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Abstract
Propensity score (Pscore) matching and inverse probability of treatment weighting (IPTW) can

remove bias due to observed confounders, if the Pscore is correctly specified. Genetic Matching
(GenMatch) matches on the Pscore and individual covariates using an automated search algorithm
to balance covariates. This paper compares common ways of implementing Pscore matching
and IPTW, with Genmatch for balancing time-constant baseline covariates}. The methods are
considered when estimates of treatment effectiveness are required for patient subgroups, and the
treatment allocation process differs by subgroup. We apply these methods in a prospective cohort
study that estimates the effectiveness of Drotrecogin alfa activated, for subgroups of patients with
severe sepsis. In a simulation study we compare the methods when the Pscore is correctly specified,
and then misspecified by ignoring the subgroup-specific treatment allocation. The simulations
also consider poor overlap in baseline covariates, and different sample sizes. In the case study,
GenMatch reports better covariate balance than IPTW or Pscore matching. In the simulations with
correctly specified Pscores, good overlap and reasonable sample sizes, all methods report minimal
bias. When the Pscore is misspecified, GenMatch reports the least imbalance and bias. With small
sample sizes, IPTW is the most efficient approach, but all methods report relatively high bias of
treatment effects. This study shows that overall GenMatch achieves the best covariate balance
for each subgroup, and is more robust to Pscore misspecification than common alternative Pscore
approaches.

KEYWORDS: confounding, observational studies, matching, propensity score methods, subgroup
analysis
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1 Introduction

Observational studies are widely used to estimate treatment effectiveness; here the
major concern is confounding (Moodie and Stephens, 2010). Regression is often
used to adjust for potential confounders, but if the distribution of baseline covariates
does not overlap between the treatment groups, estimates may be highly sensitive to
model specification (Rubin, 1997). To reduce reliance on parametric assumptions,
propensity score (Pscore) methods, including stratification, matching, regression
adjustment and inverse probability of treatment weighting (IPTW), are widely used
to estimate treatment effects (Austin, 2008a; Shah et al., 2005; Stürmer et al., 2006;
Austin 2008b; Austin and Laupacis, 2011). Of these approaches, matching and
IPTW can perform relatively well (Austin, 2009a), and IPTW has been extended to
allow for time-varying exposures and confounders (Robins et al., 2000). The Pscore
specification must be considered by examining covariate balance after matching or
weighting, and if the resultant balance is poor, the Pscore re-estimated. However,
studies rarely follow this careful process, they often fail to assess covariate balance
and may report biased estimates of treatment effectiveness based on misspecified
Pscores (Austin, 2008a).

Policy-makers require unbiased estimates of the average treatment effect
(ATE), not just for an overall population but also for particular subgroups (Hasford
et al., 2010). For studies that aim to report treatment effects for each subgroup,
correct Pscore specification is particularly challenging (Lefebvre and Gustafson,
2010). A major concern is that each subgroup may have a different treatment as-
signment mechanism. Reliable inference then requires that the Pscore balances
baseline characteristics across treatment groups within each subgroup. A Pscore
approach has to then recognize the differential treatment assignment mechanism,
for example by estimating separate Pscore models for each subgroup. If the Pscore
is misspecified, because for example the same Pscore is used for each subgroup,
then the treatment groups will be imbalanced. Hence IPTW or Pscore matching
may provide incorrect inferences (Drake, 1993).

Instead of relying on correct Pscore specification, covariate balance can be
achieved with multivariate matching methods that attempt to directly balance in-
dividual characteristics, for example within each subgroup of interest. Genetic
matching (GenMatch) combines Pscore matching with multivariate matching on
the individual covariates, using an automated search algorithm to optimize covari-
ate balance (Diamond and Sekhon, 2012; Sekhon, 2011). GenMatch can reduce
bias and mean squared error (MSE) compared to Pscore matching (Diamond and
Sekhon, 2012; Sekhon, 2011), and has been applied across a diverse range of set-
tings (Gilligan and Sergenti, 2008; Gordon and Huber, 2007; Grieve et al., 2008;
Heinrich, 2008; Herron and Wand, 2007; Korkeamaki and Uusitalo, 2009; Lenz and
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Ladd, 2009; Woo et al., 2008). Alternative automated approaches include using tar-
geted maximum-likelihood estimation (e.g., van der Laan and Gruber, 2010; van
der Laan, 2010a; van der Laan, 2010b). However, none of these papers compares
GenMatch to IPTW, or reports treatment effectiveness for subgroups.

This paper aims to compare GenMatch to common ways of implementing
Pscore matching and IPTW for tackling confounding, when reporting treatment
effectiveness by subgroup. The methods are considered in a motivating exam-
ple and a simulation study. The motivating example assesses the effectiveness of
a controversial pharmaceutical intervention, Drotrecogin alfa activated (DrotAA)
for severe sepsis, the most common cause of death in adult intensive care units
(ICUs) (Rowan et al., 2008). The Protein C Worldwide Evaluation in Severe Sep-
sis (PROWESS) trial reported that DrotAA reduced overall 28-day mortality versus
placebo (Bernard et al., 2001), but posthoc subgroup analysis suggested benefit
solely for high-risk patients. These findings generated the hypothesis that the effec-
tiveness of DrotAA may differ according to baseline severity. We compare alter-
native Pscore approaches in re-analyzing a previous observational study estimating
the effectiveness of DrotAA (Rowan et al., 2008). Each approach uses the previ-
ously published Pscore, which after matching, gave reasonable levels of covariate
balance across the treatment groups (Rowan et al. 2008) according to conventional
standards (Austin 2008a). Unlike the previous study we recognize the differential
treatment allocation by subgroup. We then conduct a simulation study that extends
the motivating example, and examines the relative bias and precision following
each Pscore approach, when the subgroup-specific treatment allocation is recog-
nized, and then ignored. We also consider settings with baseline covariates that
have poor overlap between the treatment groups, and according to different sample
sizes.

2 Methods

2.1 Statistical methods

The methods considered all assume that confounding can be removed by balancing
observed baseline covariates, and require choices to be made in advance, about
which variables are potential confounders. Variables should be chosen for inclusion
in the Pscore or matching algorithm, so as to balance potential confounders. The
choice should not be based on statistical tests for baseline differences (Rubin, 2008),
but can draw on theory, published literature, expert opinion or causal diagrams
(Pearl, 1995).
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For each statistical method we estimate ATEs. This estimand can be ob-
tained for matching methods by matching both a control observation to each patient
in the treatment group, and a treated observation to each observation in the control
group (Abadie et al., 2001), and this is the standard estimand for IPTW. The ATEs
were reported for the same populations of interest, represented by the distribution
of characteristics across both treatment groups in the unmatched data (Kurth et al.,
2006). For the matching approaches treated and control individuals were matched
to their nearest neighbor in the comparison group, one-to-one, with replacement
(Abadie and Imbens, 2009).

We report the treatment effects with a common measure, the marginal odds
ratio (OR). Marginal effects have high policy relevance as they apply to the popula-
tion or subpopulation of interest, whereas conditional effects refer to the individual.
Except under certain restrictive settings (Greenland et al., 1999) marginal and con-
ditional ORs differ, i.e. the OR is non-collapsible (Austin, 2007). For IPTW, we
weight observed outcomes for both treatment and control groups (Robins et al.,
2000). For both matching approaches, we calculate ORs across all the matched
pairs (Abadie et al., 2001). Given concerns about the interpretability of ORs, in the
case study we also report treatment effects as relative risks, using Poisson regres-
sion.

An important challenge for the statistical methods is that the treatment as-
signment mechanism may differ by subgroup. For example, the relative influence
of factors explaining treatment assignment may differ for high risk versus low risk
patients. Balancing baseline characteristics for overall samples of treated and con-
trol observations can leave potential confounders imbalanced at the subgroup-level.
In this context the methods aim to achieve covariate balance at the subgroup level.

