) = 1, X(0) = 0] - E[¥(0) | X(1) = X(0) = 0]}
+(p1 - po)E[Y(1) - ¥(0) | X(1)= 1, X(0) = 0]
+ potE[Y(1) | X(1) = X(0) = 1] - E[¥(0) | X(1) = 1, X(0) = 0]}

= (1 -po)E[¥(1) | X(1) = 1, X(0) = 0] + poE[Y(1) | X(1) = X(0) = 1]
—piE[Y(0) | X(1) = 1, X(0) = 0] - (1 — p)E[Y(0) | X(1) = X(0) = 0].

After substituting equations (5)—(8) into this inequality, some algebra yields
inequality (12). The lower bound under Assumption 4(b) holds with the inequality
signs reversed. i

In practice, if one is willing to use our proposed bounds (Proposition 2 or
4), one should first consider the plausibility of the monotonic selection
assumption and Assumption 2 or 4 based on the subject matter grounds. As noted
above, we can partly evaluate Assumption 2 or 4 from the observed data by
assessing the sign of Ejo — £ and Egy — Ep;. Then, our bounds would be used in
conjunction with those proposed before (e.g., the monotone treatment response
(MTR) assumption presented in the next section) to obtain narrower bounds.

4. ILLUSTRATION

For illustration, bounds proposed in Section 3 are applied to data from the
Multiple Risk Factor Intervention Trial (MRFIT) (MRFIT Research Group,
1982). The MRFIT was a large field trial to test the effect of a multifactorial
intervention program on mortality from coronary heart disease (CHD) in
middle-aged men with sufficiently high risk-levels resulting from cigarette
smoking, high serum cholesterol, and high blood pressure. Intervention consisted
of hypertension medication, smoking cessation counseling, and dietary advice on
ways of reducing blood cholesterol. All subjects were randomly assigned to the
intervention program or the control group.

For this illustration, attention is restricted to the effects of cessation of
cigarette smoking. This restriction followed Mark and Robins (1993) and was
applied because of the paucity of differences achieved for the other risk factors.
Table 1 summarizes the incidence of subject mortality due to CHD during the
7-year follow-up period based on the assigned treatment and the actual subject
smoking status one year after the study entry. Z represents the assigned group (Z =
1 for the test group and Z = 0 for the control group); X is the actual smoking status
one year after entry (X = 1 for smoking cessation and X = 0 for continued

10
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smoking); and Y is the incidence of CHD deaths (¥ =1 for dead and Y = 0 for
alive). The usual IV analysis yielded a risk difference of —0.82 x 107 (95%
confidence interval [CI]: —4.59 x 102 2.95 x 10%) and a risk ratio of 0.58 (95%
CI: 0.07, 4.82). The variance formulas are found in Greenland (2000) and Chiba
(2010).

Table 1. The status of cigarette smoking and the incidence of mortality due to CHD in the MRFIT
during a 7-year follow-up period.

Group No. -of CHD Smoking status No..of CHD
Subjects deaths at 1 year subjects deaths
Test 3833 69 Quit 991 11
Not quit 2842 58
Control 3830 74 Quit 374 4
Not quit 3456 70
Totals 7663 143

However, the IV estimate would be biased because no one can assure that
011 = 019, that is, the average treatment effects for always-takers (who would quit
smoking regardless of the assigned group) is equal to that for the compliers (who
would quit smoking if assigned to the test group and would continue smoking if
assigned to the control group). Therefore, we yielded bounds on the ATT and
ATE under Assumption 4 (or under Assumption 2 for the ATT). Here, we note
that in this trial, defiers are participants who would continue smoking if assigned
to the test group and would quit smoking if assigned to the control group; such
participants would not exist, although this cannot be confirmed from the observed
data. Never-takers are participants who would continue smoking regardless of the
assigned group. We further note that whether Assumption 4 (or 2) holds cannot
also be confirmed from the observed data. Thus, it is important to discuss its
plausibility. It seems likely that the mortality proportion for always-takers tended
to be lower than that for never-takers and compliers because always-takers would
be health-conscious individuals in comparison with never-takers and compliers.
Conversely, the mortality proportion for never-takers would tend to be higher than
that for always-takers and compliers. This observation shows that Assumption
4(b) is reasonable. The data yielded E;p — E;; = —0.04 x 102 <0 and Eqy — Eo; =
—0.02 x 107 <0.

