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Abstract
Modern data-rich analyses may call for fitting a large number of nonparametric quantile

regressions. For example, growth charts may be constructed for each of a collection of variables,
to identify those for which individuals with a disorder tend to fall in the tails of their age-
specific distribution; such variables might serve as developmental biomarkers. When such a large
set of analyses are carried out by penalized spline smoothing, reliable automatic selection of the
smoothing parameter is particularly important. We show that two popular methods for smoothness
selection may tend to overfit when estimating extreme quantiles as a smooth function of a predictor
such as age; and that improved results can be obtained by multifold cross-validation or by a novel
likelihood approach. A simulation study, and an application to a functional magnetic resonance
imaging data set, demonstrate the favorable performance of our methods.
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1 Introduction
Estimating percentiles of parameters such as height and weight as a smooth function
of age is a well-studied problem, with roots in the investigations of Quetelet (1830).
Statistical solutions to this problem underpin the standard growth charts that have
been routinely used by pediatricians in the United States since the 1970s (Ogden
et al., 2002). The data-rich character of today’s biomedical research calls for a new,
“high-throughput” variant of growth chart estimation: finding percentile curves for
each of a large number of variables, with a view toward identifying some of these
variables as potential markers of abnormal development.

This paper was motivated by functional magnetic resonance imaging (fMRI)
experiments, in which the blood oxygen level dependent (BOLD) signal, an index
of brain activity, is recorded at each of a dense grid of brain locations, known as
voxels. Traditionally, subjects were scanned while attending to a series of stimuli;
but a great deal of recent work has focused on resting-state fMRI (Biswal et al.,
1995), in which individuals are scanned while at rest. A key objective of such stud-
ies is to understand functional connectivity, the temporal correlation between time
courses of different brain regions (Friston, 1994). Some recent work has exam-
ined how functional connectivity develops with age (e.g., Fair et al., 2008), and has
identified connections (pairs of regions of interest, or ROIs) for which abnormal
developmental trajectories may be associated with psychiatric or neurological dis-
orders (e.g., Church et al., 2009). In light of this work, our psychiatrist colleagues
have expressed interest in functional connectivity growth charts that might be used
to screen for risk of psychiatric disorders, in much the same way that pediatricians
refer to growth charts to detect deviations from age-specific norms for height or
weight. While such routine clinical applications are likely only a theoretical possi-
bility for functional connectivity growth charts, these quantile curves may prove to
be scientifically informative, as our application will illustrate.

A common approach to estimating percentile curves is the “LMS” method
(Cole and Green, 1992), which fits a smoothly varying Box-Cox-transformed nor-
mal distribution to the data. But a number of authors, following a suggestion of
Cox (1988), have opted instead for the quantile regression paradigm of Koenker and
Bassett (1978), which is robust to departures from the LMS method’s distributional
assumptions, such as unimodality (Wei et al., 2006). In this paper we apply the non-
parametric quantile regression framework, and more specifically a penalized spline
approach, to functional connectivity in a set of connections between ROIs. We esti-
mate quantile curves for the connections using a sample of normal individuals, and
compare the results with data from individuals with attention deficit/hyperactivity
disorder (ADHD). By identifying connections for which individuals with ADHD
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tend to have values in the tails of their age-specific conditional distribution, we may
gain insight into developmental anomalies associated with the disorder.

Our penalized spline method entails choosing a tuning parameter that con-
trols the smoothness of the function estimate. In general the optimal degree of
smoothness will depend on the quantile of interest. Because we are estimating
growth charts for connectivity in a large number of connections, rather than for
just a single variable as in conventional applications, it is critical to have a reli-
able automatic procedure to choose the optimal tuning parameter for each connec-
tion’s quantile curve. This need is rendered even more acute by the relatively small
size (128) of our normal sample. We have found, however, that in samples of this
size, standard criteria for automatic smoothing parameter selection are unreliable
for extreme quantiles, which are the quantiles of interest in our setting. Improved
smoothness selection is therefore the major methodologic objective of this paper.