We used weighted standardized differences to assess covariate balance which
is a recommended measure for comparing balance between IPTW and matching
methods (Austin, 2009b). Here the matching uses frequency weights, and IPTW the
inverse of the Pscore, to weight the means and variances of the covariates (Austin,
2009b). Some researchers suggest a standardized difference of 10% denotes mean-
ingful imbalance (Austin, 2009b; Normand et al., 2001), others that balance should
be maximized without limit (Sekhon, 2011; Imai et al., 2008).

2.1.1 Propensity score matching

Assuming no unobserved confounding and that the distributions of baseline covari-
ates overlap between the treatment groups (Cole and Hernán, 2008), matching on a
correctly specified Pscore can balance observed covariates and reduce bias (Rosen-
baum and Rubin, 1983). To check the Pscore specification, covariate balance should
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be examined, and if balance is poor, the Pscore re-estimated (Rosenbaum and Ru-
bin, 1984; Stuart, 2010). If the Pscore model is misspecified, balance may not be
achieved and the Pscore matching estimator is biased and inconsistent (Sekhon,
2011). In particular, where ATEs are required for subgroups, and the treatment as-
signment mechanism differs by subgroup, matching on the Pscore estimated across
the whole sample may not balance covariates in each subgroup of interest. Instead,
for each subgroup separate Pscores can be estimated, and used to create subgroup-
specific matched datasets.

2.1.2 Genetic matching - matching on the Pscore and individual covariates

Rosenbaum and Rubin (1985) recommended combining matching on the Pscore
with matching on individual covariates, using the Mahalanobis distance (MD). This
approach improves balance if the covariates follow ellipsoidal distributions, such as
the normal (Rubin, 1992). However, in practice, this approach can lead to worse
covariate balance, for example in the presence of binary variables, and in finite
samples (Sekhon, 2011).

GenMatch can combine matching on the Pscore and covariates, but rather
than selecting matched pairs according to their closeness, this approach optimizes
covariate balance between the matched treatment and control samples. GenMatch
selects matched pairs using a generalized MD metric, which includes an additional
vector of weights for each covariate included in the matching. The weights define
different distance metrics, which differ in the relative importance given to matching
on each covariate. An automated search algorithm selects those weights (Sekhon
and Mebane, 1998; Mebane and Sekhon, 2011), and hence the corresponding dis-
tance metric, that gives the best covariate balance in the matched samples. The
choice of balance statistic has to be madea priori from recommended traditional
measures, such as standardized mean differences, or more general measures such
as Kolmogorov-Smirnov (KS) tests and empirical quantile plots (Austin, 2009b).
Balance can be optimized separately for the subgroups of interest, and treatment
effects can be reported using separate matched datasets for each subgroup.

A general practical concern is that if a covariate chosen for the Pscore or
GenMatch algorithm is not associated with outcome, then conditioning on this co-
variate will increase variance without reducing bias in the estimated treatment ef-
fect (Austin et al., 2007; Brookhart et al., 2006; Schisterman et al., 2007). If the
GenMatch algorithm is required to balance unnecessary covariates (Schisterman et
al., 2007), this increases the dimensionality of the matching problem, which with a
small sample size can increase the bias inherent in multivariate matching estimators
(Abadie and Imbens, 2006). More details on GenMatch are given in Appendix A.
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2.1.3 Inverse probability of treatment weighting

IPTW estimates treatment effectiveness by using the Pscore to weight the treatment
and control samples (Hernán, 2000; Hirano et al., 2003; Lunceford and Davidian
2004). The weight,wi is the inverse of the estimated probability of the observed
treatment, that iswi =

Ti
π̂i
+ 1−Ti

1−π̂i
, whereπ̂i is the estimated Pscore for thei-th indi-

vidual andTi is the treatment indicator. Individuals with a high predicted probability
of the observed treatment receive a relatively low weight. When there is good over-
lap and the Pscore model is correctly specified, the IPTW estimator can provide
unbiased and relatively efficient estimates of the ATE (Hirano et al., 2003). How-
ever, even with good overlap, if the Pscore is misspecified, baseline covariates can
be imbalanced, which can lead to bias and inefficiency (Pearl, 1995). With poor
overlap, the weights can be extreme which can lead to increased bias and variance
(Pearl, 1995; Rosenbaum and Rubin 1983). Here, a recommended strategy is to
truncate the weights (Cole and Hernán, 2008). When there are different treatment
assignment mechanisms for each subgroup, the weights can be taken from separate
Pscores estimated for each subgroup.

2.2 Description of motivating example

A prospective cohort study previously matched patients who received DrotAA to
controls, and reported that DrotAA was effective for high-risk (three to five organ
failures at baseline), but not for low-risk patients (two organ failures) (Rowan et al.,
2008). However, this study did not consider whether potential confounders were
balanced for each subgroup. Our reanalysis included in the Pscore the same baseline
covariates, reported in Table 1, as the original study(sample sizen = 2,726). To
address confounding we extended the previous study and recognized that treatment
allocation may differ by subgroup.

The Pscore methods initially used the original Pscore model, common across
both patient subgroups (overall Pscore), and the GenMatch algorithm was required
to improve covariate balance across the whole sample (overall GenMatch algo-
rithm). The analyses were repeated but with separate Pscore models (subgroup-
specific Pscore) and GenMatch algorithms (subgroup-specific GenMatch algorithm)
for each subgroup defineda priori according to whether patients had two, or three to
five organ failures (see Appendix B). Here, the matching methods created separate
matched datasets for each subgroup.

For each method covariate balance was reported for those baseline factors
which a priori were judged potential confounders. This list of variables for assess-
ing balance differed from the set of variables in the Pscore and matching algorithm
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(see Table 1). Expert opinion was used to designate which of these variables were
high, or low priority variables to balance (Sadique et al., 2011). The most important
confounders were anticipated to be age, the proportion ventilated at ICU admission
(% Ventilated), the acute physiology score (IMscore), and the baseline probability
of death, calculated as a function of 20 underlying physiological variables (IM-
prob). To balance these confounders, it was judged necessary to include in the
Pscore, and matching algorithm each of the baseline covariates listed above, but not
all these variables were designated potential confounders. Some of the covariates
in the Pscore and matching algorithm were not regarded as important to balance
themselves, but were included to help balance the major confounders (Sadique et
al., 2011). Of the variables designated as being of some importance, the GenMatch
algorithm was required to maximise balance on thehigh and then thelow prior-
ity variables. For further details on this approach to prioritising the covariates to
balance see Ramsahai et al. (2011).

To address imbalances beyond differences in means, matching methods can
also use non-parametric KS tests (Diamond and Sekhon, 2012; Stuart 2010). As
a sensitivity analysis, the GenMatch algorithm was modified to optimize balance
assessed by KS and t-tests.

Marginal ORs were estimated by logistic regression applied to each matched
dataset, and for IPTW the logistic regression incorporated weights calculated from
each Pscore (Sekhon, 2011; Stuart, 2010). As well as reporting ORs, we also re-
ported relative risks. A sensitivity analysis was performed for IPTW by truncating
the weights. There were no missing data.

2.3 Motivating example results

Here we present balance for those baseline covariates that were anticipated to be
the major confounders: age, IMprob, IMscore and % ventilated. The standardized
differences before matching were large for both subgroups (Table 2), and there was
reasonable overlap (Appendix C, Figure 3).

Following Pscore matching and IPTW, some large standardized differences
remained for either subgroup, whether using the overall Pscore or the subgroup-
specific Pscore (Table 3). GenMatch reported better balance than the other meth-
ods when required to balance across the overall sample for one subgroup (3 to 5
organ failures), but for the other subgroup (2 organ failures) none of the meth-
ods was dominant in terms of covariate balance. Balance improved further when
the algorithm balanced at the subgroup level. When subgroup-specific GenMatch
algorithms were applied, GenMatch achieved better balance on thehigh priority
variables than Pscore matching and IPTW and similar balance on thelow priority
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Table 1: Variables included in the Pscore and in the balance matrix.

