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Targeted Maximum Likelihood Estimation for
Prediction Calibration

Jordan Brooks, Mark J. van der Laan, and Alan S. Go

Abstract
Estimators of the conditional expectation, i.e., prediction, function involve a global bias-

variance trade off. In some cases, an estimator that yields unbiased estimates of the conditional
expectation for a particular partitioning of the data may be desirable. Such estimators are calibrated
with respect to the partitioning. We identify the conditional expectation given a particular
partitioning as a smooth parameter of the distribution of the data, where the partitioning may be
defined on the covariate space or on the prediction space of the estimator. We propose a targeted
maximum likelihood estimation (TMLE) procedure that updates an initial prediction estimator such
that the updated estimator yields an unbiased and efficient estimator of this smooth parameter in
the nonparametric statistical model. When the partitioning is defined on the prediction space of the
estimator, our TMLE involves enforcing an implicit constraint on the estimator itself. We show that
our resulting estimator of the smooth parameter is equal to the empirical estimator, which is also
known to be unbiased and efficient in the nonparametric statistical model. We derive the TMLE for
single time-point prediction and also time-dependent prediction in a counting process framework.

KEYWORDS: Targeted Maximum Likelihood Estimation, Prediction, Calibration, Influence
Curve



1 Introduction
A reasonable and often used statistical prediction function parameter is the condi-
tional expectation of the outcome given the covariates. In a nonparametric statistical
model, the conditional expectation function parameter can be identified as the min-
imizer of the risk, i.e., the expectation of a loss function under the true probability
distribution of the data (van der Laan and Dudoit, 2003). Valid loss functions for
this parameter include the squared error loss, negative loglikelihood loss, and sev-
eral others. Typically, the form of this conditional expectation function is unknown
and must be learned or estimated from observational data. When working within a
nonparametric statistical model a reasonable approach is to consider several classes
of potentially flexible estimators and then select one that minimizes an unbiased es-
timate of the risk. This risk minimization involves trade offs with respect to certain
statistical properties. For example, mean squared error risk can be decomposed into
a variance term and a term for the squared bias, and its minimization is thus viewed
as a global bias-variance trade off. With most regular estimators the balance of this
trade off is determined by the complexity; those with higher complexity have less
bias and more variance and vice versa. Each estimator may therefore be tuned to
achieve the best global bias-variance trade off corresponding to optimal prediction
error.

Suppose, however, that particular subgroups of the data are of particular
interest. The global risk minimization as described above, will generally result in
bias for the conditional expectation of the outcome for the specified subgroups in
return for better prediction error over the entire data distribution. One approach
for unbiased estimation is to simply take the empirical mean of the outcome for
each subgroup. Empirical means are unbiased and efficient nonparametric maxi-
mum likelihood estimators for subgroup-specific conditional expectations, though
they are unlikely to perform well as an estimator of the prediction function. This
motivates the construction of estimators of the prediction function that, in addi-
tion to performing well in terms of risk, also map into the empirical means for the
subgroups of interest. Certainly for non-technical and technical researchers alike,
it is often reassuring to see that the empirical mean of the predictions is equal to
observed empirical mean of the outcome in sample data. In other words, the ex-
pected matches the observed. This is property has been called calibration (Harrell
Jr., Lee, and Mark, 1996), and is often taken into consideration in the assessment of
predictions.

Several methods have been suggested to assess calibration defined in this
way (Hosmer, Hosmer, Cessie, and Lemeshow, 1997, Tsiatis, 1980). The Hosmer
and Lemeshow goodness-of-fit test, for example, partitions observations in a sam-
ple by the deciles of the prediction space and then compares the observed outcomes
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within each decile with the expected outcomes under the estimated model. Tsiatis’
suggested test is largely similar except that the partitioning is constructed in the
covariate space, rather than the prediction space. In each test, the null hypothe-
sis is that the conditional expectation of the estimator’s prediction is unbiased for
the conditional expectation of the outcome given the partitioning. Moving beyond
the assessment of calibration, the literature also discusses methods for imparting
the calibration property both in the context of the parametric logistic regression
(Steyerberg, Borsboom, van Houwelingen, Eijkemans, and Habbema, 2004, Har-
rell Jr., Lee, and Mark, 1996) and also in data-adaptive machine learning (Vinterbo
and Ohno-Machado, 1999).

In the present article we propose a targeted maximum likelihood estimator
(TMLE) (van der Laan and Rose, 2011) for the calibration of a prediction function
estimator. Specifically, our procedure uses the TMLE to update an initial predic-
tion function estimator such that the updated predictions map into an unbiased and
efficient estimator of subgroup-specific conditional expectations. This is readily
accomplished because subgroup-specific conditional expectations are themselves
smooth pathwise-differentiable parameters, which can be characterized as a func-
tion of the distribution of the data. The TMLE works by fluctuating an initial predic-
tion function estimator in such a way that the updated prediction function estimator
solves the efficient influence curve estimating equation for these smooth features.
As we show, the subgroups may be defined via a partitioning of the data in either the
covariate space or the prediction space of the estimator itself. In the first case, the
TMLE converges in a single step. In the latter case the TMLE enforces an implicit
constraint on the prediction function estimator itself, which requires an iterative
procedure. Our work is a novel application of the TMLE in the context of predic-
tion. Our TMLE procedure also has important consequences for the use of some
standard goodness-of-fit tests often used in the context of prediction. In particular,
we show that any initial estimator can be updated such that the test statistic for a
Hosmer and Lemeshow or Tsiatis-type goodness-of-fit test will be exactly 0 for the
data on which the estimator was fit, which implies that the calibration property is
insufficient for model selection. We explore through simulation the impact of en-
forcing implicit calibration constraints on prediction performance defined in terms
of a valid loss function.

The article is organized as follows. Section 2 provides a brief overview of
targeted maximum likelihood estimation. Section 3 develops our new TMLE in the
context of a single time-point prediction of an outcome given covariates. We dis-
cuss in turn two separate single step TMLEs for calibration of prediction functions
estimator for both univariate and multivariate features, i.e., the conditional expec-
tation of the outcome for single or multiple subgroups. We then show how this
same approach may be incorporated into an iterative procedure to enforce implicit
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constraints on the prediction function estimator. Illustrative examples focus on a
binary outcome, though the results extend trivially to the continuous case. Section
4 extends the ideas in Section 3 to develop a TMLE for the calibration of an esti-
mator of the conditional intensity function of a time-dependent counting process.
Again, we demonstrate the approach for calibration in single or multiple subgroups,
and illustrate calibration for parameters defined as weighted averages of the time-
specific intensities. Section 5 presents simulation results to investigate both (1) the
impact of the TMLE on predictive performance assessed in terms of a valid loss
function, and (2) bias reduction for the calibration parameter in a large independent
validation data set. Section 6 applies the TMLE for calibration of a time-dependent
stroke intensity function in persons with atrial fibrillation.

2 Targeted maximum likelihood estimation
TMLE was first introduced in 2006 by Laan and Rubin (van der Laan and Ru-
bin, 2006). TMLEs are two stage substitution estimators for finite-dimensional
pathwise-differentiable parameters, represented as mappings from the distribution
of the data to a vector of real numbers. The first stage uses data-adaptive loss-
based estimation, e.g., Super Learning (van der Laan, Polley, and Hubbard, 2007),
to construct an initial estimate the components of the probability distribution of the
data that are required in the substitution estimator. The second stage ‘targets” the
fits obtained from the first stage towards the parameter of interest through a maxi-
mum likelihood step. The targeting step relies on a particular parametric submodel
comprised of (1) the initial first stage estimator as an offset, and (2) a (possibly
multivariate) covariate. The covariate is constructed such that the “scores” of the
submodel span the efficient influence curve (Bickel, Klaassen, Ritov, and Wellner,
1993) of the parameter of interest. Heuristically, the covariate defines a direction
in which we must fluctuate our initial estimator to remove bias for the parameter of
interest, and is therefore often called the “clever covariate.” The parameter of the
submodel represents the magnitude of the fluctuation and is estimated with maxi-
mum likelihood. The resulting TMLE is then a substitution estimator that solves the
efficient influence curve score equation and the efficient influence curve estimating
equation (if one exists). This implies that the TMLE is therefore unbiased and effi-
cient for the parameter of interest. TMLEs have been developed for the estimation
of marginal means or causal effect parameters in several data structures including
point treatment (van der Laan and Rubin, 2006, van der Laan and Gruber, 2010,
Porter, Gruber, van der Laan, and Sekhon, 2011), right-censored survival (Stitle-
man and van der Laan, 2010, Stitleman, Wester, De Gruttola, and van der Laan,
2011), longitudinal data structures with time-dependent covariates (van der Laan,
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2010a,b), and case-control settings (van der Laan, 2008). TMLE has also been used
to estimate variable importance measures (Tuglus and van der Laan, 2011).