Section 2 outlines the penalized spline approach to nonparametric quantile
regression. We review previous, prediction-error-based approaches to automatic
smoothing parameter selection in Section 3, and introduce a new, likelihood-based
approach in Section 4. Simulations in Section 5, and our analysis of the ADHD
data in Section 6, point to advantages of the likelihood approach, and of multifold
cross-validation, over more popular methods for smoothness selection. Section 7
offers concluding remarks.

2 Nonparametric quantile regression with penalized
splines

In what follows we assume that we have a sample of n individuals with predictor
values x1, . . . ,xn (e.g., age), and responses y1, . . . ,yn (e.g., functional connectivity
for a particular pair of regions). Given a value τ ∈ [0,1], nonparametric quantile
regression seeks to estimate the presumably smooth function g(x) defined as the
conditional 100τ% quantile of y given x. A popular general approach is to obtain
an estimate ĝ = ĝτ,λ that minimizes

n

∑
i=1

ρτ [yi−g(xi)]+λJ(g) (1)

over an appropriate function space. Here ρτ is the “check function” of Koenker and
Bassett (1978), given by

ρτ(u) = τu++(1− τ)u−

where u+ = max(u,0) and u− = max(−u,0), J(g) is a roughness functional, and
λ is a tuning parameter determining the extent to which roughness is penalized.
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Koenker et al. (1994) take J(g) to be a total variation penalty on g′, for which linear
programming can be used to find the minimizer of (1) over a particular function
space that they define. Some subsequent work has retained the form (1) for the
objective function but has differed from the approach of Koenker et al. (1994) in
one or both of the following respects:

1. Some authors (e.g., Nychka et al., 1995, Bosch et al., 1995, Yuan, 2006)
take J(g) =

∫
[g′′(x)]2dx (cf. Cox, 1983), a traditional roughness functional

for ordinary nonparametric regression, which may enforce a more visually
appealing form of “smoothness” than alternative functionals do.

2. A number of authors (e.g., Ng and Maechler, 2007, Pratesi et al., 2009) have
taken the function space to be the span of a set of basis functions b1, . . . ,bK
such as B-splines, which combine favorable approximation-theoretic prop-
erties (De Boor, 2001) with computational efficiency. In other words, g is
required to have the form g(x) = b(x)T γ for some γ ∈ RK , where b(x) =
[b1(x), . . . ,bK(x)]T .

In this paper we adopt both of these modifications of the quantile smoothing spline
framework, and take the basis functions to be cubic B-splines. Thus our function
estimate ĝλ (x) = b(x)T γ̂ (from here on we suppress the dependence on τ) will be
found by solving the minimization problem

γ̂ = argmin
γ∈RK

[
n

∑
i=1

ρτ{yi−b(xi)
T

γ}+λ

∫
{b′′(x)T

γ}2dx

]

= argmin
γ∈RK

[
n

∑
i=1

ρτ(yi−bT
i γ)+λγ

T Pγ

]
, (2)

where bi = b(xi) and P = [
∫

b′′i (x)b
′′
j (x)dx]1≤i, j≤K . For a given λ , the minimiza-

tion can be performed by penalized iteratively reweighted least squares (PIRLS)
(Nychka et al., 1995, Pratesi et al., 2009), yielding an estimate of the form

γ̂ = (BTWB+λP)−1BTWy, (3)

where B = (b1 . . .bn)
T , y = (y1, . . . ,yn)

T , and W is an n×n diagonal matrix whose
diagonal elements are weights, described in Appendix A, which are iterated until
convergence. As noted in the introduction, our main concern in this paper is optimal
choice of λ .

We remark that an alternative to the minimizing (1) is the regression spline
method (e.g., Wei and He, 2006, Wei et al., 2006), which omits the penalty and
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restricts g to the span of a low-rank B-spline basis. This approach is more theo-
retically tractable than penalized splines, but is much more dependent on a suitable
choice of the knots. In our application it is impractical to find a good choice of knots
for each of the large number of connections for which growth charts are estimated.