Variable Pscore Balance matrix: Balance matrix:
high priority low priority

Age X X ✗

IMscore X X ✗

% Ventilated X X ✗

Pre-existing conditions: X ✗ X

Number of organ X ✗ X

system failing

Sex X ✗ ✗

Types of organ system X ✗ ✗

failure (cardiovascular,
respiratory, renal, hematological,
and metabolic acidosis)

Number of critical X ✗ ✗

care beds

Source of admission to X ✗ ✗

critical care

Diagnostic category X ✗ ✗

IMprob ✗ X ✗

Organ system failing
in first 24 hours:
Card/Respa ✗ ✗ X

Card/Resp/Acid ✗ ✗ X

Card/Resp/Renal/Acid ✗ ✗ X

a Card/Resp is the abbreviation for cardiovascular/respiratory organ system failure,
Card/Resp/Acid for cardiovascular/respiratory/ metabolic acidosis and Card/Resp/Renal/Acid
for cardiovascular/respiratory/renal/metabolic acidosis.
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Table 2: Baseline characteristics for DrotAA and control patients.

DrotAA Controls Standardized
difference (%)a

Covariate

2 organ failures subgroup (n=198) (n=630)
Age 57.58 63.04 26.49

IMprob 0.42 0.39 10.76

IMscore 22.83 20.44 29.53

% Ventilated 88.38 70.16 40.02

3 to 5 organ failures subgroup (n=878) (n=1,020)
Age 58.96 65.16 32.32

IMprob 0.64 0.58 20.12

IMscore 32.08 27.96 40.83

% Ventilated 93.39 78.53 38.90

a Continuous variables are reported as means, dichotomous variables as proportions.
Note absolute standardized differences are reported as percentages.
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variables (see Tables 8 and 9, Appendix C). In the sensitivity analysis when KS
statistics were included in the GenMatch optimization, GenMatch again reported
improved balance forhigh priority variables and similar balance forlow priority
variables compared to the other approaches (see Appendix C, Tables 10, 11 and
12). When the IPTW weights were truncated above the first and 99thpercentiles,
covariate balance worsened (see Appendix C, Table 13).

Table 3: Covariate balance ofhigh priority variables when using i) an overall
Pscore or GenMatch algorithm and ii) a subgroup-specific Pscore or Gen-
Match algorithm. Results reported are weighted standardized differences
(%)a.

Overall Pscore or GenMatch Subgroup-specific Pscore or GenMatch

2 organ 3 to 5 organ 2 organ 3 to 5 organ
Covariate Method failures group failures group failures group failures group

Age
Pscore matching 5.00 1.17 0.93 1.25

GenMatch 0.76 0.38 0.37 0.01

IPTW 6.63 2.31 9.06 7.24

IMprob
Pscore matching 2.77 1.54 15.97 6.82

GenMatch 1.21 0.31 0.37 0.01

IPTW 0.56 0.82 5.58 9.86

IMscore
Pscore matching 8.83 6.96 6.82 3.95

GenMatch 13.11 3.56 0.35 0.01

IPTW 13.48 3.85 3.88 12.41

% Ventilated
Pscore matching 3.91 1.87 8.33 2.48

GenMatch 5.01 2.66 0.23 0.00

IPTW 12.29 0.57 5.99 13.19

a Note absolute standardized differences are reported as percentages.

Table 4 reports marginal ORs for the effect of DrotAA versus control on
hospital mortality. The corresponding relative risks are reported in Appendix C
(Table 14). The effectiveness of DrotAA differed by subgroup; the CIs for the
treatment by subgroup interactions excluded zero (see Table 15, Appendix C).

For the two organ failures subgroup, the point estimates all exceeded 1,
but for IPTW the CIs were wide especially after weighting with the overall Pscore
(Table 4). GenMatch reported similar ORs whether the algorithm was required
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to match across the overall sample or for each subgroup. When GenMatch was
required to optimize balance according to KS and t-tests, the estimated treatment
effects were similar to the base case.

Table 4: Effectiveness of DrotAA versus controls for each subgroup with: (i)
an overall Pscore or GenMatch algorithm and (ii) a subgroup-specific Pscore
or GenMatch algorithm. Results are reported as marginal ORs (95% CIsa) of
hospital mortality.

Pscore matching GenMatch IPTW

i) Overall Pscore and GenMatch

2 organ failures subgroup 1.77(1.49,2.03) 1.60(1.26,1.91) 1.82(0.77,2.80)

3 to 5 organ failures subgroup 0.70(0.63,0.76) 0.63(0.54,0.70) 0.70(0.51,0.88)

ii) Subgroup-specific Pscore
and GenMatch

2 organ failures subgroup 1.90(1.55,2.22) 1.56(1.24,1.86) 1.55(0.86,2.16)

3 to 5 organ failures subgroup 0.64(0.57,0.71) 0.60(0.52,0.68) 0.78(0.43,1.11)

a Confidence intervals (CIs) were calculated by bootstrapping. Inference after matching
should follow recent recommendations and be regarded as conditional on the estimated
Pscore and the matched data (Stuart, 2010).

2.4 Simulation description

We conducted Monte Carlo simulations to examine the relative performance of each
method for estimating treatment effects by subgroup. The three scenarios con-
sidered were grounded in the motivating example, and prior concerns about each
method. The first scenario misspecified the Pscore and the GenMatch algorithm
by ignoring the subgroup specific treatment allocation, as in the motivating exam-
ple. The second scenario considered poor overlap (see Figure 4, Appendix C),
and the omission of a non-linear term from the Pscore models and GenMatch al-
gorithms. The last scenario included a covariate not associated with outcome in
the Pscore models and GenMatch algorithms (Austin et al., 2007), and considered
smaller sample sizes (n= 1,000;n = 100) (Brookhart et al., 2006; Schisterman et
al., 2007).
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Data generating process

We used a similar data generating process (DGP) to previous studies (Austin, 2009a;
Austin 2007). For each subject, two continuous confoundersX1 andX2, were gen-
erated from a bivariate normal distribution. A third confounder,X3, defining the
patient subgroup, was a binary variable generated from a Bernoulli distribution (see
Appendix B). Treatment status,T and a binary outcome variable,Y were randomly
generated from Bernoulli distributions with parametersπ and p, determined by a
different logistic model for each pair of scenarios (see below).

Scenario 1: subgroup-specific Pscore and GenMatch algorithm (1a) versus overall
Pscore and GenMatch algorithm (1b)

For each subject, the logit of the Pscore,π , was determined by: logit(π)= ln(0.2)+
0.1X1 + 0.2X2 + 0.3X3 + 0.2X1X3 − 0.2X2X3, and the logit of the parameter for
the outcome model,p, by: logit(p) = −25+ ln(2)T + 10X1 + 0.5X2 + 0.2X3 −

ln(1.5)X3T . The interaction terms allowed the confounders to have a differential
effect on treatment assignment according to subgroup (Pscore model), and allowed
treatment effects to differ by subgroup (outcome model).

In the first scenario (1a), correctly specified subgroup-specific Pscores were
used for matching and IPTW weights. Similarly, GenMatch was required to match
and balance onX1, X2 and the estimated linear predictor ofπ, separately for each
subgroup. In scenario 1b, the Pscore and the GenMatch algorithm were both mis-
specified; the Pscore was estimated across both subgroups; GenMatch was required
to match and balance onX1, X2 andX3 across the whole sample, and the overall
linear predictor ofπ. In these scenarios there was good overlap in the distribution
of the covariates and the Pscore between the treatment groups.