In order to assess the extent to which the bounds are narrowed by posing
the assumptions, we compare the proposed bounds with those presented in the
past literature. We here consider 3 types of bounds. First, when the outcome Y has
finite range ([0,1] in this example), we can draw bounds without any assumptions
other than the basic assumptions (i)-(iv) in Section 2.1. For the ATT, bounds are
derived by substitution of 0 or 1 for E[¥(0) | X = 1]. Because observed data
contains no information about E[Y(0) | X = 1], the width of bounds for E[Y(1) —
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Y(0) | X=1] is always 1. For the ATE, we can use bounds proposed by Balke and
Pearl (1997) and those by Robins (1989) and Manski (1990). In Appendix 2, we
show that the proposed bounds improve the Robins-Manski bounds under the
monotonic selection assumption. Although the Balke-Pearl bounds can be
narrower than the Robins-Manski bounds in some situations, they gave the same
results in our application.

Second, with bounded outcome, we could improve nonparametric bounds
described above by posing the monotonic selection assumption. For binary
outcomes, the bounds for the ATT are as follows:

E[Y| X =1]- {(1=po)Eo —(1= p)Ey } Pr(Z =1) + py
Pr(X =1)

<EY()-Y(0)| X =1]

{(1 —po)Eg—(1 _pl)EOI} Pr(Z =1) .

<E[Y|X=1]- P

(13)

The derivation is given in Appendix 3. For the ATE, the monotonic selection
assumption does not improve the Balke-Pearl bounds, as noted by Robins and
Greenland (1996) and Angrist, Imbens, and Rubin (1996b).

Third, we could assume further unverifiable assumptions based on the
subject-matter considerations. We yielded the bounds under the assumptions of
(a) the monotone treatment response (MTR), ¥(1) < ¥(0) for all participants and
(b) the monotone treatment selection (MTS), E[Y(x) | X = 1] < E[Y(x) | X = 0] and
E[Y(x) | X=1,Z=z] <E[Y(x) | X=0,Z=z] forx=0, 1 and z = 0, 1 (Manski,
1997; Manski and Pepper, 2000; Chiba, 2011). See Chiba (2011) for the
discussion of the plausibility of these assumptions on the MRFIT data. Under
these assumptions, bounds for the ATT and ATE are as follows without the
monotonic selection assumption:

E[Y|X=1]-E[Y|X=0]<E[¥X(1)- ¥Y(0) | X=1] <0,
max{Eyy, E1o} —min{Eo, Eoo}
<E[Y(1) - Y(0)] <min{E.; — E.o, E.o— E.1},

where the lower bounds are derived under the MTS and the upper bounds are
derived under the MTR (Chiba, 2011). With the monotonic selection assumption,
the MTR improves the upper bound for the ATT as follows:

B _ _ _{(l_po)Eoo_(l_pl)Em}Pr(Z:l)"'poElo
E[Y(D-Y(0)| X =1]<HY | X =1] Pror=1) , (14)
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while it may not improve the upper bound for the ATE. The derivation of
inequality (14) is given in Appendix 4. The upper bound given in (14) is smaller
than that given in (13) without MTS.

The results for bounds under various assumptions are summarized in Table
2 for the difference and in Table 3 for the ratio measures, with bootstrap 95%
confidence intervals (Cls). The bound formulas for ratio measures are given in
Appendix 1. Tables 2 and 3 showed that bounds under the basic assumptions with
or without monotonicity had very broad widths, and thus they did not provide
enough information on the ATT and ATE. However, MTS + MTR gave
considerably narrower bounds for both the ATT and ATE. The proposed bounds
further improved the lower bounds under the MTS, though their 95% CIs were
broader than those by MTS + MTR. In addition, the MTR with monotonic
selection considerably improved the upper bounds for the ATT. Moreover, we
note that unlike our Assumptions 2 and 4, MTS is not even partially identifiable
from the observed data. We further note that the bootstrap CIs would not retain
the nominal coverage because bounds are not smooth functionals of the empirical
cumulative distribution function (Hall, 1992).

Table 2. Bounds and their 95% confidence limits (in parentheses) for the ATT and ATE on the
difference scale under basic assumptions only (the Balke-Pearl bounds for the ATE), monotonicity
assumption, MTR + MTS without monotonicity, and MTR + Assumption 4(b) with monotonicity.