3 Previous approaches to smoothing parameter se-
lection

3.1 Schwarz information criterion

Koenker et al. (1994) propose to adapt the Schwarz (1978) information criterion
(SIC) to the choice of λ in nonparametric quantile regression; that is, they choose
λ in (1) to minimize

SIC(λ ) = log

[
1
n

n

∑
i=1

ρτ{yi− ĝλ (xi)}

]
+

logn
2n

dfλ , (4)

where dfλ denotes the effective degrees of freedom of the fit. When (1) is mini-
mized by PIRLS, it is conventional (e.g., Pratesi et al., 2009) to define the effective
df as

dfλ = tr(Hλ ), (5)

where Hλ = (hi j)1≤i, j≤n = B(BTWB+λP)−1BTW is the “hat” matrix obtained at
convergence such that

[ĝλ (x1), . . . , ĝλ (xn)]
T = Hλ y

(see equation (3), and cf. Debruyne et al., 2008, Section 5.3). The df provide a
useful index of the complexity of a fitted curve, with 2 df corresponding to a linear
fit, and higher df implying bumpier fits. It can thus serve as a basis of comparison
among methods, as in Figure 2 below. The application of SIC is based on an analogy
with its use in mean regression, but to our knowledge has never been rigorously
justified for nonparametric quantile regression.

3.2 Approximate versions of cross-validation

Cross-validation (CV) approaches to smoothing parameter selection for quantile
spline smoothing are investigated by Yuan (2006). The starting point is to find a
value λ that approximately minimizes the risk

1
n

n

∑
i=1

Ezρτ [zi− ĝλ (xi)], (6)
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for a future sample z1, . . . ,zn such that, for each i, the distribution of zi conditional
on xi is the same as that of yi. A very similar idea motivates the Akaike (1973) in-
formation criterion (AIC), but the loss function used there is the Kullback-Leibler
information; thus Yuan (2006), following Wahba (1999), refers to (6) as the gener-
alized comparative Kullback-Leibler distance (GCKL). Since the true distribution
of the yi’s is unknown, (6) cannot be computed, so we instead minimize the leave-
one-out CV criterion with check-function loss, i.e.

1
n

n

∑
i=1

ρτ [yi− ĝ[−i]
λ

(xi)], (7)

where ĝ[−i]
λ

is the function estimate based on all but the ith observation. This cri-
terion is referred to in Nychka et al. (1995) as quantile CV and in Yuan (2006) as
robust CV. There is a subtle difference here in that CV uses each left-out pair (xi,yi)
as a proxy for entirely new data, whereas in the scenario underlying (6) we retain
the original predictor data and generate a new set of responses. Nevertheless, as
Yuan (2006) argues, (7) should be an approximately unbiased estimate of (6) in
large samples (cf. Stone, 1977).

To avoid the computational expense of computing each leave-one-out func-
tion estimate ĝ[−i]

λ
, Nychka et al. (1995) propose the approximate cross-validation

(ACV) criterion
1
n

n

∑
i=1

ρτ [yi− ĝλ (xi)]

1−hii
. (8)

Appendix B explains why (8) is approximately equal to (7).
Yuan (2006) proposes to replace hii in (8) by its average value, yielding the

generalized approximate cross-validation (GACV) criterion

1
n

n

∑
i=1

ρτ [yi− ĝλ (xi)]

1− tr(Hλ )/n
. (9)

He shows that this step, borrowed from the derivation of generalized cross-validation
(GCV; Craven and Wahba, 1979), alleviates the failure of (8) to approximate the risk
well when most of the hii’s are close to 0.