Scenario 2: poor overlap, correct specification of the Pscore and GenMatch algorithms
(2a) and then misspecification by exclusion of a squared term (2b)

All methods correctly attempted to maximize balance at the subgroup level, but this
scenario considered poor overlap and misspecification of the treatment allocation
mechanism by exclusion of a nonlinear term. The logit of the Pscore was given by:
logit(π) = ln(0.1)−0.4X1+0.8X2+1.2X3−0.2X2

1 X3, and the logit of the param-
eter for the binary outcome model was: logit(p) = −14+ 0.1T + 3X1+ 0.5X2−

0.2X3+X3T . The means and standard deviations of the confoundersX1, andX2

were chosen to ensure poor overlap in the distribution of the Pscore and the key
confounderX1, especially for the subgroupX3 = 1 (for a comparison of overlap
between Scenario 1 and 2, see Appendix C, Figure 4).
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In scenario 2a we assumed a correctly specified Pscore, and GenMatch was
asked to maximize balance on each confounder, including the nonlinear termX2

1 .
In scenario 2b, the treatment allocation models were misspecified for theX3 = 1
subgroup by excludingX2

1 .

Scenario 3: recommended exclusion of a covariate not associated with outcome (3a)
versus inclusion of a covariate not associated with outcome (3b)

This scenario assumed good overlap, but the Pscore included a continuous nor-
mal covariate,X4, not associated with the outcome: logit(π) = ln(0.2)+0.1X1+
0.2X2+0.3X3+0.2X1X3−0.2X2X3+0.6X4−0.2X4X3. The outcome model was as
in scenario 1.

In scenario 3a,X4 was excluded from the estimated Pscore, and from the
terms GenMatch was asked to balance. In scenario 3b,X4 was included in the
estimated Pscores and GenMatch algorithms.

We report marginal ORs as in the empirical example. Here the true marginal
ORs were obtained by a Monte Carlo simulation with 10,000 samples of size
10,000 (Austin, 2007). In scenarios 1 and 3, these ORs were 1.105 (X3 = 0) and
1.052 (X3 = 1), and for scenario 2 they were 1.035, and 1.496. Recall that, owing
to the non-collapsibility of the OR, the marginal ORs do not coincide with the con-
ditional ORs (Austin, 2007). Each scenario was run with 1,000 replications, each
with a sample size of 2,000. Scenario 3 was also run with smaller sample sizes
(n = 1,000;100). For all scenarios we calculated the bias and root mean squared
error (RMSE) of the estimated treatment effects. For sampleR code for the simula-
tion see Appendix B.

2.5 Simulation study results

Table 5 reports the weighted standardized differences for scenarios 1 and 2. With
good overlap and correctly specified methods (scenario 1a), the standardized differ-
ences were small. When the Pscore model was misspecified by fitting an overall
Pscore, and GenMatch failed to match and balance at the subgroup level (sce-
nario 1b), both Pscore methods had high standardized differences compared to
GenMatch. Under scenario 2, with weak overlap for theX3 = 1 subgroup (Fig-
ure 4, Appendix C), all methods reported worse covariate balance. The deterio-
ration in balance was least for GenMatch and most for IPTW, here even with a
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correctly specified Pscore (scenario 2a) the nonlinear term,X2
1 was highly imbal-

anced (standardized difference of 24). Under scenario 2b, the Pscore for theX3 = 1
subgroup excluded the nonlinear termX2

1 ; balance on this term deteriorated for
each method, but remained worst for IPTW (standardized differences: 25, IPTW;
21, Pscore matching and 14 GenMatch).

Table 5: Covariate balancea in the Monte Carlo simulation for
scenariosb 1 and 2. Results reported are weighted standardized dif-
ferences (%)

SubgroupX3 = 0 SubgroupX3 = 1
Scenario Method X1 X2 X1 X2

1a
Pscore matching 2.58 1.39 0.62 3.10

GenMatch 0.11 0.12 0.20 0.15

IPTW 0.51 0.55 0.80 0.59

1b
Pscore matching 7.86 8.51 8.30 8.50

GenMatch 1.03 1.39 1.15 1.31

IPTW 8.09 8.14 8.54 8.12

2a
Pscore matching 4.05 2.60 8.00 13.2

GenMatch 0.80 1.34 6.79 7.18

IPTW 2.63 3.42 19.37 10.55

2b
Pscore matching 3.89 2.47 12.00 12.24

GenMatch 0.84 1.13 8.25 3.52

IPTW 2.59 3.41 16.43 8.88

a Weighted standardized differences are means across the 1,000 simulations, and
are reported as percentages.

b The sample size in these scenarios was 2,000.

The left (right) panels of Figure 1 report bias and variation when the Pscores
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and the GenMatch algorithms are correctly (incorrectly) specified by recognizing
(ignoring) the subgroup-specific treatment allocation (scenario 1). With correct
specification, all methods reported treatment effects centered on their true val-
ues. Under misspecification, the estimated ORs were biased and more variable for
Pscore matching and IPTW; for theX3 = 1 subgroup, the relative biases were 13%
(Pscore matching), 14% (IPTW) and 1% (GenMatch). The corresponding RMSEs
were 0.20 (Pscore methods), and 0.08 (GenMatch).
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Figure 1: Boxplots showing bias and variation for the estimated ORs across 1,000
replications for scenario 1 in the simulation study. The results in the left panel are
from when the Pscore model and the GenMatch algorithm are correctly specified
by recognizing the subgroup-specific treatment allocation (scenario 1a). The results
in the right panel are for when the methods do not recognize the subgroup-specific
treatment allocation (scenario 1b). The dashed lines are the true values.

Figure 2 reports bias and variation for scenario 2, where overlap is poor. Un-
der correct specification, Pscore matching and GenMatch reported moderate bias
(8% and 3% forX3 = 1). For IPTW, where covariate balance was poor for the
X2

1 term, bias was higher (15%, forX3 = 1). The corresponding RMSE for IPTW
was six times that for GenMatch. With misspecification, the biases were higher for
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each method (32% for IPTW, 21% for Pscore matching and 5% for GenMatch). To
examine the IPTW weights scenario 2a was repeated with the same DGP but for
a single dataset of 1,000,000 (Appendix C, Figure 5). For subgroupX3 = 1, the
weights for the treatment group are extreme which may explain the excessive bias
and variance. When the IPTW weights were progressively truncated, the standard-
ized differences increased (Appendix C, Table 16), and the IPTW estimator became
less variable, but more biased (Appendix C, Figure 6).
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Figure 2: Boxplots showing bias and variation for the estimated ORs across 1,000
replications for the scenario (2) with poor overlap. The left panel provides results
for when the Pscore model and the GenMatch algorithm are correctly specified by
including a nonlinear term (scenario 2a), the right panel for when the nonlinear term
is omitted (scenario 2b). The dashed lines are the true values.