In the present article we present a new TMLE for prediction calibration.
In the first stage of the TMLE we construct an initial estimator of the prediction
function. We then specify data subgroups of interest and define the calibration with
respect to these subgroups as a parameter of the distribution of the data that depends
in part on our initial estimator of the prediction function. The second stage of the
TMLE then targets the initial estimator towards the calibration parameter. The re-
sulting updated prediction function estimator is then calibrated, i.e., it maps into the
empirical estimator for each of the a priori specified subgroups. An iterative ver-
sion of the TMLE procedure may also be used to enforce implicit constraints such
that estimated prediction function achieves the calibration property for subgroups
defined in the prediction space of the estimator itself. These results are driven by
the fact that the TMLE solves the efficient influence curve estimating equation. For
brevity we reserve discussion of the efficient influence curves for the Appendices
at the end of this article, and instead focus on the procedural implementation and
the resulting properties of the TMLE. In brief, every TMLE procedure includes the
following four key ingredients:

1. Initial estimator
2. Choice of loss function
3. Parametric fluctuation submodel
4. Updating step (possibly iterated)

The examples in this article use data-adaptive Super Learning for the initial predic-
tion function estimator. We use the negative Bernoulli loglikelihood loss function,
and parametric logistic regression submodels. Updating steps are carried out with
standard logistic regression software.

3 TMLE for calibration of a conditional expectation
function estimator

In this section we present the TMLE for calibration of the conditional expectation
function. We begin with a definition of the data structure, a statistical model for
the data, and the conditional expectation of the outcome formally defined as a pa-
rameter mapping from the statistical model to a space consisting of functions of the
covariates. We then identify the calibration parameter as the conditional expecta-
tion of the outcome given a particular partitioning of the data. This is the parameter
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targeted by the TMLE for calibration. The TMLE starts with an initial estimator of
the conditional expectation of the outcome as a function of the covariates, and then
uses a targeted updating step to remove bias for the second parameter. The result-
ing TMLE maps our initial estimator into the set of empirical means within each
data partition, which is indeed an unbiased and efficient estimator of the conditional
expectation of the outcome given the partitioning. For brevity we only discuss the
TMLE procedure along with the properties of the resulting estimator, reserving
details on the derivation of influence curves for Appendices. For the sake of pre-
sentation, we will use a working assumption that all random variables are discrete,
with the understanding that all results may be generalized to case involving con-
tinuous random variables and their densities by defining an appropriate dominating
measure.

3.1 Data, model, and conditional expectation parameter

Suppose we observe n independently and identically distributed copies of a data
structure given by O = (W,Y )∼ P0 ∈M , where W ∈Rd is a d-dimensional vector
of covariates and Y ∈ {0,1} is a binary outcome. M represents the collection of all
possible probability distributions of the data, P, and the subscript “0” on P0 denotes
the single true probability distribution. The distribution P0 may be decomposed into
orthogonal components given by marginal distribution of W denoted QW,0 and the
conditional distribution of Y given W denoted QY,0.

P0(O) = P0(Y,W ) = P0(Y |W )P0(W ) = QY,0QW,0

We defined the prediction function parameter as the conditional expectation of Y
given W , here denoted Q̄Y,0, which is a function of W , i.e., Q̄Y,0 = Q̄Y,0(W ) =
E0[Y |W ]. Consider the negative loglikelihood loss function.

L (Q̄Y )(O) = L (Q̄Y )(W,Y ) =−log[Q̄Y (W )Y (1− Q̄Y (W ))1−Y ]

The true parameter can now be identified as

Q̄Y,0 = argmin
Q̄Y

E0[L (Q̄Y )(O)]

where E0 is the expectation under the true distribution P0.

3.2 Initial estimator of the conditional expectation, Q̄0
Y,n

In the nonparametric statistical model, one can never be sure a priori of the optimal
estimator for the prediction function Q̄Y,0. In practice, several candidate estimators
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of this parameter may be worth consideration. For example, we may propose sev-
eral parametric estimators characterized by different “functional forms”, or we may
propose several semiparametric or nonparametric estimators characterized by dif-
ferent search strategies and tuning parameters. We call this collection of candidate
estimators a library. There are several proposed methods for combining the pre-
dictions from candidate estimators in such a library. These are known as ensemble
methods in the machine learning literature and several ensembles have been shown
to outperform individual candidate estimators in several practical settings.

The Super Learner is an ensemble method that assigns weights to each of
the candidate estimators in the library such that the resulting weighted ensemble
minimizes the cross-validated risk. The asymptotic optimality of this procedure is
based on “oracle” inequality results for cross validation proven in (van der Laan,
Dudoit, and Keles, 2004). In brief, the “oracle” is defined as the weighted combi-
nation of candidate estimators contained in the library that achieves the lowest true
risk. In practice this can never be known with certainty because we never know the
true data distribution P0 with certainty. However, it turns out that if the none of the
estimators in the library converge to the true parameter at a parametric,

√
n, rate

then the the Super Learner is asymptotically equivalent with the “oracle” selector
with respect to cross validated risk. On the other hand, if one of the candidate esti-
mators does converge to the true parameter at a parametric rate, the Super Learner
converge will converge at the near-parametric, log(K)

n , rate where K is the number of
candidate estimators contained in the library (van der Laan, Polley, and Hubbard,
2007).

3.3 Calibration parameter ψ0 = Ψ(QW,0, Q̄Y,0)

Now suppose we would like to construct an estimate of the prediction function
that has the calibration property for some particular subgroup of the population.
That is, we want our estimator to map into an unbiased estimate of the conditional
expectation of the outcome within the subgroup. Start by defining S = S(W ) to be a
real-valued summary measure of the covariates W , and let I(A ) {S} be the indicator
that S lies in the set defined by A .

ψ0 = Ψ(P0) = Ψ(QW,0, Q̄Y,0) = EQW,0[Y |I(A ) {S}= 1] = EQW,0[Q̄Y,0|I(A ) {S}= 1]

This makes explicit that ψ0 is a scalar computed as a mapping, Ψ : M →R, applied
to P0. Further, the mapping can be represented two ways, the first involving the
outcome Y , and the second involving the prediction function Q̄Y,0.
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Our goal is now to construct a substitution TMLE, Ψ(QW,n, Q̄∗Y,n), such that
Q̄∗Y,n performs well as an estimator of Q̄Y,0, and Ψ(QW,n, Q̄∗Y,n) is unbiased and ef-
ficient for ψ0. As discussed previously the TMLE requires an initial estimator, a
choice of (valid) loss function, a parametric fluctuation submodel, and an updating
step. We will discuss these in turn. But first a discussion of the nonparametric
maximum likelihood estimator for ψ0 is worthwhile.

3.4 The empirical estimator of ψ0

First consider the nonparametric maximum likelihood empirical estimator of ψ0.

ψn =
1
n ∑

n
i=1YiIA {Si}

1
n ∑

n
i=1 IA {Si}

This estimator is unbiased and efficient for ψ0 in the nonparametric statistical model.
It follows that its influence curve is equal to the efficient influence curve, D∗(P0)(O),
for the mapping Ψ : M → R, except that we replace the empirical distribution,
which places probability mass 1

n on each observation, with the true distribution
P0. For brevity, we reserve a detailed description of D∗(P0)(O) for the Appendix.
Although ψn is unbiased and efficient for ψ0, it is often not a particularly good
estimate of Q̄Y,0. And this motivates our TMLE procedure.

3.5 Initial estimator ψ0
n = Ψ(QW,n, Q̄0

Y,n)

Note that our initial estimator has two components. The first corresponds to the
marginal distribution of W . We choose the empirical estimator QW,n, which places
probability mass 1

n on every observation. It turns out that this is already targeted
towards the estimation of ψ0. Thus our initial estimator takes the form

ψ
0
n = Ψ(QW,n, Q̄0

Y,n) =
1
n ∑

n
i=1 Q̄0

Y,n(Wi)IA {Si}
1
n ∑

n
i=1 IA {Si}

The second component, Q̄0
Y,n, is our initial estimator of the prediction function.