We have found, however, that GACV often severely overfits for extreme
quantiles, i.e. τ near 0 or 1. Figure 1 illustrates the reason for this phenomenon, us-
ing a particular data set that we believe is representative of the general problem. The
leverage hii for each of 150 observations is plotted against the corresponding sum-
mand ρτ [yi− ĝλ (xi)]/(1−hii) in the ACV criterion (8), for quantiles τ = .01, .3 and
smoothing parameters λ = .001,1. Observe that (a) the smaller λ results in more
high-leverage (hii ≈ 1) observations, and (b) for the more extreme τ , the summands
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corresponding to high-leverage observations tend to be very large. Replacing each
observation’s leverage with the mean leverage downweights the high-leverage sum-
mands, so that when both (a) and (b) obtain, (9) will generally be smaller than (8).
In other words, with extreme τ , GACV will be decreased relative to ACV for small
λ , so GACV will tend to choose smaller λ than ACV does.
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Figure 1: Illustration of why GACV favors a small smoothing parameter λ for
extreme quantiles (see Section 3).

3.3 Multifold cross-validation

Multifold CV (Zhang, 1993) can greatly reduce the computational burden without
appealing to the approximations motivating ACV and GACV. Here we divide the
n observations into “validation sets” V1, . . . ,Vk of (approximately) equal size, and
define the criterion

1
n

k

∑
j=1

∑
i∈V j

ρτ [yi− ĝ[−V j]

λ
(xi)], (10)

where ĝ[−V j]

λ
is the function estimate based on the observations not belonging to Vj

(the special case k = n yields the leave-one-out CV criterion (7)). In general, small
values of k produce downward-biased estimates of prediction error, whereas larger
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values produce more variable results and impose a higher computational burden;
k = 5 or 10 is often recommended as a compromise (Hastie et al., 2009).

While multifold CV is a widely used general technique, it seems not to be
popular in the quantile smoothing context; but Section 5 below demonstrates that it
can clearly outperform GACV and SIC, especially for extreme quantiles.

4 Likelihood-based smoothness selection

4.1 Background

In other roughness penalty smoothing contexts, likelihood-based smoothing pa-
rameter selection has been proposed as an alternative to prediction error-based ap-
proaches such as GCV or information criteria (Wahba, 1985, Ruppert et al., 2003,
Reiss and Ogden, 2009, Wood, 2011). Given the difficulties we encountered with
standard smoothness selection approaches for penalized quantile regression splines,
we wondered whether a likelihood approach might work here. At first glance, this
idea may seem unpromising, given that the check function is not generally thought
of as arising from a likelihood, and accordingly (1) is not obviously related to a
penalized log-likelihood. Some authors, however (e.g., Yu and Moyeed, 2001, Ko-
munjer, 2005, Geraci and Bottai, 2007, Reich et al., 2010), have successfully ap-
proached certain quantile regression problems from a likelihood perspective, by
making use of the asymmetric Laplace (AL) density

f (y; µ,θ ,τ) =
τ(1− τ)

θ
exp
[
−ρτ

(
y−µ

θ

)]
.

The connection between the check function and the asymmetric Laplace density en-
ables us to formulate smoothing parameter selection in (2) as a mixed model prob-
lem, in which the coefficient vector γ arises from a multivariate normal distribution,
while the distribution of the outcomes conditional on γ is asymmetric Laplace.

4.2 Formulating an “equivalent” mixed model

Ordinarily the null space of P, i.e., the space of coefficient vectors γ that are un-
penalized, has dimension d > 0. Let Q1,Q2 be matrices of dimension K× d and
K×(K−d), respectively, whose columns form orthonormal bases of this null space
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and its orthogonal complement, respectively. Referring to (2),we can write

Bγ = B(Q1 Q2)

(
QT

1
QT

2

)
γ

= Xβ +Zu, (11)

where B=(b1 . . .bn)
T as above, X =(x1 . . .xn)

T =BQ1, β =QT
1 γ , Z =(z1 . . .zn)

T =
BQ2, and u=QT

2 γ . (We use xi here to echo standard mixed model notation; it should
not be confused with the predictor values xi.) It is then readily shown that

γ
T Pγ = uT QT

2 PQ2u. (12)

Consider the mixed model

yi|u ∼ AL(xT
i β + zT

i u,θ ,τ) (i = 1, . . . ,n);
u ∼ N

[
0,(θ/2λ )QT

2 P+Q2
]
, (13)

where P+ is a generalized inverse of P. The likelihood L(β ,θ ,λ ) is then the integral
with respect to u of the joint density

n

∏
i=1

f (yi|u) f (u) =

[
τ(1− τ)