Table 6 reports the weighted standardized differences for scenario 3. With
sample sizes of 2,000 or 1,000, the standardized differences for the true con-
founders (X1 andX2) remained small even if the methods were required to balance
the covariate not associated with outcome (X4). When the sample size was reduced
to 100, balance on the confounders deteriorated especially following Pscore match-
ing.
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Table 6: Covariate balance in the Monte Carlo simulation for sce-
nario 3 with different sample sizesa. Results reported are weighted
standardized differencesb (%)

SubgroupX3 = 0 SubgroupX3 = 1
Scenario Method X1 X2 X4 X1 X2 X4

3a n=2,000
Pscore matching 2.87 1.58 58.77 0.60 2.84 39.41

GenMatch 0.15 0.17 58.77 0.15 0.11 39.48

IPTW 0.85 0.89 58.61 0.58 0.43 39.47

3b
Pscore matching 4.46 4.22 1.88 2.56 3.22 1.92

GenMatch 0.77 0.70 0.93 0.32 0.33 0.37

IPTW 2.34 2.35 3.20 0.99 0.84 1.13

3a n=1,000
Pscore matching 3.97 2.47 58.74 1.23 4.25 39.31

GenMatch 0.29 0.33 58.19 0.27 0.20 39.26

IPTW 1.27 1.36 58.32 0.85 0.66 39.30

3b
Pscore matching 6.03 6.23 2.97 3.95 4.80 3.06

GenMatch 1.28 1.18 1.51 0.53 0.52 0.61

IPTW 3.13 3.37 4.23 1.40 1.26 1.66

3a n=100
Pscore matching 13.90 13.53 65.60 10.10 10.91 45.47

GenMatch 5.21 5.41 65.12 2.81 2.30 45.66

IPTW 9.01 9.01 62.05 4.72 4.32 42.83

3b
Pscore matching 20.20 20.21 19.33 13.80 13.10 13.64

GenMatch 9.31 9.72 11.85 4.10 4.31 5.24

IPTW 13.80 13.70 17.33 7.00 6.80 8.08

a Across the replications the average number of treated versus controls was 69%
treated, 31% controls(n= 2,000), 66% treated, 34% controls(n= 1,000), 68%
treated, 32% controls (n= 100).

b Weighted standardized differences are means across the 1,000 simulations, and
are reported as percentages.
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Table 7 reports bias and RMSE for scenario 3. With sample sizes of 2,000 or
1,000, all methods reported estimates that were relatively unbiased and statistically
efficient. With a small sample size (n= 100), IPTW provided the least biased, most
efficient estimates, but all methods performed poorly.

3 Discussion

This paper compares GenMatch with common implementations of Pscore matching
and IPTW. GenMatch is an approach that combines matching on the Pscore and the
individual covariates. The study considers settings where both treatment effective-
ness and the treatment assignment mechanism differ by subgroup, and the major
concern is balancing time-constant covariates. The case study exemplifies a general
methodological challenge, that of reporting unbiased estimates when treatment ef-
fectiveness is anticipated to differ by patient subgroup (Hasford et al., 2010; Lefeb-
vre and Gustafson, 2010). The motivating example is in critical care, where risk
adjustment is relatively advanced, and the assumption of no unmeasured confound-
ing may be judged reasonable (Rowan et al., 2008). Here it was anticipated that
because receipt of DrotAA could differ by subgroup, a ‘subgroup specific Pscore’
would help balance covariates in each subgroup. However, achieving covariate bal-
ance with a Pscore is a challenging process (Austin, 2008), and in this case study
neither of the previously recommended Pscore methods (Austin, 2009a) is able to
balance covariates within the subgroups. By contrast the approach that combines
matching on the Pscore and the individual covariates, does balance potential con-
founders in both subgroups. This case study highlights the importance of adopting
an approach that achieves balance for subgroups, to enable policy makers to identify
patients who would benefit most from treatment.

The simulation study finds that if, as in the motivating example, the esti-
mated Pscore ignores a differential treatment allocation by subgroup, estimates can
be biased and inefficient. GenMatch is relatively robust to this misspecification, be-
cause it aims to directly balance potential confounders using an automated search
algorithm, rather than a fixed parametric model. This paper extends previous work
that reports lower MSE for GenMatch compared to Pscore matching alone, or com-
bined with MD matching (Diamond and Sekhon, 2012; Sekhon and Grieve, 2011;
Kang and Schafer, 2007). This is the first study to compare these three methods,
and does so in an important context for policy makers — that of subgroup analysis.

IPTW is a common method for estimating treatment effectiveness with ob-
servational data. Unlike matching, IPTW extends to handling time-varying covari-
ates (Robins et al., 2000), and can minimize MSE if the Pscore is correctly specified
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Table 7: % Bias and RMSE in the Monte Carlo simulation for scenario3 with
different sample sizes.

% Bias RMSE
Scenario Method X3 = 0 X3 = 1 X3 = 0 X3 = 1

3a n=2,000
Pscore matching 1.42 0.02 0.15 0.08

GenMatch 1.25 0.23 0.09 0.07

IPTW 0.81 0.04 0.12 0.09

3b
Pscore matching 1.59 0.49 0.19 0.12

GenMatch 4.46 1.12 0.14 0.08

IPTW 1.13 0.05 0.14 0.09

3a n=1,000
Pscore matching 2.40 0.79 0.22 0.12

GenMatch 2.57 0.59 0.13 0.10

IPTW 0.99 1.34 0.13 0.17

3b
Pscore matching 4.27 1.38 0.28 0.18

GenMatch 6.74 0.01 0.21 0.12

IPTW 2.06 1.34 0.21 0.13

3a n=100
Pscore matching 42.08 17.03 1.97 0.90

GenMatch 31.28 12.22 1.55 0.63

IPTW 20.76 12.05 0.94 0.60

3b
Pscore matching 78.10 23.18 2.83 0.96

GenMatch 59.87 16.08 2.28 0.87

IPTW 43.05 14.25 1.80 0.67
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(Hirano et al., 2003). However, even with good overlap, if thePscore is misspeci-
fied, IPTW can be unreliable (Kang and Schafer, 2007; Petersen et al., 2012). IPTW
can report different levels of covariate balance to Pscore matching because IPTW
incorporates the Pscore in the estimator (Lee et al., 2011); while Pscore matching
may only use the proximity based on the Pscore to create matched pairs (Zhao,
2008). In the simulated scenario with good overlap but a misspecified Pscore, we
extend the general finding that IPTW estimates can be biased and inefficient (Kang
and Schafer, 2007; Ertefaie and Stephens, 2010), to the context of subgroup anal-
ysis. Faced with poor overlap and extreme weights, we apply a recommended ap-
proach and truncate the weights (Lunceford and Davidian, 2004; Scharfstein et al.,
1999), but covariate balance does not improve. Alternative ways of stabilizing the
weights (Cao et al., 2009), redefining the relevant population of interest (Petersen
et al., 2012), or adopting doubly robust (DR) methods (Kang and Schafer, 2007;
Scharfstein et al., 1999; Robins et al., 1994; Bang and Robins, 2005; Robins et al.,
2007) warrant consideration. There is much debate on the relative advantages of
DR methods, especially in settings with weak overlap (Petersen et al., 2012; Robins
et al., 2007) and model misspecification (Lefebvre and Gustafson, 2010). Recent
developments of data-adaptive DR methods show considerable promise (van der
Laan, 2010a; van der Laan and Gruber, 2010; Porter et al., 2011), and further test-
ing across a range of applications is now warranted. While missing data is beyond
the scope of this paper, recent work has extended Pscore methods to this context
(Mattei, 2009; Qu and Lipkovich, 2009).

Bad overlap can also hinder matching methods, leading to poor quality
matches, covariate imbalance and biased estimates of treatment effects. Faced with
poor overlap, either matching method can impose calipers (Stuart, 2010), but this
changes the population of interest; a strength of this study is that it compares the
methods in the same population. Our simulation highlights that with a small sam-
ple size, matching can lead to biased and statistically inefficient estimates relative
to IPTW (Abadie and Imbens, 2006). Multivariate matching methods such as Gen-
Match, that focus on balancing the individual covariates, may be particularly prone
to bias and imprecision when the sample size is small (Abadie and Imbens, 2006).

This study has several limitations. Each approach assumes no unmeasured
confounders, an untestable assumption which in many cases is implausible. Each
method requires the analyst to choose the covariates, but also the statistics for bal-
ance assessment (Brookhart et al., 2006). In the main analysis we followed recom-
mendations and used weighted standardized mean differences (Austin, 2009b), but
more general balance statistics such as non-parametric Kolmogorov-Smirnoff tests
warrant consideration and as the sensitivity analysis in the case study shows, can be
considered by GenMatch (see also Diamond and Sekhon, 2012).
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4 Conclusion

When the estimated Pscore is misspecified, an automated approach that combines
matching on the Pscore and individual covariates can report less biased estimates of
treatment effectiveness for patient subgroups than common ways of implementing
Pscore matching or IPTW. The combined matching approach performs less well
with small sample sizes. These findings apply to settings where treatment and po-
tential confounders are time-constant.