Recall that our estimator Q̄0
Y,n uses Super Learning to construct an optimal estimate

of Q̄Y,0, but not ψ0. Thus, our initial estimator Ψ(QW,n, Q̄0
Y,n) is likely to have at

least some bias with respect to ψ0.
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3.6 TMLE ψ∗n = Ψ(QW,n, Q̄∗Y,n)

Our goal now is to construct a TMLE that updates our initial estimator Ψ(QW,n, Q̄0
Y,n)

to Ψ(QW,n, Q̄∗Y,n) such that the updated estimator is unbiased and efficient for ψ0,
the conditional expectation of the outcome Y for a particular subgroup of the data.
Start with the negative Bernoulli loglikelihood loss function

L (Q̄Y )(O) = L (Q̄Y )(W,Y ) =−log[Q̄Y (W )Y (1− Q̄Y (W ))1−Y ]

Then define a fluctuation through our initial estimator, Q̄0
Y,n(W ), with a parametric

submodel, indexed by the univariate parameter ε .

logit(Q̄0
Y,n(ε)) = logit(Q̄0

Y,n)+ ε
I(A ) {S}

EQW,0 [I(A ) {S}]

where logit(Q̄0
Y,n) = log

( Q̄0
Y,n

1−Q̄0
Y,n

)
serves as a fixed offset in the linear predictor and

I(A ){S}
EQW,0 [I(A ){S}]

serves as a covariate. Because EQW,0[I(A ) {S}] in the denominator of

this covariate is a constant, its value can be subsumed in the estimation of ε , and
we may define the submodel more simply as

logit(Q̄0
Y,n(ε)) = logit(Q̄0

Y,n)+ εH(S)

where H(S) = I(A ) {S}. Heuristically, H this is the direction of the fluctuation, and
ε is the magnitude, which is determined with maximum likelihood estimation, or
equivalently, with minimization of the empirical negative Bernoulli loglikelihood
loss function.

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y,n(ε))(Oi)

This can be achieved with standard univariate logistic regression software, and con-
verges in a single step. The targeted update is

Q̄∗Y,n = Q̄0
Y,n(εn)

The TMLE Ψ(QW,n, Q̄∗Y,n) now solves the efficient influence curve estimat-
ing equation ∑

n
i=1 D∗(QW,n, Q̄∗Y,n)(Oi) = 0 for ψ0. This implies that Ψ(QW,n, Q̄∗Y,n)

is unbiased and efficient for ψ0 and is equivalent to the empirical estimator, i.e.,
the empirical mean of Y amongst observations for which S(W ) ∈ A . It is also
worth noting that because the TMLE is an asymptotically linear estimator, we can
estimate its variance with 1

n2 ∑
n
i=1[D

∗(QW,n, Q̄∗Y,n)(Oi)]
2.
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3.7 TMLE for calibration for several subgroups

Now say we want a prediction function estimator Q̄∗Y,n(W ) that is calibrated with re-
spect to several subgroups of the data. In medical outcome prediction, for example,
these subgroups might be defined in terms of the covariate space, e.g., men over age
65, women with a history of comorbidities, etc. Formally, we want the estimator
to map into an unbiased and efficient estimator of a vector calibration parameter.
Let I(A j) {S}= S(W ) ∈A j : j ∈ 1, ..,J corresponding with a partitioning of the out-
comes space for S. Our goal now is to construct an estimator Q̄∗Y,n of Q̄Y,0 that maps
into an unbiased estimator of the J-dimensional parameter vector

Ψ(P0) =

ψ0,1
...

ψ0,J

=

E0[Y |I(A1) {S}= 1]
...

E0[Y |I(AJ) {S}= 1]


The TMLE for this is quite similar to that for a scalar parameter. Again

we will take the empirical distribution and the Super Learner, (QW,n, Q̄0
Y,n), as the

initial estimator and the negative Bernoulli loglikelihood as the loss function. The
only difference in the procedure is that our parametric submodel is now indexed
by a J-dimensional parameter vector ε = {ε1, . . . ,εJ} and a multivariate covariate
H j(S) = I(A j) {S} : j ∈ 1, ..,J, such that the score of ε spans the J-dimensional
vector efficient influence curve. This submodel is

logit(Q̄0
Y,n(ε)) = logit(Q̄0

Y,n)+ ε1H1(S)+ · · ·+ εJHJ(S)

The TMLE update step is then

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y,n(ε))(Oi)

This can be achieved with standard multiple logistic regression software and con-
verges in a single step. The targeted update is then

Q̄∗Y,n = Q̄0
Y,n(εn)

Note also that the single step convergence is true even for a partitioning of the
outcomes space for S that contains overlapping subsets. The resulting estimator
solves the J-component vector efficient influence curve estimating function, and is
therefore unbiased and efficient for the vector parameter. Again, the TMLE will
equal the empirical estimators for each of the components of the parameter vector.
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3.8 TMLE for implicit constraints on Q̄∗Y,n

Now suppose we want to construct a prediction function estimator Q̄∗Y,n(W ) that will
be used to classify patients as “low”, “medium”, or “high” risk subsets according
to some predetermined clinical cut points in the prediction space. In this scenario
it is reassuring to see that, within each subset, the expected proportion of events
according to the prediction function estimator is equivalent to the actual proportion
of events. That is, we would like to achieve the calibration property for subgroups
defined in the prediction space of the estimator. This involves enforcing an implicit
constraint on the estimator Q̄∗Y,n itself.

Formally, let (I(a j,b j){Q̄
∗
Y,n} : j ∈ 1, ..,J) = (Q̄∗Y,n(W ) ∈ (a j,b j) : j ∈ 1, ..,J)

corresponding with a partitioning of the prediction space for the estimator of the
conditional mean of Y given W , i.e., where for some j, (a j,b j) is an interval that
defines a set of real numbers. The goal is to construct an estimator Q̄∗Y,n of Q̄Y,0 that
is unbiased and efficient for the vector parameter

Ψ(P0) =

EQW,0[Q̄Y,0|Q̄∗Y,n(W ) ∈ (a1,b1)]
...

EQW,0[Q̄Y,0|Q̄∗Y,n(W ) ∈ (aJ,bJ)]

=

EQW,0 [Y |Q̄∗Y,n(W ) ∈ (a1,b1)]
...

EQW,0 [Y |Q̄∗Y,n(W ) ∈ (aJ,bJ)]


The TMLE procedure is largely the same as that outlined in the previous section,
except that here, the multivariate covariate in the parametric submodel depends on
the estimator itself, (H j(Q̄k

Y,n) : j ∈ 1, ..,J) = (I(a j,b j){Q̄
k
Y,n(W )} : j ∈ 1, ..,J). Thus

the TMLE algorithm requires iteration as follows.

Initialize:

logit(Q̄0
Y,n(ε)) = logit(Q̄0

Y,n)+ ε1H1(Q̄0
Y,n)+ · · ·+ εJHJ(Q̄0

Y,n)

ε
0
n = argmin

ε

1
n

n

∑
i=1

L (Q̄0
Y,n(ε))(Oi)

Q̄1
Y,n = Q̄0

Y,n(ε
0
n )

Iterate:

logit(Q̄k
Y,n(ε)) = logit(Q̄k

Y,n)+ ε1H1(Q̄k
Y,n)+ · · ·+ εJHJ(Q̄k

Y,n)

ε
k
n = argmin

ε

1
n

n

∑
i=1

L (Q̄k
Y,n(ε))(Oi)
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Q̄k+1
Y,n = Q̄k

Y,n(ε
k
n)

Stop when:
‖εk

n‖ ≈ 0

Again, the estimation of ε at each step can be achieved with standard soft-
ware for multivariate logistic regression, and iterations are easily programmed with
a loop. The final targeted update is Q̄∗Y,n. The TMLE Ψ(QW,n, Q̄∗Y,n) solves the
vector efficient influence curve estimating equation and is therefore unbiased and
efficient. This also implies that the TMLE equals the empirical mean of Y given
Q̄∗Y,n(W ) ∈ (a j,b j) : j ∈ 1, . . . ,J.

4 TMLE for calibration of the conditional intensity
of a counting process

In this section we present the TMLE for calibration of the conditional intensity of
a time-dependent counting process. This includes, as a special cases, the hazard
function in right-censored survival data with or without time-dependent covariates.
We begin with description of the data structure, the nonparametric statistical model
for the data, and the conditional intensity function parameter, defined as a mapping
from the statistical model to a parameter space consisting of functions of the event
history, covariates, being “at risk”, and the time point, t. We identify several calibra-
tion parameters corresponding to calibration of (1) the t-specific conditional inten-
sity; (2) the conditional intensity function over all time points; and (3) a weighted
average of the t-specific intensities. These parameters are expressed as mappings
applied to the statistical model. Each TMLE starts with an initial estimator of the
conditional intensity function of the event history, and then uses a TMLE updating
step to remove bias for the calibration parameters. Again, for brevity we discuss
the TMLE procedure along with the properties of the estimator, reserving details
on the influence curves for the Appendix.