θ

]n

exp

[
−

n

∑
i=1

ρτ

(
yi− xT

i β − zT
i u

θ

)]
×

exp
[
−(λ/θ)uT QT

2 PQ2u
]

(2π)(K−d)/2|(θ/2λ )QT
2 P+Q2|1/2

(14)

=

[
τ(1− τ)

θ

]n |(2λ/θ)QT
2 PQ2|1/2

(2π)(K−d)/2
×

exp

[
− 1

θ

{
n

∑
i=1

ρτ(yi−bT
i γ)+λγ

T Pγ

}]
,

where the previous line used (11) and (12). The expression in curly brackets
above is precisely the penalized sum of check-function loss criterion minimized
in nonparametric quantile regression. As in Ruppert et al.’s (2003) presentation of
likelihood-based smoothness selection, this correspondence motivates choosing λ

by maximizing L(β ,θ ,λ ).

4.3 Algorithm

Our algorithm for estimating λ by maximum likelihood, or more correctly maxi-
mum simulated likelihood, proceeds by “profiling out” (i.e., optimizing over) first

8
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β and then θ , in an approximate sense. In the standard linear mixed model set-
ting with yi normal conditional on u, one can optimize with respect to β by noting
that, for given variance parameter values, the likelihood is maximized by estimat-
ing β by generalized least squares. In our setting no such closed-form expression
for β̂ θ ,λ = argmaxβ L(β ,θ ,λ ) is available. However, it seems reasonable to as-
sume that β̂ θ ,λ is well approximated by the (parametric) quantile regression esti-
mate β̃ τ = argminβ ∑

n
i=1 ρτ(yi− xT

i β ). Thus, referring to joint density (14), we
obtain the approximate profile likelihood

L̃P(θ ,λ ) =
∫ [

τ(1− τ)

θ

]n

exp

[
−

n

∑
i=1

ρτ

(
yi− xT

i β̃ τ − zT
i u

θ

)]
×

exp
[
−(λ/θ)uT QT

2 PQ2u
]

(2π)(K−d)/2|(θ/2λ )QT
2 P+Q2|1/2

du.

The above integral is intractable, but a Monte Carlo approximation can be obtained
by sampling u1, . . . ,uN from multivariate normal density (13) and calculating

ˆ̃LP(θ ,λ ) =

[
τ(1− τ)

θ

]n 1
N

N

∑
j=1

exp

[
−

n

∑
i=1

ρτ

(
yi− xT

i β̃ τ − zT
i u j

θ

)]
. (15)

We cannot sample directly from distribution (13), since it depends on the
parameters over which we wish to maximize. Instead, we base approximate maxi-
mum likelihood estimation of λ on the following algorithm, which samples from a
distribution that does not depend on (θ ,λ ):

1. Obtain β̃ τ by parametric quantile regression with design matrix X . The R
package quantreg (Koenker, 2011) can be used for this step.

2. For suitably large N, sample u∗1, . . . ,u
∗
N ∼ N(0,QT

2 P+Q2/2).
3. For each candidate λ , let

mλ (θ) =
1

Nθ n

N

∑
j=1

exp

[
−

n

∑
i=1

ρτ

(
yi− xT

i β̃ τ −
√

θ/λ zT
i u∗j

θ

)]
. (16)

If we define u j =
√

θ/λu∗j ( j = 1, . . . ,N), then—ignoring the constant [τ(1−
τ)]n—mλ (θ) equals ˆ̃LP(θ ,λ ), with the u j’s having the distribution (13) re-
quired for Monte Carlo approximation (15). We can thus apply a numerical
optimization procedure to mλ to find θ̂λ = argmaxθ

ˆ̃LP(θ ,λ ).
4. Choose the candidate λ for which ˆ̃LP(θ̂λ ,λ ) is maximized.