Bounds
Assumptions Lower Upper Width
ATT (x102)
Basic assumbtions 98.90 1.10 100.00
ump (-99.41, -98.34) (0.58, 1.66)
. ~54.60 0.22 54.82
Monotonicity (=59.05, —50.04) (-1.31, 1.69)
~0.93 0.00 0.93
MTR +MTS (~1.54,-0.21) (0.00, 0.00)
~0.84 ~0.51 033
MTR + A4(b) (-4.51,2.51) (-1.91, 1.25)
ATE (X102
Basic assumptions ~11.31 72.60 8391
ump (-12.36, -10.33) (71.51, 74.30)
. ~11.31 72.60 83.91
Monotonicity (1236, -10.33) (71.51, 74.30)
~0.93 ~0.13 0.80
MTR +MTS (~1.31,-0.46) (-0.73, 0.46)
~0.89 ~0.13 0.76
MTR + A4(b) (-2.15,0.54) (-0.73, 0.46)
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Table 3. Bounds and their 95% confidence limits (in parentheses) for the ATT and ATE on the
ratio scale under basic assumptions only, monotonicity assumption, MTR + MTS without
monotonicity, and MTR + Assumption 4(b) with monotonicity.

Bounds
Assumptions Lower Upper Width
ATT
Basic assumption: 0.01 * «
S1C assumptions (0.01, 0.02)
Monotonicit 0.02 1.24 1.22
y (0.01, 0.03) (0.00, 5.53)
0.54 1.00 0.46
MTR +MTS (0.37,1.26) (1.00, 1.00)
0.57 0.69 0.12
MTR + A4(b) (0.00, 2.46) (0.00, 3.28)
ATE
Basic assumptions 0.01 49.43 4942
P (0.01, 0.04) (35.98, 63.04)
Monotonicit 0.01 49.43 49.42
y (0.01, 0.04) (35.98, 63.04)
0.55 0.93 0.38
MITR +MTS (0.37, 1.26) (0.66, 0.99)
0.56 0.93 0.37
MTR + A4(b) (0.06, 1.34) (0.66, 0.99)
5. DISCUSSION

In this article, we first showed the meaning of NEM assumptions in SMMs
from the PS framework under the assumption of monotonic selection. Clarke and
Windmeijer (2010) have stated that NEM assumptions “depend crucially on the
unknown causal model that generated the data; therefore, it is difficult to justify.”
Indeed, NEM assumptions are equivalent to common treatment effects for
compliers and always-takers, which we can never assure with certainty. A more
realistic approach is to assume NEM conditional on baseline covariates because
effect modification in these two subgroups can (at least partly) be attributed to
measured baseline covariates. However, if we model causal effects conditional on
many covariates, we must cope with model selection problems, as in classical
regression confounding adjustment settings. In addition, even if we can use many
baseline covariates, we cannot confirm whether the NEM assumption holds from
the observed data due to the identification problems. If the NEM assumption does
not hold, then neither the ATT nor ATE is identified.

We derived the bounds for the ATT and ATE. Our proposed bounds could
be useful if we can reasonably suppose further assumptions, which include the
monotonic selection, in addition to the usual IV assumptions. Our illustration
showed that proposed bounds can be dramatically tighter than the nonparametric
bounds. This tendency would be clearer if the range of the outcome Y is broader.

14
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Indeed, when Y is not bounded (i.e., has infinite range), nonparametric bounds are
no longer obtained. Of course the tightening of bounds comes at the price of
making a stronger assumption. Our results are limited insofar as the added
assumptions are not identified from the data, and hence must be derived from
contextual considerations. Although assumptions are not themselves identifiable,
they are nonetheless reasonable in some situations. For example, when patients
with a worse condition tend to prefer to receive the new treatment, it should be
anticipated that the incidence proportion of a bad event (Y = 1) (e.g., death) will
be highest for never-takers, followed in order by compliers, and always-takers.

Unlike former studies, our proposed bounds explicitly use the monotonic
selection assumption. Under this assumption, CATE is identifiable. Thus, we
could expect that if most individuals in the target population were compliers, then
p1 would be much larger than py; thus, the proposed bounds could give much
narrower bounds than the existing bounds, as inferred from the inequalities (10)
and (12). In our illustration, the MRFIT was a preventive study, and thus the
compliance of the intervention was not good. Indeed, estimates of 7o, 711, and 7
were 0.741, 0.098, and 0.161, respectively. These indicated that most of the study
populations were never-takers, and the proportion of compliers was small.
However, in many clinical trials, in order to evaluate the effect of a drug, the
proportion of compliers would be much higher than the proportions of individuals
in the other principal strata. Thus, our proposed bounds have the possibility of
providing bounds with a very narrow width when the monotonic selection
assumption holds.