4.1 Data, model, and conditional intensity parameter

Here we work with the counting process framework to describe time-dependent
data structures that include time-dependent covariates. For the sake of presentation,
we will assume that all random variables are discrete and that time is measured
in discrete units. The latter assumption is especially reasonable in practical data
analysis where time is measured in discrete units like seconds, days, years, etc. The
truly continuous time case may be approximated by decreasing the length of the
discrete time interval.
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Consider a random variable T that represents the time until some event of in-
terest. Let L1(t) = I(T < t) be the event counting process. Let Y (t) be the indicator
that this event counting process jumps just after time t, i.e., Y (t) = L1(t+1)−L1(t).
R(t) is the indicator that a subject is in the “risk set” at time t. In right-censored
survival data, for example, a person is not included in the risk set after they have
experienced the failure event or after they have been censored. The counting pro-
cess framework is general and allows a subject to enter, exit, or re-enter the “risk
set” for any time intervals prior to the failure event or censoring. Finally let Ft
is the history up to time t. It includes both baseline (time-independent) and time-
dependent covariates. The observed data for any single subject at some time-point
t can be represented as O(t) = (R(t),R(t)Ft ,R(t)Y (t)), and the observed data over
all time-points is O = (O(t) : t = 1, . . . τ). Suppose we observe n independently
and identically distributed copies from O ∼ P0 ∈M . Let the statistical model M
containing P0 be nonparametric.

Consider the t-specific conditional intensity Q̄Y (t),0(t), i.e., the conditional
expectation of Y (t) given Ft and R(t) = 1 for some t. The negative Bernoulli
loglikelihood loss function for this t-specific intensity is

L (Q̄Y (t)(t))(O(t))=−R(t)log[Q̄Y (t)(t)(Ft ,R(t))Y (t)(1−Q̄Y (t)(t)(Ft ,R(t)))1−Y (t)]

Note that R(t) appears outside of the loglikelihood because we are only interested
in the intensity for persons who are in the risk set at time t, i.e., conditional on
R(t) = 1. The t-specific intensity Q̄Y (t),0(t) can be identified as the minimizer of the
t-specific risk

Q̄Y (t),0(t) = argmin
Q̄Y (t)(t)

E0[L (Q̄Y (t)(t))(O(t))]

However, we want to estimate a prediction function for every t, i.e., the
intensity function. Q̄Y (t),0 = (E0[Y (t)|Ft ,R(t) = 1] : t = 1, . . . ,τ). Consider the
sum loss function over all the t-specific negative loglikelihood losses

L (Q̄Y (t))(O) =
τ

∑
t=1

L (Q̄Y (t)(t))(O(t))

Our intensity function parameter can be identified as the minimizer of the
expectation of this sum loss function,

Q̄Y (t),0 = argmin
Q̄Y (t)

E0[L (Q̄Y (t))(O)]
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4.2 Initial estimator of conditional intensity, Q̄0
Y (t),n

We suggest a data-adaptive Super Learner for the initial estimator of the conditional
intensity function, Q̄0

Y (t),n. The procedure involves setting up a long format data set
with one row per subject per time-point for which R(t) = 1. Then, propose a library
of candidate estimators that predict binary the binary outcome Y (t) as a function
of the history, Ft . This library could include, for example, the null (unconditional
mean) estimator, logistic regression, linear discriminant analysis, artificial neural
network multilayer perceptrons, decision trees, or boosting algorithms, etc. The
Super Learner combines the outputs of each candidate estimator with a set of convex
weights such that the resulting ensemble minimizes the V-fold cross validated risk,
defined as the expected sum loss over all t-specific negative Bernoulli loglikelihood
loss functions.

4.3 Calibration of the intensity at a particular time-point, φ0(t)

Now suppose we would like our estimate of the prediction function to be calibrated
with respect to a particular data subgroup at a particular time-point t. This means
that our estimator should map into an unbiased estimate of some t-specific scalar
parameter of the distribution of the data. Let St = S(Ft) be a real-valued summary
measure of the history at a time t. Consider the scalar t-specific parameter

φ0(t) = Φ(P0) = E0[Q̄Y (t),0(t)|I(A ){St}= 1,R(t) = 1] = E0[Y (t)|I(A ){St}= 1,R(t) = 1]

where I(A ){St} is the indicator that the summary St measure falls in a set A in the
outcome space for S.

As you might expect, the TMLE for this t-specific parameter is largely the
same as the single-time point binary outcome case discussed in section 3.6. With the
Super Learner fit as the initial estimator Q̄0

Y (t),n and the t-specific negative Bernoulli
loglikelihood as the loss function, the TMLE algorithm proceeds as follows:

logit(Q̄0
Y (t),n(ε)) = logit(Q̄0

Y (t),n)+ εtHt(R(t),St)

where Ht(R(t),St) =
R(t)

E0[I(A ){St},R(t)]

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y (t),n(ε))(Oi)

This TMLE converges in a single step

Q̄∗Y (t),n = Q̄0
Y (t),n(εn)
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4.4 Calibration of the intensity over all time-points, (φ0(t) : t =
1, . . . ,τ)

Now suppose we wish to calibrate our estimator for a particular data subgroup at
every time-point. This means our estimator should map into an unbiased and effi-
cient estimate a parameter that is a function of t. Again, let St = S(Ft) be some
real-valued summary measure of the history at a time t. Consider the function pa-
rameter (φ0(t) : t = 1, . . . ,τ) = Φ(P0) = (E0[Q̄Y (t),0(t)|I(A ){St}= 1,R(t) = 1] : t =
1, . . . ,τ) = (E0[Y (t)|I(A ){St}= 1,R(t) = 1] : t = 1, . . . ,τ) where I(A ){St} is the in-
dicator that the summary St measure falls in a set A in the outcome space for S.
This can also be viewed as a (possibly high-dimensional) vector parameter. The
TMLE for this parameter must solve the efficient influence curve estimating equa-
tions at all t = 1, . . . ,τ . The necessary fluctuation is then given by a τ-dimensional
parametric submodel given by

logit(Q̄0
Y (t),n(ε)) = logit(Q̄0

Y (t),n)+ ε1H1(R(1),S1)+ . . .+ ετHτ(R(τ),Sτ)

where Ht(R(t),St) =
R(t)

E0[I(A ){St},R(t)]

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y (t),n(ε))(Oi)

This TMLE converges in a single step

Q̄∗Y (t),n = Q̄0
Y (t),n(εn)

This TMLE may, however, be impractical if events are rare or there are
many time points. In the latter case, the parametric submodel used to fluctuate our
initial estimator becomes very high dimensional, and this may lead to practical dif-
ficulties in the estimation of the fluctuation submodel itself. It may therefore seem
more reasonable to target a less ambitious parameter such as a weighted average of
(φ0(t) : t = 1, . . . ,τ).

4.5 The “crude rate” φ̄0 as a weighted average of (φ0(t) : t =
1, . . . ,τ)

In right-censored survival data, an estimate of the “crude rate” is often defined as
the number of observed events divided by total amount of observed person-time “at
risk.” It turns out that this crude rate can be expressed as a weighted average of the
t-specific intensities, where the weights are determined by the number of persons
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“at risk” at each time point. Consider the parameter φ̄0 corresponding to a weighted
average of φ0(t) over all t = 1, . . . ,τ .

φ̄0 =
1

∑t E0[I(A ){St},R(t)]∑t
E0[I(A ){St},R(t)]φ0(t)

We show below how this is parameter is equivalent to the common definition of the
empirical “crude rate.” Start by replacing E0, the expectation under P0, with En, the
expectation under the empirical distribution.