In practice we use a modified version of step 3; see Appendix C.
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5 Simulation study
Our simulation study consisted of 100 replications. In each, we sampled x1, . . . ,x200
independently from the U(0,1) distribution, and then generated outcomes

yi = f (xi)+ εi, i = 1, ...,200,

where, as in Yuan (2006), we took f (x) = sin(2πx) and considered errors εi gener-
ated independently from the following five distributions:

1. the double exponential distribution, whose density function is 1
2 exp(−|ε|), ε ∈

(−∞,∞);
2. the standard normal distribution;
3. the t-distribution with 3 df;
4. the mixture 0.05N(0,25)+0.95N(0,1); and
5. the so-called slash distribution N(0,1)/U(0,1).

We then estimated quantile curves for τ = .01, .05, .2, .5 by minimizing the penal-
ized least squares (2), using 30 cubic B-spline functions with equally-spaced knots.
(By symmetry, the results for each of these values of τ should be similar to what
we would obtain for 1−τ .) We obtained the values of λ that minimized the GACV
(9), SIC (4), and 5-fold CV (10) criteria, and that which maximized the approximate
likelihood as in Section 4. (In a separate set of simulations [not shown], 10-fold CV
performed virtually identically to 5-fold CV.) As in Li et al. (2007), performance of
each criterion was evaluated by calculating

prediction error =
1

10000

10000

∑
i=1

ρτ [y∗i − ĝλ (x
∗
i )], (17)

where (x∗1,y
∗
1), . . . ,(x

∗
10000,y

∗
10000) were independently generated from the same joint

distribution as the (xi,yi)’s, and

mean absolute deviation =
1

200

200

∑
i=1
|g(xi)− ĝλ (xi)|, (18)

where g(x) and ĝλ (x) are the true and estimated quantile functions, respectively.
The code for the simulations, written in R (R Development Core Team,

2010) and available from the authors, optimized each criterion over 30 equally
spaced values of logλ from -32 to 0. Using a PC with an Intel Core 2 Duo 2.53
GHz processor with 3.45GB of RAM, optimizing GACV and SIC required less than
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Table 1: Mean (SD), over 100 simulations, of 1000 times the prediction error (17),
for the distributions listed on p. 10 (DE=double exponential).

GACV SIC 5-fold CV Likelihood
τ = 0.01
DE 152 (28) 139 (30) 56 (8) 65 (13)
Normal 98 (20) 74 (26) 32 (3) 37 (7)
t3 190 (29) 177 (30) 81 (9) 96 (17)
Mixture 488 (105) 362 (130) 147 (16) 170 (36)
Slash 3510 (1585) 3498 (1587) 2838 (354) 2972 (518)
τ = 0.05
DE 232 (23) 220 (26) 171 (8) 173 (8)
Normal 153 (16) 133 (22) 112 (6) 111 (4)
t3 280 (27) 268 (32) 205 (8) 208 (8)
Mixture 768 (91) 627 (121) 540 (21) 545 (22)
Slash 4701 (3129) 4534 (2796) 3321 (137) 3304 (99)
τ = 0.2
DE 427 (28) 391 (9) 391 (14) 388 (8)
Normal 317 (21) 290 (6) 292 (8) 289 (5)
t3 464 (37) 434 (8) 432 (9) 429 (7)
Mixture 1571 (140) 1432 (15) 1442 (21) 1439 (19)
Slash 3760 (67) 3745 (9) 3754 (35) 3746 (10)
τ = 0.5
DE 507 (13) 513 (13) 506 (7) 504 (4)
Normal 419 (22) 412 (10) 409 (8) 407 (6)
t3 568 (21) 572 (13) 565 (8) 562 (5)
Mixture 2086 (104) 2043 (16) 2061 (43) 2048 (20)
Slash 3898 (7) 3898 (5) 3895 (14) 3897 (7)

5 seconds per simulation; 5-fold CV, about 14 seconds; and the likelihood method,
about 2.5 minutes.