APPENDIX 1. Ratio measures

In this appendix, we extend the propositions in Section 3 to ratio measures. The
proofs of propositions derived in this appendix are similar to those in Section 3.
Therefore, we give only the results below.

Let us use the notation exp(ps) = E[Y(1) | X(1) = s, X(0) =¢] / E[Y(0) | X(1)
=5, X(0) = {]. Then, the ratio between equations (6) and (8), that is, the ratio
version of the IV estimator, is given by

exp(@10) = (P1E11 — poE10)/{(1 — po)Eoo — (1 — p1)Eo1 }, (15)
where it is assumed that (1 — po)Eo — (1 — p1)Eo1 > 0 (Angrist, 2001).

Similar to the additive SMM (9), the ATT can be formalized using the
following nonparametric (saturated) multiplicative SMM:

E[Y|X, Z]/ E[Y(0) | X, Z] = exp{(60 + 012)X],
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where exp(6y) and exp(6y + 6,) are unknown causal parameters. The ATTs are
exp(6p) =E[Y(1) | X=1,Z=0]/E[Y(0) | X=1, Z= 0] with Z =0, and exp(& +
6)=E[Y(1) | X=1,Z=1]/E[Y(0) | X=1, Z= 1] with Z= 1. The parameter 6, is
identified and is equal to equation (15) under the following NEM assumption for
the multiplicative treatment effect (Hernan and Robins, 2006; Clarke and
Windmeijer, 2010):

ASSUMPTION 5. E[¥(1) | X=1,Z=0]/E[¥(0) | X=1,Z=0]=E[¥X(1) | X=1,
Z=1]/E[Y(0) | X=1, Z=1]; that is, 6, = 0.

PROPOSITION 5. Suppose that the monotonic selection assumption holds. Then,
Assumption 5 holds if and only if p10 = @11 holds.

PROPOSITION 6. Suppose that the monotonic selection assumption holds. Then,
under Assumption 2(a), the upper bounds for exp(6y) = E[Y(1) | X=1,Z=10]/
E[Y(0) | X=1,Z=0]and exp(6o+ 6)) =E[Y(1) | X=1,Z=1]/E[Y(0) | X=1,Z=
1] are

(p, — P)E

exp(6,) < ,
’ (I=py)Ey —(0=p)E,,

(P, — P)E,
(1= py)Ey —(1—- p)E,y,

exp(f, +6,) <

Moreover, the upper bound for the multiplicative ATT is

E[Y() | X =1] < (P, = PPy P(Z =0)E,, + p, Pr(Z =1)E,, } .
E[Y(0)[ X =1] {(=po)Ey —(1=p))Ey, } Pr(X =1)

Under Assumption 2(b), these results apply with the inequality signs reversed.

The ATE, E[Y(1)] / E[Y(0)], is equal to equation (15) under Assumption 6
(Hernan and Robins, 2006) given below.

ASSUMPTION 6. {E[Y(1) | X=x,Z=0]/E[Y(0) | X=x,Z=0]} = {E[X(1) | X=
x,Z=1]/E[Y(0) | X=x,Z=1]} forx=0, 1.

PROPOSITION 7. Suppose that the monotonic selection assumption holds. Then,
Assumption 6 holds if and only if 10 = @11 = @oo holds.

PROPOSITION 8. Suppose that the monotonic selection assumption holds. Then,
under Assumption 4(a), the upper bound for the multiplicative ATE is given by
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E[Y(1)] < (I-p)p.E, —p(1-p)E, '
E[Y(0)] (-py)p.Ey—p,(1-p)E,,

Under Assumption 4(b), the result applies with the inequality sign reversed.

APPENDIX 2. Proof that the proposed bounds improve the Robins-Manski
bounds under the monotonic selection assumption

Two of the four terms of the Balke-Pearl bounds for E[Y(x)] (x = 0, 1), which
were proposed by Robins (1989) and Manski (1990), are given as follows:

E En+(1-
maxd PE L < By < mind 2B AP L
poEio poEio+(1— po)

max{(l_pl)EM } <E[Y(0)] < min{(l_pl)Em p }
(1= po)Ewo (1= po)Eow + po

We show that the new upper bound of the ATE under Assumption 4(b) is not
larger than those of the Robins-Manski bounds under the monotonic selection
assumption. By randomization,