1
∑t En[I(A ){St},R(t)]∑t

En[I(A ){St},R(t)]φ0(t)

=
∑t En[I(A ){St},R(t)]Φ(QFt ,n(t), Q̄

∗
Y (t),n(t))

∑t En[I(A ){St},R(t)]

=
∑t En[I(A ){St},R(t)]

1
n ∑

n
i=1 Yi(t)I(A ){St,i}Ri(t)

1
n ∑

n
i=1 I(A ){St,i}Ri(t)

∑t En[I(A ){St},R(t)]

=
∑t

1
n ∑

n
i=1[I(A ){St,i}Ri(t)]

1
n ∑

n
i=1 Yi(t)I(A ){St,i}Ri(t)

1
n ∑

n
i=1 I(A ){St,i}Ri(t)

∑t
1
n ∑

n
i=1[I(A ){St,i}Ri(t)]

=
∑t ∑

n
i=1Yi(t)I(A ){St,i}Ri(t)

∑t ∑
n
i=1 I(A ){St,i}Ri(t)

4.6 TMLE for the crude rate, φ̄∗n = Φ̄(QFt ,n, Q̄
∗
Y (t),n)

We must now construct a targeted estimator, Q̄∗Y (t),n = {Q̄∗Y (t),n(Ft ,R(t) = 1)(t) :
t = 1, . . . ,τ} via a fluctuation of our initial estimator Q̄0

Y (t),n. Recall the sum loss
over all t-specific negative loglikelihood loss functions

L (Q̄Y )(O)=∑
t

L (Q̄Y (t)(t))(O(t))=−∑
t

R(t)log
{
(Q̄Y (t))

Y (t)(1−Q̄Y (t))
(1−Y (t))

}
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In this case, the parametric fluctuation submodel is a univariate logistic regression
pooled over all t

logit(Q̄0
Y (t),n(ε)) = logit(Q̄0

Y (t),n)+ εCH(R(t),St)

where H(R(t),St) = R(t)I(A ){St}, and C = 1
∑t E0[R(t),I(A ){St}] . Because C is a con-

stant, its value can be subsumed in the estimation of ε , and the submodel can be
expressed more simply as

logit(Q̄0
Y (t),n(ε)) = logit(Q̄0

Y (t),n)+ εH(R(t),St)

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y (t),n(ε))(Oi)

This TMLE converges in a single step

Q̄∗Y (t),n = Q̄0
Y (t),n(εn)

The targeted update Q̄∗Y (t),n, along with the empirical marginal distributions
(QFt ,n : t = 1, . . . ,τ), solve the efficient influence curve estimating equation for
φ̄0 and can therefore be mapped into an unbiased and efficient estimator of the
weighted average intensity given I(A ){St}= 1. It also implies that TMLE mapping
will be equal to the empirical “crude rate.”

4.7 TMLE for a vector of crude rates

In practice we may want our intensity function estimator to map into an unbiased
and efficient estimation of the “crude rate” for several subpopulations according to
their histories. For example, in medical outcome prediction we may desire an esti-
mator that maps into an unbiased estimator estimator for the crude rates for several
key patient subgroups. This corresponds with the unbiased estimation of a vector of
weighted average parameter. The TMLE for the scalar weighted average discussed
in the previous section is easily extended to a J-dimensional vector weighted aver-
age parameter corresponding to a partitioning of the outcomes space for S(Ft). The
only difference is that the parametric submodel becomes J-dimensional with a co-
variate corresponding to each subgroup defined by the partitioning. The parametric
fluctuation submodel is pooled over all t

logit(Q̄0
Y (t),n(ε)) = logit(Q̄0

Y (t),n)+ ε1H1(R(t),St)+ . . .+ εJHJ(R(t),St)
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where H j(R(t),St) = R(t)I(A j){St}.

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y (t),n(ε))(Oi)

This TMLE converges in a single step

Q̄∗Y (t),n = Q̄0
Y (t),n(εn)

The targeted update Q̄∗Y (t),n, along with the empirical marginal distributions
(QFt ,n : t = 1, . . . ,τ), solves the efficient influence curve estimating equation for
the J-dimensional vector parameter φ̄0 and therefore maps into an unbiased and
efficient estimator of the weighted average intensities corresponding to the specific
partitioning. That is, the TMLE mapping will be equal to the empirical “crude rate”
for each of the subgroups defined by the partitioning.

4.8 TMLE to enforce a vector of implicit constraints on Q̄∗Y (t),n

Suppose we now use our conditional intensity function estimator to classify patients
as “low”, “medium”, or “high” risk subsets according to the predictions from our
estimator of Q̄Y (t),0. It is reassuring to know that the empirical mean of the predic-
tions within each subset is unbiased and efficient for the true conditional intensity
within each subset. To achieve this, we enforce an implicit constraint on the esti-
mator, Q̄∗Y (t),n, itself. The TMLE described in the previous section may be extended
to achieve this through an iterative procedure.

Let I(a j,b j){Q̄
∗
Y (t),n} be the indicator that Q̄∗Y (t),n ∈ (a j,b j) : j = 1, . . . ,J cor-

responding with a partitioning of the prediction space for our estimator of the con-
ditional intensity, i.e., where (a j,b j) is an interval that defines a set of real numbers.
The goal is now to construct an estimator Q̄∗Y (t),n of Q̄Y (t),0 that maps into an unbi-
ased and efficient estimator of the vector parameter

Φ(P0) = (E0[Y (t)|I(a j,b j){Q̄
∗
Y (t),n}= 1,R(t) = 1] : j = 1, ,J)

This time, let the covariate of the parametric fluctuation model be

(H j(Ft ,R(t)) : j = 1, ,J) = (R(t)I(a j,b j){Q̄
∗
Y (t),n} : j = 1, ,J)

Because this involves the estimator itself the TMLE procedure must be iter-
ated until convergence.
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Step 1:

logit(Q̄0
Y (t),n(ε)) = logit(Q̄0

Y (t),n)+ ε1H1(R(t), Q̄0
Y (t),n)+ . . .+ εJHJ(R(t), Q̄0

Y (t),n)

εn = argmin
ε

1
n

n

∑
i=1

L (Q̄0
Y (t),n(ε))(Oi)

Q̄1
Y (t),n = Q̄0

Y (t),n(εn)

Iterate:

logit(Q̄k
Y (t),n(ε)) = logit(Q̄k

Y (t),n)+ ε1H1(R(t), Q̄k
Y (t),n)+ . . .+ εJHJ(R(t), Q̄k

Y (t),n)

ε
k
n = argmin

ε

1
n

n

∑
i=1

L (Q̄k
Y (t),n(ε))(Oi)

Q̄k+1
Y (t),n = Q̄k

Y (t),n(ε
k
n)

Stop when:
‖εk

n‖ ≈ 0

4.9 TMLE in the exponential model

Consider a restricted model where Q̄Y (t),0(t) : t = 1, . . . ,τ does not depend on t.
This implies that our calibration parameter (φ0(t) : t = 1, . . . ,τ) = φ0 also does not
depend on t. Readers familiar with parametric survival analysis will recognize that
this assumption corresponds with the conditional exponential distribution of sur-
vival times, and that the “crude rate” defined above is in fact the parametric maxi-
mum likelihood estimate of the conditional intensity or hazard function under this
model. We claim that the TMLE for φ̄0, the weighted average in the nonparametric
model, is also the TMLE for φ0 in this restricted exponential model. To see this,
note that neither the initial estimator Q̄0

Y (t),n nor the clever covariate H depends on
t. As a result, the targeted update Q̄∗Y (t),n also does not depend on t and thus stays
in the exponential model.

5 Simulation results
As shown in the previous sections of this paper the TMLE updating procedure
achieves the calibration property with respect to the empirical distribution of a given
sample for any initial estimator of the prediction function. This result suggests that
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calibration with respect to certain subgroups should not be viewed as a measure of
predictive performance, but instead as a reassuring constraint that we as investiga-
tors may choose to impose. Further, it forces us to think carefully about how we
should go about the estimation of the constrained prediction function.

In this section we consider two approaches, A and B. Both approaches are
two step procedures based in part on data-adaptive Super Learning. Each approach
begins with a library of three candidate estimators (parametric linear discriminant
analysis, additive logistic regression, and a recursive partitioning tree) of the pre-
diction function. Approach A first constructs a convex combination of these esti-
mators via data-adaptive Super Learning and then updates the convex combination
Super Learner fit using the TMLE procedure for calibration. In approach B we first
apply the TMLE update calibration procedure to each candidate estimator individ-
ually, and then we choose the calibrated estimator with the lowest cross validated
risk. This cross validation selector approach is a (discrete) special case of the gen-
eral Super Learner methodology. Approach B more closely follows the guidelines
indicated by Super Learning theory, while approach A is more computationally
convenient.

The important questions to ask are: (1) Which approach, A or B, achieves
the best predictive performance assessed with respect to a valid loss function? (2)
How does the TMLE update for calibration affect the overall predictive perfor-
mance of the initial estimator? and (3) Does the TMLE-calibrated prediction func-
tion reduce bias for the target calibration parameter as assessed in a large indepen-
dent validation data set?