Appendix A

Genetic matching

Genetic matching (GenMatch) automates the process of maximizing balance on ob-
served covariates in the matched sample by using an evolutionary search algorithm
to determine the weight each individual covariate is given. As with any matching
method, GenMatch requires choices to be madea priori about which covariates
to include in the matching and assessment of balance, and which balance statistic
to use. The key innovations of GenMatch are the generalised distance metric, and
the use of an iterative search algorithm to maximize covariate balance. Diamond
and Sekhon (2012) and Sekhon (2011) provided full details of the method and its
properties in a general context, so here we summarize the key aspects.

Selection of covariates for matching algorithm

Before matching, it is necessary to choose which potential confounders to condition
on. The researcher should follow general guidance and only consider those covari-
ates anticipated to influence the outcome (Brookhart, 2006). This selection process
should also consider interaction effects as well as main effects and nonlinear terms.
The choice can be informed by previous empirical analyses, expert opinion, and
causal diagrams (Rubin, 2008; Pearl, 1995). The GenMatch algorithm will only
use those matching variables that are pre-specified. As with any other matching
method the choice of variables for balance assessment should include those antic-
ipated to be of high prognostic importance whether or not they are included in the
matching. For example, a summary prognostic measure may be excluded from the
matching because it is highly correlated with the underlying covariates, and better
overall balance may be achieved by just matching on the covariates. GenMatch can
also be tailored to prioritise achieving covariate balance on particular covariates
designated ashigh priority, for further details see Ramsahai et al. (2011).
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Covariate balance statistics

A recommended statistic for checking covariate balance is the weighted standard-
ized mean difference:

d =
x̄treatment− x̄control
√

s2
treatment+s2

control
2

where for continuous covariates ¯x ands2 denote the covariate’s weighted means and
variances. This balance statistic allows matching methods to be compared to IPTW,
by using the appropriate weights, i.e. the frequency weights in matched datasets,
and the IPTW weights calculated from the Pscore. This measure can be adapted for
binary variables (Austin, 2009b).

In some circumstances, the weighted standardized mean differences are an
insufficient measure of balance as they are insensitive to imbalances in aspects of
the covariate distribution beyond the mean (e.g., variance, maximum, skew, kurto-
sis). To address imbalances beyond differences in means for linear terms, matching
methods can consider standardized differences for higher order terms, but also al-
ternative balance statistics such as Kolmogorov-Smirnov (KS) tests and empirical
quantile-quantile plots (Austin, 2009b). A potential advantage of GenMatch is that
it can maximise balance according to whatever balance statistic the user specifies
including the more general measures listed above.

Distance metric

The Mahalanobis distance (MD) between any two observations (one from treatment
and the other from control) is

MD(Xi,X j) =
{

(Xi −X j)
TS−1(Xi −X j)

}1/2
(1)

whereS is the sample covariance matrix ofX andXT is the transpose of the matrix
X. Using this metric, distance between individual covariates is collapsed into a
single scalar.

The Pscore can be combined with MD by, for example, including the Pscore
as a variable in theX matrix in (1).

GenMatch generalizes the MD by including an additional weight matrixW:

GMD(Xi,X j,W) =

{

(Xi −X j)
T

(

S−1/2
)T

W
(

S−1/2
)

(Xi −X j)

}1/2

(2)

whereW is a k × k positive definite weight matrix withk being the number of
matching covariates , andS−1/2 is the Cholesky decomposition ofS. GenMatch
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essentially matches by minimizing the generalized version of MD given in (2). W
is chosen to be the weight matrix that minimizes covariate imbalance according to
the balance statistics the user chooses (e.g., standardized difference, KS statistics).

The GenMatch algorithm uses the distance measure,GMD (equation 2) in
which (by default) all elements ofW are zero except down the main diagonal. The
main diagonal is the vector of weights chosen by the algorithm. If each of the
weights for the covariates are set equal to one and the weight for the Pscore is zero,
GMD is the same asMD. That is, GenMatch will converge to the MD if that proves to
be the optimal distance measure. If the Pscore contains all the information required
to maximize covariate balance, the algorithm will converge to the corresponding
distance metric, that is, the Pscore will be given full weight, and the other elements
in W will be given zero weight. Hence, both Pscore and MD matching can be
considered as limiting cases of GenMatch. The inclusion of individual covariates
in theX matrix, rather than relying solely on the specification of the Pscore, helps
ensure covariate balance when the Pscore is misspecified. In this sense, GenMatch
is robust to misspecifications in the Pscore.

The iterative search algorithm

Here we provide an overview of the optimization algorithm. Further details are
available in Sekhon and Mebane (1998) and Mebane and Sekhon (2011).

The aim of the GenMatch algorithm is to find the optimal weights,W, that
is the weights which produce the matched sample with the best balance. Gen-
Match uses a genetic search algorithm to search the weight matricesW, where each
possible vector of weights corresponds to a different distance metric as defined in
equation (2). The algorithm proposes batches of weights,W and moves towards
the batch which contains the optimal weights. Each batch is ageneration and is
used iteratively to produce a subsequent generation with better candidateW. The
size of each generation is thepopulation size (e.g., 1,000) and is constant for all
generations. For each generation the sample is matched according to each metric,
corresponding to eachW, to produce as many matched samples as the population
size. Balance is evaluated for each matched sample and the algorithm identifies the
weights corresponding to the best balance. The generation of candidateWs evolves
towards those containing, on average, betterW and asymptotically converges to
contain the optimalW: the one which maximizes balance.

The X matrix includes all variables which are matched on and is used to
define theGMD between units. Thebalance matrix consists of columns of data
for each variable used to measure balance, and by default, the balance matrix is
identical to theX matrix. Optimization can be stopped if there is no significant
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improvement in the minimum loss over a specified number of generations or it can
be stopped after a fixed number of generations (e.g., 200).

Previous simulation evidence

Diamond and Sekhon (2008) conducted an extensive simulation study to compare
the performance of GenMatch to other matching methods (Pscore matching, MD
matching, Pscore and MD matching combined). The results showed that GenMatch
produced better covariate balance in each of the settings considered. Where the
Pscore was correctly specified and the covariates were multivariate normal, Gen-
Match dominated the other multivariate matching methods in terms of bias and
MSE, and reported lower MSE than Pscore matching. When the Pscore was mis-
specified, GenMatch reported lower bias and MSE than the other estimators.

Sekhon and Grieve (2011) compared GenMatch to Pscore matching in a
challenging setting where some covariates were discrete, and others continuous but
with highly skewed distributions. The simulation reported that GenMatch achieved
better covariate balance, lower bias and MSE, compared with Pscore matching.

Diamond and Sekhon (2012) compared the performance of GenMatch to
Pscore matching, where the Pscore was estimated by a linear logistic regression
model, random forests and boosted Classification and Regression Trees. The sim-
ulations considered scenarios that differed in the degree of linearity and additivity
in the true Pscore model, that is the extent to which the Pscore model included
quadratic and interaction terms. GenMatch reported the smallest MSE and bias,
apart from one scenario where matching on the correctly specified Pscore model
gave least bias.