E[Y(1)] =E[X(]) |Z=Z]
=E[¥(1) | X=0,Z=z]Pr(X=0|Z=1)
+E[Y() | X=1,Z=z]Pr(X=1|Z=2) (16)

for z = 0, 1. The upper bounds on E[Y(1)] of the Robins-Manski bounds are
obtained by substituting 1 into E[Y(1) | X = 0, Z = z] in equation (16). The new
upper bound can be derived by substituting E[¥(1) | X (1) = 1, X (0) = 0] given in
equation (6) into E[Y(1) | X = 0, Z = 0] in equation (16) with z = 0 by using
equation (4). The new upper bound can also be derived by substituting E[¥(1) | X
(1)=1,X(0)=0] into E[Y(1) | X= 0, Z= 1] in equation (16) with z =1 by using
equation (3). Under the monotonic selection assumption, equation (6) must be the
same or smaller than 1. Thus, the new upper bound of E[Y(1)] is the same or
smaller than the Robins-Manski bounds. Similarly, by randomization,

E[Y(0)] =E[X(0) | Z=Z]
=E[¥(0) | X=0, Z=z]Pr(X=0|Z=1)
+E[Y(0)| X=1,Z=z]Pr(X=1|Z=2) (17)

for z = 0, 1. The lower bounds on E[Y(0)] of the Robins-Manski bounds are
obtained by substituting 0 into E[Y(0) | X = 1, Z = z] in equation (17). The new
lower bound can be derived by substituting E[Y(0) | X (1) = 1, X (0) = 0] given in
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equation (8) into E[Y(0) | X = 1, Z = 0] in equation (17) with z = 0 by using
equation (2). The new upper bound can also be derived by substituting E[Y(0) | X
(1)=1,X(0)=0]into E[Y(0) | X=1, Z = 1] in equation (17) with z = 1 by using
equation (1). Under the monotonic selection assumption, equation (8) must be the
same or larger than 0. Thus, the new lower bound of E[Y(0)] is the same or larger
than the Robins-Manski bounds. These facts complete the proof because the upper
bound of the ATE is given by max{E[Y(1)]} — min{E[Y(0)]}.

By the same way, we can show that the new lower bound of the ATE
under Assumption 4(a) is not smaller than those of the Robins-Manski bounds.
We note that our proposed bounds can be used in conjunction with the remaining
two terms of the Balke-Pearl bounds.

APPENDIX 3. Deviation of inequality (13)

Under the monotonic selection assumption, we can represent E[Y(0) | X = 1] as
follows:

E[Y(0)| X =1]

:ZIZE[Y(O)|X:1,Z:Z]Pr(Z:Z|X=1)

z=0

=E[Y(0)| X =172 =0]po Pr(X 1) +EY(0) | X =1Z =1]p Pr(X = 1)
3 3 B Pr(Z =0)
=E[Y(0) | X (1) = X (0) = 1]po PHX=1)
L (P = py)EY(0) | X(1) = X(0) = 0]+ p,E[Y(O) | X() = X(0)=1] ' Pr(Z=1)
b
P Pr(X =1)
_(p = p)EY () [ X(1) =1, X(0)=0]Pr(Z =1) + p,E[Y(0)| X (1) = X (0) =1]
Pr(X =1)
_A0=py)Ey == p)E, i Pr(Z =1) + p E[Y(0) | X (1) = X (0) =1] (18)
Pr(X =1) ’

where the third equality follows from equations (1) and (2) with x = 0, and the last
equality follows from equation (8). Then, by substitution of 0 or 1 for E[¥(0) |
X(1) = X(0) = 1] in equation (18), we obtain the upper and lower bounds of E[Y(0)
| X = 1]. Because E[Y(1) | X = 1] = E[Y | X = 1], the difference between them
derives inequality (13).

APPENDIX 4. Deviation of inequality (14)

Using the assumptions of monotonic selection and MTR, we have
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E[Y(0) | X =1]

_{d=po)Ew = (1= p)Eo;Pr(Z =1) + pE[Y(0) | X(1) = X(0) = 1]
Pr(X =1)

5 A0 =po)Ew —(1= p)Eo} Pr(Z =1) + poE[Y (1) | X (1) = X(0) = 1]

= Pr(X =1

_{d=po)Ew - (1= p1)En} Pr(Z =1) + poEio '

Pr(X =1) (15)

The first equality follows from (18), the inequality holds by the MTR, and the last
equality is derived from equation (5). The difference between E[Y | X = 1] and
equation (19) derives inequality (14). We note that, even when similar
calculations are made for E[Y(1)] and E[Y(0)], these upper bounds cannot be
improved.
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