Both approaches are applied to a training data set consisting of 10,000 ob-
servations, O1, . . . ,On, from the data structure O = (Y,W1,W2,W3,W4) ∼ P0. The
outcome Y ∈ {0,1} is binary. The first 2 covariates, W1,W2 ∼N (0,1) are standard
normal variates, and the last 2 covariates, W3,W4 ∼B(0.5) are Bernoulli variates
with probability 0.5. The prediction function is

Q̄Y,0 = E0[Y |W1,W2,W3,W4]

= expit(0.001W1 +0.01W2−0.5W3 +0.5W4

−0.2W3W1 +0.05W 3
1 − sin(W2W3)

where expit(x) = 1
1+e−x . The risk, here defined as the expectation of the negative

Bernoulli loglikelihood function, of this true prediction function is approximately
1.30.

Denote the initial estimator of this function for each approach, Q̄Y,n,A and
Q̄Y,n,B, respectively. For approach A we define 5 non overlapping data subgroups
defined by {Q̄Y,n,A ∈ (a j,b j) : j = 1, . . . ,5}. We then use TMLE to construct the up-
dated estimator Q̄∗Y,n,A with the calibration property {En[Q̄∗Y,n,A|Q̄∗Y,n,A ∈ (a j,b j)] =
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En[Y |Q̄∗Y,n,A ∈ (a j,b j)] : j = 1, . . . ,5}. We do the same thing for approach B. The
calibration subgroups used here were defined in the outcome space by predicted
probabilities in the the intervals [0, 0.37), [0.37, 0.50), [0.50, 0.56), [0.56, 0.62),
[0.62, 1.0), which correspond roughly to the quintiles of the true prediction func-
tion values. The resulting calibrated estimators Q̄∗Y,n,A and Q̄∗Y,n,B are compared with
respect to the risk on a large validation sample consisting of 1,000,000 observations.

Table 1: Calibration with Super Learner: Comparison of two approaches
Competing Approaches Risk on validation data

A. TMLE update applied to convex Super Learner 1.330
B. Discrete Super Learner applied to TMLE-updated library 1.335

Though the implementations of approaches A and B are considerably dif-
ferent, in this simulation their risks were close enough not to make any material
distinctions in the results. This suggests that the computationally convenient ap-
proach A, is reasonable to use in practice. In theory, one could consider the esti-
mator in approach A to be a particular additional calibrated candidate estimator to
be used in the library for approach B. The risk of the convex Super Learner used in
approach A before the TMLE calibration update was 1.334. This is not markedly
different from - and actually somewhat higher than - the risk after the TMLE cali-
bration update. Though somewhat unexpected, in this simulation the TMLE update
to enforce the calibration property slightly helped the predictive performance of the
initial estimator.

Table 2: Calibration property before and after TMLE update
Interval {a j,b j} E0[Y − Q̄Y,n,A|Q̄Y,n,A ∈ {a j,b j}] E0[Y − Q̄∗Y,n,A|Q̄∗Y,n,A ∈ {a j,b j}]

[0,0.37) -0.052 0.011
[0.37,0.50) 0.013 0.005
[0.50,0.56) 0.031 -0.012
[0.56,0.62) 0.020 -0.000
[0.62,1.0) -0.041 -0.019

Table 2 shows that, as expected, the TMLE update reduces bias for the cal-
ibration parameter on the large independent data set. The reason is that the TMLE
is exactly equal to the empirical mean (in the training data) of the outcome within
each subgroup, and these empirical means are unbiased and efficient estimators.
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6 Application: Calibration of the conditional stroke
intensity Super Learner

We now present an application of the new TMLE using data from the ATRIA-1
follow-up study from Kaiser Permanente Northern California (KPNC). ATRIA-1
is a longitudinal follow-up study of 13,559 clients of KPNC with Atrial Fibrilla-
tion (AF) during years 1996-2003. Persons with AF are known to be at elevated
risk of thromboembolic stroke compared to persons without AF. High risk patients
are often prescribed anticoagulation therapy with warfarin, but this treatment it-
self carries an increased risk of bleeding events. One of the research objectives of
ATRIA-1 was to develop a scheme to classify patients who were not currently on
warfarin as “low”, “medium”, or “high” stroke risk on the basis of their medical
history. This classification could then provide a simple summary to assist clinical
warfarin prescription decisions.

The first step was to construct a Super Learner for the conditional stroke
intensity function that mapped patient medical histories into an annualized stroke
rate. The predicted stroke rates were then classified as “low”, “medium”, or “high”
according to pre-specified clinical cut points. While minimization of the negative
Bernoulli loglikelihood risk provided a valid objective for the estimation of the
stroke intensity function, we also wished to enforce the calibration property in that
the expected stroke rates based on our Super Learner predictions were in fact close
to the actual stroke rates within each classification level. Thus, calibration in the
sense described in section 4.8 was a desired property.

6.1 Data, statistical model, and conditional stroke intensity pa-
rameter

The ATRIA-1 dataset includes time-dependent indicators of whether a patient was
on warfarin therapy, presence of certain comorbidities, and lab value measures.
The data structure is that of Section 4, namely, O = (R(t),R(t)Ft ,R(t)Y (t) : t =
1, . . . ,τ) = (O(t) : t = 1, . . . ,τ). Y (t) is the indicator that a person experienced
the stroke event on day t. Ft is the medical history which includes age, gender,
race, education, income, diagnoses of various comorbidities including prior stroke,
diabetes mellitus, heart failure, coronary artery disease, bleeding events, falls, de-
mentia, seizures, hypertension, etc., most recent lab values for total hemoglobin,
HgbA1C, total white blood cells, serum creatinine, estimated glomerular filtration
rate, and proteinuria. R(t) is the indicator that the person is in the “at risk” at time t.
Persons who experienced the event or were censored before time t necessarily have
R(t) = 0. Also, because we were only interested in the conditional stroke intensity
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in persons who were not currently on warfarin medication, R(t) was set to 0 during
time periods for which a person was on warfarin.

We allow the statistical model P0 of O to be nonparametric, with a condi-
tional stroke intensity parameter defined as the risk minimizer:

Q̄Y (t),0 = argmin
Q̄Y (t)

E0[L (Q̄Y (t))(O)]

where L (Q̄Y (t))(O) = ∑t L (Q̄Y (t)(t)(O(t)), and

L (Q̄Y (t)(t))(O(t)) =−R(t)log
{

Q̄Y (t)(Ft ,R(t))Y (t)(1− Q̄Y (t)(Ft ,R(t)))(1−Y (t))
}

6.2 Super Learner for the conditional stroke intensity

The initial estimator of the conditional intensity function, Q̄0
Y (t),n was fitted with the

Super Learner. The Super Learner methodology was implemented in SAS software
and consisted of 21 candidate estimators. These included: the null (unconditional
mean) estimator, logistic regression, linear discriminant analysis, artificial neural
network multilayer perceptrons, decision trees, and a boosting algorithm. In addi-
tion, several of the candidate estimators also included four strategies for explana-
tory variable selection: all main terms, main terms for which univariate logistic
regression gave a p-value < 0.05, main terms for variables with a positive vari-
able importance based on a decision tree, and main terms selected by a lasso-type
(L1-regularization) algorithm. We then estimated a convex weighted combination
of the candidates that minimized the V-fold cross validated risk, where the risk is
defined as the expected sum loss over all t-specific negative Bernoulli loglikelihood
loss functions. A full description of the SAS Super Learner implementation will be
given in an upcoming manuscript.

6.3 Crude rate calibration for three patient subgroups

For completeness, we start with a relatively simple demonstration of the TMLE cal-
ibration of the initial Super Learner estimator with respect to the crude stroke rate in
three broad patient subgroups: (1) men older than 75 years of age, (2) women with
prior history of stroke, and (3) persons with diabetes mellitus. This corresponds
with targeting the the 3-dimensional weighted average parameter

φ̄0 =
1

∑t E0[R(t), I(A j){St}]∑t
E0[R(t), I(A j){St}]φ0(t) : j = 1,2,3
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The TMLE for this vector parameter converges in a single step. The em-
pirical means of the initial estimator, the TMLE, and the nonparametric empirical
estimator are given in Table 3 below.

Table 3: Calibration of intensities (strokes/person-year) by patient subgroups
Patient Mean of Mean of Empirical crude
subgroup initial estimator TMLE estimator “stroke rate”

Men, age > 75 2.52 2.47 2.47
Women with prior stroke 7.02 8.05 8.05
Persons with diabetes 2.98 3.01 3.01

6.4 Crude rate calibration for “low”, “medium”, and “high”
risk groups

We now present the calibration for the three-level “low”, “medium”, and “high”
stroke incidence/intensity classification system. Under the current clinical guide-
lines “low” was defined as an annualized intensity of less than 1 stroke per 100
patients per year, “medium” was between 1 and 2 strokes per 100 patients per year,
and “high” was greater than 2 strokes per 100 patients per year.