Implementation

Various matching options can be implemented in the GenMatch software (Sekhon,
2011). For example, matching can be performed with or without replacement, with
calipers, 1:1 or 1:n, with or without ties. Software and further details can be found
at the following web page:http://sekhon.berkeley.edu/matching/.
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Appendix B

Pscore model in the motivating example

Pscore models for assignment to the DrotAA versus control group were estimated
using logistic regression (Rowan et al., 2008). The linear predictor (µ) for the
Pscore was:

µ = β0+β1sex+β2age+β3IMscore+β4icubeds+β5mva+

β6orgdys+β jX j +βkXk +βlXl +βmXm +

βnXn + s(age)+ s(IMscore),

whereicubeds indicates the number of beds,mva mechanical ventilation,orgdys
the number of organ failures,X j, Xk, Xl, Xm, andXn are vectors of categorical vari-
ables for: different types of hospital, sources of admission, serious conditions in the
past medical history, types of organ failure, and diagnostic categories. Nonlineari-
ties in the continuous covariates were considered by fitting restricted cubic splines;
the termss(age) and s(IMscore) represent splines of degree three forage and
IMscore. For the subgroup specific Pscores the same functional form was assumed
across subgroups, as is common practice, but separate models were estimated for
each subgroup.

The set of variables included in the Pscore or matching algorithm can dif-
fer from those for whom balance is presented. The full set of baseline covariates
were included in the Pscore and matching algorithms in order to balance major
confounders. The choice of variables judged major confounders drew on a previ-
ous study which suggested that the most important baseline covariates to balance
were IMprob, IMscore, age and the proportion of patients ventilated (Sadique et al,
2011). Here, IMprob is the baseline probability of death (IMprob) which is a func-
tion of 20 physiological variables. A second set of variables included in the Pscore
were judged potentially weak confounders and oflow priority to balance (serious
conditions in medical history, number of organ failures, types of organ failure). A
third set of variables were included in the Pscore and matching algorithm in or-
der to balance the other covariates listed, but were not anticipated to be important
confounders (sex, icubeds, hospital type, source of admission, diagnostic category).

Data generating process for simulation study

In scenarios 1 and 3,X1 andX2 were generated from the following bivariate normal
distribution:
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(

X1

X2

)

iid
∼ N

([

2
4

]

,

[

2 0.2
0.2 2

])

,

whereas, in scenario 2 from:
(

X1

X2

)

iid
∼ N

([

3
4

]

,

[

2 0.2
0.2 1.5

])

.

X3 was generated from a Bernoulli distribution:

X3 ∼ Bern

{

0.6 for X1 > 2
0.4 for X1 ≤ 2

,

andX4 was generated from a normal distributionX4 ∼ N (3,1).

R code for the simulation study

The following code was used to conduct simulations and analyze results for sce-
nario 1a. For all the remaining scenarios the code was modified accordingly. The
dataset was generated using the commands:

Sigma<-matrix(c(1,0.2,0.2,1),2,2)

X12<-mvrnorm(n,c(2, 4), Sigma)

X1<-X12[,1]

X2<-X12[,2]

X3<-rbern(n,0.5+ifelse(X1>2,0.1,-0.1))

psc_logit<-log(0.2)+(0.1*X1)+(0.2*X2)+(0.3*X3)+(0.2*X1*X3)-

(0.2*X2*X3)

psc<-inv.logit(psc_logit)

tx<-rbern(n,psc)

Y_logit<- -25+(log(2)*tx)+(10*X1)+(0.5*X2)+(0.2*X3)-(log(1.5)*

X3*tx)

Y<-rbern(n,inv.logit(Y_logit))

dataset<-as.data.frame(cbind(X1,X2,X3,Y,tx))

dataset.X3 <- dataset[dataset$X3==1,]

dataset.noX3 <- dataset[dataset$X3==0,] }

wheredataset is the whole sample, anddataset.X3 anddataset.noX3 are the
sub-samples for the two subgroups,X3 = 1 andX3 = 0. The two Pscore models
were fitted separately:
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pmodel.X3<-glm(tx~X1+X2+X3,family=binomial,data=dataset.X3)

pmodel.noX3<-glm(tx~X1+X2+X3,family=binomial,data=dataset.noX3)

and the linear predictors,pscore.lin.X3 andpscore.lin.noX3, and Pscore weights
pscorwght.X3 andpscorwght.noX3, calculated. Pscore matching was performed
separately for the two subgroups using the commands:

mtchout.Y.X3<-Match(Tr=tx,X=cbind(pscore.lin.X3),exact=c(FALSE),

estimand="ATE")

mtchout.Y.noX3<-Match(Tr=tx,X=cbind(pscore.lin.noX3),

exact=c(FALSE),estimand="ATE")

GenMatch was performed using the commands:

genmtchout.X3<-GenMatch(Tr=tx,X=cbind(pscore.lin.X3,X1,X2),

estimand="ATE", fit.func = my.fitfunc_sdiff,

starting.values=c(10000,0,0),

exact=c(FALSE,FALSE,FALSE),pop.size=gpop)

gmtchout.Y.X3<-Match(Tr=tx,X=cbind(pscore.lin.X3,X1,X2),

exact=c(FALSE,FALSE,FALSE),

Weight.matrix=genmtchout.X3,estimand="ATE")

26

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 25



Appendix C

Additional tables and figures
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Figure 3: Overlap for the baseline covariates in the motivating example. Density
functions reported for age, IMprob and IMscore among treated (grey line) and con-
trol (black line) observations by subgroup (2 organ failures; 3 to 5 organ failures).
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Table 8: Covariate balance when using i) an overall Pscore or GenMatch algorithm
and ii) a subgroup-specific Pscore or GenMatch algorithm:low priority variables.
Results reported are weighted standardized differences (%)a.

Overall Pscore or GenMatch Subgroup-specific Pscore or GenMatch

2 organ 3 to 5 organ 2 organ 3 to 5 organ
Covariate Method failures group failures group failures group failures group

Medical history:

Cardiovascular
Pscore matching 2.99 6.71 25.55 7.05

GenMatch 18.49 9.06 0.00 7.40

IPTW 30.75 6.40 11.51 5.08

Respiratory
Pscore matching 5.11 6.64 5.17 1.53

GenMatch 1.32 3.86 5.09 4.78

IPTW 1.80 2.56 0.94 1.30

Renal
Pscore matching 12.14 1.45 11.32 0.97

GenMatch 16.45 3.16 12.74 2.66

IPTW 5.43 0.17 2.05 2.45

Liver
Pscore matching 33.95 2.54 0.27 0.17

GenMatch 2.51 0.08 0.00 2.02

IPTW 16.29 13.04 5.34 29.03

Immunosuppressed
Pscore matching 27.86 8.35 3.12 3.93

GenMatch 5.27 13.45 5.82 12.23

IPTW 9.06 6.80 2.78 4.33

a Note absolute differences are reported as percentages.
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Table 9: Covariate balance when using i) an overall Pscore or GenMatch algorithm
and ii) a subgroup-specific Pscore or GenMatch algorithm:low priority variables.
Results reported are weighted standardized differences (%)a.

Overall Pscore or GenMatch Subgroup-specific Pscore or GenMatch

2 organ 3 to 5 organ 2 organ 3 to 5 organ
Covariate Method failures group failures group failures group failures group

Number of organ
system failing (%):

3
Pscore matching NA 6.42 NA 2.98

GenMatch NA 2.50 NA 4.67

IPTW NA 2.54 NA 4.60

4
Pscore matching NA 11.18 NA 9.30

GenMatch NA 4.50 NA 5.54

IPTW NA 7.71 NA 1.98

5
Pscore matching NA 7.79 NA 10.62

GenMatch NA 3.49 NA 1.21

IPTW NA 8.48 NA 11.55

Organ system failing
in first 24 hours (%)b:

Card/Resp
Pscore matching 7.61 NA 3.62 NA

GenMatch 3.19 NA 10.99 NA

IPTW 6.25 NA 3.66 NA

Card/Resp/Acid
Pscore matching NA 7.19 NA 0.68

GenMatch NA 0.45 NA 0.00

IPTW NA 5.09 NA 7.11

Card/Resp/
Renal/Acid

Pscore matching NA 9.69 NA 6.21

GenMatch NA 5.47 NA 4.38

IPTW NA 6.24 NA 1.27

a Note absolute differences are reported as percentages. NA: not applicable for a given subgroup.
b Results for the most prevalent type for each number of organ failures are presented only (Sadique

et al., 2011).