The within class mean predictions from our initial Super Learner estimator
were reasonably close to the within class empirical stroke rates, but they were not
completely unbiased for this calibration parameter. We used the TMLE procedure
outlined in section 4.8 to calibrate our initial Super Learner estimator, such that it
mapped into a unbiased and efficient estimator of the within-class stroke rates. The
results are given in Table 4 below.

Table 4: Calibration of intensities (strokes/person-year) by risk class
Risk Initial estimator TMLE
Class Crude rate Mean prediction Crude rate Mean prediction

“low” 0.36 0.58 0.40 0.40
“medium” 1.30 1.46 1.42 1.42

“high” 4.29 3.87 4.29 4.29

The TMLE calibration procedure achieved convergence after 3 iterations.
As shown above, the final estimator is perfectly calibrated in that it maps into the
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empirical stroke rate within each risk class, and is therefore an unbiased and effi-
cient estimator of the within-class stroke rate parameter. Here one of the interesting
aspects of the implicit constraints becomes apparent. Note that because clinical risk
classes are defined by the estimator itself, as the estimator is updated, the empirical
stroke rates within each class are also updated. This is why the TMLE for implicit
constraints on the estimator itself requires iteration. It also shows explicitly, why
Hosmer and Lemeshow type goodness-of-fit tests may not be particularly useful in
the context of model selection, particularly when applied to the data used to fit the
prediction function estimator. As shown above, our procedure will ensure that the
expected equals the observed, which necessarily makes the test statistic equal to 0.

7 Discussion
In this article we presented a new TMLE procedure for use in the calibration of a
prediction function estimator. We demonstrated how an initial estimator of a pre-
diction function may be updated through targeted fluctuations in such a way that the
resulting targeted estimator may be mapped into an unbiased and efficient estimator
of the conditional expectation of the outcome given a particular data partitioning.
We showed that, when iterated, the same procedure can be used to enforce implicit
calibration constraints on the prediction function estimator itself. We developed the
TMLE calibration procedure in the context of the conditional expectation of single-
time point binary outcome and in the context of the conditional intensity function
of a time-dependent counting process, and showed how to enforce both scalar and
vector constraints. We explored through simulation the impact of calibration on
predictive performance as assessed by loss function methods. Finally we demon-
strated calibration of a Super Learner estimator of the conditional stroke intensity
prediction function using real-world data on individuals with atrial fibrillation.

The methodology presented has important implications for the practice and
assessment of statistical prediction. At the most fundamental level, our new pro-
cedure augments the conventional wisdom of global bias-variance trade offs, by
providing a means to remove bias for a priori specified local features of the data
distribution related to the prediction function. This may prove to be particularly
useful in medical risk prediction where unchecked bias could lead to inferior deci-
sion making for particular patient subgroups. Our iterative TMLE procedure, which
can be used to enforce implicit constraints on prediction function estimators, rep-
resents a novel use for TMLE and is of interest in its own right for several reasons.
Firstly, it solves any calibration problem defined by comparing the mean of the
predictions generated by an estimator and observed frequencies of the outcome ac-
cording to strata defined by intervals of predictions themselves. Taking this further,
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however, the fact that we can achieve this calibration property for any choice of
initial estimator calls into question the validity of the Hosmer and Lemeshow type
goodness-of-fit tests. In particular, using the procedures described here it is possi-
ble to construct an entire library of TMLE-calibrated estimators that all achieve a
Hosmer and Lemeshow test statistic exactly equal to 0, but whose predictive per-
formance assessed in terms of a valid loss function may be wildly different.

In our view, a valid risk function should be primary assessment metric for
prediction function estimators in nonparametric statistical models. It was reassur-
ing to see in our simulation that the TMLE calibration procedure actually improved
predictive performance assessed in terms of loglikelihood risk. It should be noted,
however, that such improvements are not always guaranteed and imparting a cali-
bration constraint may result in decreased predictive performance assessed in terms
of a risk function. If, as in the present article, calibration or unbiasedness for other
specific data features is a desired property, candidate estimators that achieve this
should be combined with risk-based methods, e.g., Super Learning, to ensure ade-
quate predictive performance. Finally we note that the theory underlying the TMLE
procedures illustrated here in the context of the conditional expectation of binary
outcomes is general and may be easily adapted to other types of outcomes including
continuous may be generalized rather to any number of other scenarios, including
the conditional expectation continuous outcomes or conditional survival probabili-
ties given covariates.

A Efficient Influence Curves (EIC) or D∗

In these Appendices we provide the efficient influence curve for all the parameters
discussed in the main text. In brief, the efficient influence curve, D∗, is a fun-
damental property of a parameter, characterized as a mapping on the distribution
of the data. It is unique and is given by the pathwise derivative of the parame-
ter mapping evaluated at the true distribution of the data (van der Laan and Rose,
2011). Efficient asymptotically linear estimators are defined as estimators that can
be written as the empirical mean of D∗ plus sum typically second order term. D∗

is a function of the true probability distribution, P0, and the data O, and is there-
fore itself a random variable. Its variance defines the efficiency bound for unbiased
estimators in the nonparametric (or semiparametric) statistical model. Often, the
efficient influence curve involves the parameter itself, and can be used to derive an
estimating equation.

Estimators are mappings from an empirical distribution to the parameter
space. The influence curve of an estimator is the pathwise derivative of this (es-
timator) mapping. Theory teaches us that an estimator is efficient in a statistical
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model if and only if its influence curve is equal to the efficient influence curve. We
use this fact to to derive the efficient influence curves for the calibration parameters
here and to construct TMLE procedures to enforce calibration constraints on pre-
diction function estimators. Finally, we show that all the TMLEs described in this
article solve the efficient influence curve estimating equations for their respective
calibration parameters.

B EIC for calibration of conditional expectation

B.1 EIC for calibration to a scalar proportion ψ0

Recall the data structure O= (W,Y )∼P0 ∈M , and let S = S(W ) be some summary
measure of the covariates. The calibration parameter was defined

ψ0 = EQW,0[Y |I(A ) {S}= 1] = EQW,0 [Q̄Y,0|I(A ) {S}= 1]

Consider the nonparametric maximum likelihood empirical estimator

ψn =
1
n ∑

n
i=1YiIA {Si}

1
n ∑

n
i=1 IA {Si}

This estimator is efficient (and unbiased) in the nonparametric model, which im-
plies that its influence curve is equal to the efficient influence curve, except that we
replace the empirical distribution (which places probability mass 1

n on each obser-
vation) with the true distribution P0. The efficient influence curve D∗ is

D∗(P0)(O) =
1

E0[I(A ) {S}]

{
Y I(A ) {S}−E0[Y I(A ) {S}]

}

+
E0[Y I(A ) {S}]
E0[I(A ) {S}]2

{
I(A ) {S}−E0[I(A ) {S}]

}
To construct a TMLE for ψ0, we must write D∗ as the sum of the score of

a function of (Y,W ) with conditional mean 0 given W and the score of a mean 0
function of W . The first term can be decomposed into a function of (Y,W ) with
conditional mean 0 given W and a function of W . For the second term, we can
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replace Y inside the expectation operator with its true conditional expectation given
W , Q̄Y,0(W ).

D∗(P0)(O) = D∗Y (Q̄Y,0,QW,0)(O)+D∗W,1(Q̄Y,0,QW,0)(O)+D∗W,2(Q̄Y,0,QW,0)(O)

where
D∗Y (Q̄Y,0,QW,0)(Y,W ) =

I(A ) {S}
EQW,0 [I(A ) {S}]

{
Y − Q̄Y,0(W )

}

D∗W,1(Q̄Y,0,QW,0)(W ) =
1

EQW,0 [I(A ) {S}]

{
Q̄Y,0(W )I(A ) {S}−EQW,0 [Q̄Y,0(W )I(A ) {S}]

}

D∗W,2(Q̄Y,0,QW,0)(W ) =−
EQW,0 [Q̄Y,0(W )I(A ) {S}]

EQW,0 [I(A ) {S}]2

{
I(A ) {S}−EQ̄Y,0

[I(A ) {S}]
}

This decomposition makes it clear that E0[D∗(Q̄Y,0,QW,0)] = 0, and that D∗ is
spanned by the scores of mean 0 functions of W and the score of a function of
(Y,W ) with conditional mean 0, given W . Note that, for any Q̄Y , the empirical dis-
tribution QW,n, which places probability mass 1

n on every observation, solves both

1
n

n

∑
i=1

D∗W,1(Q̄Y ,QW,n)(Oi) = 0

and
1
n

n

∑
i=1

D∗W,2(Q̄Y ,QW,n)(Oi) = 0

This is implies that the empirical distribution QW,n is already targeted towards our
calibration parameter ψ0 and will not require any updating in the TMLE procedure.
The form of D∗Y is the “clever covariate” multiplied by the prediction residual. Our

TMLE updated Q̄∗Y,n, used
I(A ){S}

EQW,0 [I(A ){S}]
as a covariate which means that we directly

solved
1
n

n

∑
i=1

D∗Y (QW,n, Q̄∗Y,n)(Oi) = 0

Some simple rearrangement shows that
1
n ∑

n
i=1 I(A ){Si}Yi

1
n ∑

n
i=1 I(A ){Si}

=
1
n ∑

n
i=1 I(A ){Si}Q̄∗Y,n(Wi)

1
n ∑

n
i=1 I(A ){Si}

or simply
En[Y |I(A ){Si}] = En[Q̄∗Y,n(Wi)|I(A ){Si}]

That is, the empirical mean of our TMLE updated prediction function estimator
is equal to the empirical mean of Y given I(A ){Si}. This makes complete sense
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because the both the empirical mean and our TMLE are both unbiased and efficient
estimators that solve that efficient influence curve for ψ0.

B.2 EIC for calibration to a vector of proportions

Recall the vector parameter

Ψ(P0) =

ψ0,1
...

ψ0,J

=

E0[Y |I(A1) {S}= 1]
...

E0[Y |I(AJ) {S}= 1]


Because the calibration parameter is now a vector with J components, its efficient
influence curve is also a vector with J components. The form each component
of this vector efficient influence curve is similar to that for the scalar parameter
described above.

D∗(P0)(O) =

D∗1(P0)(O)
...

D∗J(P0)(O)


Each component can be decomposed into score functions that are mean 0 function
of W and mean 0 functions of (Y,W ) with conditional mean 0, given W , as before.
The same properties hold.

Again, the empirical distribution of W solves those components that only
depend on W , thus obviating the need for TMLE updates to QW,n. Our TMLE up-
dated Q̄∗Y,n is based on a J-dimensional parametric submodel with a clever covariate
corresponding to each of the J-components of the efficient influence curve, and thus
directly solves D∗Y . Again, simple rearrangement shows that the empirical mean of
our estimator within each of the J partitions is equal to the empirical mean of Y
within each of the J partitions.

C EIC for calibration of the conditional intensity

C.1 EIC for a t-specific parameter φ0(t)

Under the counting process framework, we defined a time-specific data structure
O(t) =

(
R(t),R(t)Ft ,R(t)Y (t)

)
and our full data as O =

(
O(t) : t = 0, . . . ,τ

)
.
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St = S(Ft) was a summary of the history, and the t-specific intensity calibration
parameter was

φ0(t) = E0[Y (t)|I(A ){St}= 1,R(t) = 1]

Let D∗t (P0)(O(t)) be the efficient influence curve for φ0(t). Its form is sim-
ilar to that of the efficient influence curve for the calibration of a single time-point
binary outcome discussed previously, except that it depends on the history, Ft , and
also includes the “at risk” indicator R(t).

D∗t (P0)(O(t)) =
R(t)

E0[R(t)]

{
Y (t)I(A ){St}

E0[I(A ){St}|R(t) = 1]
−φ0(t)

}
− R(t)

E0[R(t)]
E0[Y (t)I(A ){St}|R(t) = 1]

E0[I(A ){St}|R(t) = 1]2

{
I(A ){St}−E0[I(A ){St}|R(t) = 1]

}

This can be decomposed into

D∗Y (t),t =
R(t)I(A ){St}

E0[I(A ){St},R(t)]

{
Y (t)−E0[Y (t)|Ft ,R(t) = 1]

}

D∗Ft ,R(t),1,t =
R(t)

E0[I(A ){St},R(t)]

{
I(A ){St}E0[Y (t)|Ft ,R(t) = 1]−φ0(t)

}

D∗Ft ,R(t),2,t =−
R(t)

E0[R(t)]
E0[Y (t)I(A ){St}|R(t) = 1]

E0[I(A ){St}|R(t) = 1]2

{
I(A ){St}−E0[I(A ){St}|R(t) = 1]

}
The first term is a score of conditional distribution of Y (t) given Ft and R(t) = 1,
while other terms are scores of distribution of the history Ft , given R(t) = 1. Note
that

D∗t (P0) = D∗t (QFt ,R(t),0(t), Q̄Y (t),0(t))

The t-specific empirical distribution QFt ,R(t),n(t) solves the efficient influence curve
estimating equations for both D∗Ft ,R(t),1,t

and D∗Ft ,R(t),2,t
at every t. This implies

that these empirical distributions are already targeted towards the estimation of our
calibration parameter and no TMLE updating is necessary. Our TMLE updated
Q̄∗Y (t),n(t) directly solves 1

n ∑
n
i=1 D∗Y (t),t(QFt ,R(t),n(t), Q̄

∗
Y (t),n(t))(Oi(t)) = 0. And a

simple rearrangement shows that the empirical mean of our TMLE estimator is
equal to the empirical nonparametric maximum likelihood estimator at time t.
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C.2 EIC for a function calibration (φ0(t) : t = 1, . . . ,τ)

The efficient influence curve for (φ0(t) : t = 1, . . . ,τ) can be thought of as a τ-
dimensional vector function.

D∗(P0)(O) =

D∗(P0)(O)(t = 1)
...

D∗(P0)(O)(t = τ)


The same properties discussed above for a specific t hold now at every t.

C.3 EIC for calibration to a weighted average (or crude rate) φ̄0

Recall the weighted average parameter

φ̄0 =
1

∑t E0[I(A ){St},R(t)]∑t
E0[I(A ){St},R(t)]φ0(t)

Because φ̄0 is a weighted average of the t-specific influence curves for (φ0(t) : t =
1, . . . ,τ), its influence curve is also a weighted average of the t-specific influence
curves for (φ0(t) : t = 1, . . . ,τ). This follows from the functional delta method.

D̄∗ = ∑
t

E0[I(A ){St},R(t)]
∑t E0[I(A ){St},R(t)]

D∗t

And this can be decomposed as

D̄∗Y (t)(P0)(O) = ∑
t

I(A ){St}R(t)
∑t E0[R(t), I(A ){St}]

{
Y (t)−E0[Y (t)|Ft ,R(t) = 1]

}

D̄∗Ft ,R(t),1 = ∑
t

I(A ){St}R(t)
∑t E0[R(t), I(A ){St}]

{
I(A ){St}E0[Y (t)|Ft ,R(t) = 1]−φ0(t)

}

D̄∗Ft ,R(t),2 =−∑
t

I(A ){St}R(t)
∑t E0[R(t), I(A ){St}]

E0[Y (t)I(A ){St}|R(t) = 1]
E0[I(A ){St}|R(t) = 1]

{
I(A ){St}−E0[I(A ){St}|R(t)= 1]

}

Here the t-specific empirical distributions of (Ft ,R(t)) solve the estimating equa-
tions for D̄∗Ft ,R(t),1

and D̄∗Ft ,R(t),2
. These are therefore already targeted towards φ̄0

and do not require TMLE updates. Our TMLE update Q̄∗Y (t),n uses a submodel
that pools observations over all t, so including the “clever covariate” R(t)I(A ){St}
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solves the estimating equation 1
n ∑

n
i=1 D̄∗Y (t)(Oi) = 0. A simple rearrangement of this

estimating equation yields

∑t
1
n ∑

n
i=1 Ri(t)I(A ){St,i}Yi(t)

∑t
1
n ∑

n
i=1 Ri(t)I(A ){St,i}

=
∑t

1
n ∑

n
i=1 Ri(t)I(A ){St,i}Q̄∗Y (t),n(Ft,iRi(t))

∑t
1
n ∑

n
i=1 Ri(t)I(A ){St,i}

Or more simply

∑t ∑
n
i=1 Ri(t)I(A ){St,i}Yi(t)

∑t ∑
n
i=1 Ri(t)I(A ){St,i}

=
∑t ∑

n
i=1 Ri(t)I(A ){St,i}Q̄∗Y (t),n(Ft,iRi(t))

∑t ∑
n
i=1 Ri(t)I(A ){St,i}

So the weighted average of our TMLE updated conditional intensity estima-
tor will be equal to the “crude rate”, which sums over all subjects and time points
the total number of observed events and divides by the total amount of observed
time “at risk.” These results also hold for a vector of weighted average parameters,
except that now the efficient influence curve is also a vector.
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