29

Radice et al.: Automated matching approach versus Pscore methods

Published by De Gruyter, 2012



Table 10: Covariate balance ofhigh priority variables when using a
GenMatch algorithm that optimizes t-tests and KS tests. Results re-
ported are weighted D-statisticsa.

Subgroup specific Pscore or GenMatch

2 organ 3 to 5 organ
Covariate Method failures group failures group

Age
Pscore matching 0.06 0.03

GenMatch 0.05 0.02

IPTW 0.08 0.19

IMprob
Pscore matching 0.15 0.05

GenMatch 0.05 0.03

IPTW 0.17 0.06

IMscore
Pscore matching 0.10 0.04

GenMatch 0.05 0.02

IPTW 0.19 0.15

% Ventilated
Pscore matching 0.05 0.01

GenMatch 0.01 0.00

IPTW 0.l8 0.15

a Note: D-statistics are reported from the weighted version of the KS tests, where
weights are frequency weights from matching and IPTW weights. Code avail-
able upon request.
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Table 11: Covariate balance oflow priority variables when using a Gen-
Match algorithm that optimizes t-tests and KS tests. Results reported are
weighted D-statisticsa.

Subgroup specific Pscore or GenMatch

2 organ 3 to 5 organ
Covariate Method failures group failures group

Medical history:

Cardiovascular
Pscore matching 0.08 0.01

GenMatch 0.00 0.01

IPTW 0.00 0.01

Respiratory
Pscore matching 0.00 0.01

GenMatch 0.01 0.01

IPTW 0.01 0.03

Renal
Pscore matching 0.03 0.00

GenMatch 0.01 0.01

IPTW 0.02 0.00

Liver
Pscore matching 0.00 0.00

GenMatch 0.00 0.00

IPTW 0.00 0.01

Immunosuppressed
Pscore matching 0.01 0.02

GenMatch 0.02 0.04

IPTW 0.01 0.06

a Note: D-statistics are reported from the weighted version of the Kolmogorov-
Smirnov tests, where weights are frequency weights from matching and IPTW
weights. Code available upon request.
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Table 12: Covariate balance oflow priority variables when
using a GenMatch algorithm that optimizes t-tests and KS
tests. Results reported are weighted D-statisticsa.

Subgroup specific Pscore or GenMatch

2 organ 3 to 5 organ
Covariate Method failures group failures group

Number of organ
system failing (%):

3
Pscore matching NA 0.02

GenMatch NA 0.01

IPTW NA 0.07

4
Pscore matching NA 0.05

GenMatch NA 0.02

IPTW NA 0.05

5
Pscore matching NA 0.04

GenMatch NA 0.01

IPTW NA 0.01

Organ system failing
in first 24 hours (%):

Card/Resp
Pscore matching 3.27 NA

GenMatch 1.38 NA

IPTW 2.72 NA

Card/Resp/Acid
Pscore matching NA 0.00

GenMatch NA 0.02

IPTW NA 0.01

Card/Resp/
Renal/Acid

Pscore matching NA 0.03

GenMatch NA 0.01

IPTW NA 0.05

a Note: D-statistics are reported from the weighted version of the
Kolmogorov-Smirnov tests, where weights are frequency weights
from matching and IPTW weights. Code available upon request.
NA: not applicable for a given subgroup.
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Table 13: Motivating example: Covariate balance following IPTW with different
levels of weight truncation. Results are reported as weighted standardized differ-
ences (%).

Covariate Percentile 2 organ failures group 3 to 5 organ failures group

Age

0,100 9.06 7.24

1,99 9.13 2.72

5,95 14.83 8.33

10,90 20.33 13.29

25,75 26.19 24.52

IMprob

0,100 5.58 9.86

1,99 7.49 0.27

5,95 8.17 4.88

10,90 9.04 7.75

25,75 10.47 14.01

IMscore

0,100 3.88 12.41

1,99 9.97 4.93

5,95 16.31 12.89

10,90 21.66 18.45

25,75 27.92 30.61

% Ventilated

0,100 5.99 13.19

1,99 13.39 5.54

5,95 20.23 10.55

10,90 24.89 14.60

25,75 30.74 24.44
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Table 14: Effectiveness of DrotAA versus controls for each subgroup with: (i)
an overall Pscore or GenMatch algorithm and (ii) a subgroup-specific Pscore
or GenMatch algorithm. Results are reported as RRs (95% CIsa) of hospital
mortality.

Pscore matching GenMatch IPTW

i) Overall Pscore or GenMatch

2 organ failures subgroup 1.38(1.25,1.50) 1.32(1.16,1.46) 1.41(1.02,1.81)

3 to 5 organ failures subgroup 0.84(0.80,0.88) 0.81(0.76,0.86) 0.85(0.75,0.95)

ii) Subgroup-specific Pscore
or GenMatch

2 organ failures subgroup 1.44(1.29,1.59) 1.30(1.14,1.45) 1.29(1.00,1.59)

3 to 5 organ failures subgroup 0.81(0.77,0.85) 0.79(0.74,0.84) 0.90(0.73,1.07)

a CIs were calculated using the nonparametric bootstrap.

Table 15: Motivating example: Estimates (CIsa) of the coefficients
used to obtain the ORs for Table 3 in the main document. The results
were obtained by fitting a logistic model with treatment, subgroup,
and treatment by subgroup interaction terms as independent covari-
ates. Results are reported for i) an overall Pscore or GenMatch algo-
rithm and ii) a subgroup-specific Pscore or GenMatch algorithm.

Pscore matching GenMatch IPTW

i) Overall Pscore
or GenMatch

Treatment 0.57 (0.41,0.73) 0.47 (0.27,0.66) 0.60 (0.07,1.15)

Interaction −0.93 (−1.11,−0.75) −0.94 (−1.17,−0.70) −0.95 (−1.57,−0.36)

ii) Subgroup-specific
Pscore or GenMatch

Treatment 0.64 (0.46,0.82) 0.44 (0.25,0.65) 0.44 (0.05,0.82)

Interaction −1.09 (−1.18,−0.99) −0.96 (−1.20,−0.73) −0.69 (−1.09,−0.26)

a CIs were calculated using the nonparametric bootstrap.
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Figure 4: Simulation scenarios with good (Scenario 1) and poor overlap (Scenario
2). Densities of true Pscores using data from a typical sample (n= 1,000,000) for
treated (grey line) and control (black line). The rug plots, at the top and bottom of
each graph, shows the corresponding values of the Pscore.
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Figure 5: Simulation scenario with poor overlap (2a). Distribution of weights for
IPTW for treatment and control observations in theX3 = 1 subgroup, generated for
a typical sample (n= 1,000,000).

Table 16: Simulation scenario with poor overlap and a misspecified Pscore (2b).
Covariate balance following weight truncation. Results are weighted standardized
differences (%) reported as averages over the 1,000 replications.

SubgroupX3 = 0 SubgroupX3 = 1
Truncation X1 X2 X1 X2

0,100 2.59 3.41 16.43 8.88

1,99 2.37 3.75 37.39 11.95

5,95 7.67 15.62 61.86 21.78

10,90 13.16 27.13 75.56 27.43

25,75 24.42 50.90 99.83 37.36
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Figure 6: Boxplots of the ORs for IPTW with weight truncation, for the simulation
scenario 2b. 100 corresponds to no truncation, 99 corresponds to the case where
weights are truncated at the first and 99th percentiles. Results are across 1,000
replications.
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