The results are given in Tables 1 and 2. Overall, the four methods perform
similarly for τ = 0.5. For τ = 0.2, GACV performs less well than the other methods.
For τ = 0.01,0.05, 5-fold CV and the likelihood method greatly outperform GACV
and SIC, with a slight edge for 5-fold CV over likelihood in most cases.

Figure 2 offers further insight by presenting boxplots of the degrees of free-
dom (5) of the models fitted in the simulations for the double exponential distribu-
tion. Since we used basis dimension K = 30, the maximum df, implying no rough-
ness penalization, is 30; df values anywhere near this value signal overfitting. Thus
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Table 2: Mean (SD), over 100 simulations, of 100 times the estimation error given
by the absolute mean deviation (18).

GACV SIC 5-fold CV Likelihood
τ = 0.01
DE 196 (51) 189 (51) 109 (49) 120 (45)
Normal 92 (23) 79 (27) 45 (16) 49 (19)
t3 241 (85) 235 (86) 170 (99) 195 (93)
Mixture 462 (108) 401 (125) 190 (99) 231 (96)
Slash 5156 (6538) 5145 (6541) 4912 (4956) 5954 (7049)
τ = 0.05
DE 108 (18) 102 (22) 56 (19) 58 (20)
Normal 59 (10) 46 (17) 31 (11) 30 (10)
t3 135 (33) 127 (38) 61 (25) 71 (25)
Mixture 301 (48) 205 (102) 128 (60) 139 (57)
Slash 2921 (5362) 2589 (4513) 498 (404) 464 (341)
τ = 0.2
DE 53 (16) 33 (12) 32 (12) 30 (10)
Normal 37 (13) 21 (8) 22 (8) 20 (7)
t3 48 (21) 34 (11) 30 (10) 27 (10)
Mixture 170 (76) 83 (36) 94 (36) 92 (36)
Slash 64 (44) 54 (15) 63 (29) 55 (15)
τ = 0.5
DE 17 (7) 22 (10) 17 (6) 15 (5)
Normal 22 (12) 20 (7) 18 (7) 16 (6)
t3 23 (10) 28 (10) 22 (8) 20 (7)
Mixture 95 (54) 74 (30) 87 (37) 79 (31)
Slash 44 (8) 45 (7) 39 (14) 43 (9)

the boxplots for GACV and SIC suggest that these methods’ poor performance for
extreme quantiles—and even for τ = 0.2, in the case of GACV—result from such
overfitting. The likelihood method appears to be much more stable than the other
three methods in terms of df, both within and among quantiles. Note that in our
simulations, the true quantile curves are parallel to each other, so the fact that the
four quantiles’ df distributions are most alike for the likelihood method constitutes
evidence of that method’s efficacy.

These observations are illustrated in Figure 3, which shows fitted curves for
the four quantiles, by each of the methods, for a typical replication. (This replica-
tion is “typical” in the sense that the df, averaged over the four quantiles and the four
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methods, ranks 50th of 100.) The GACV and SIC fits for τ = 0.01,0.05, and to a
less extent the GACV fit for τ = 0.2, are implausibly bumpy. The marked difference
in smoothness between the 5-fold CV fits for τ = 0.01 and τ = 0.05 mirror the con-
trasting df distributions for these two quantiles, as displayed in the lower left subfig-
ure of Figure 2. Supplementary Appendix A, available at http://works.bepress.com/-
phil reiss/20/, provides analogues of Figures 2 and 3 for the other four distributions.
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Figure 2: Degrees of freedom (5) in the 100 simulations for the double exponential
distribution.

The above results assume a sample size of 200. Supplementary Appendix B,
available at the above URL, reports the results of further simulations with larger
sample sizes, 400 and 1000. As expected, the performance of GACV and SIC
improves with larger samples, but 5-fold cross-validation and the likelihood method
maintain a clear advantage, especially for τ = 0.01 and τ = 0.05.

13

Reiss and Huang: Penalized Quantile Regression Splines

Published by De Gruyter, 2012



●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
GACV

τ=0.5
τ=0.2
τ=0.05
τ=0.01

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

SIC

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

5−fold CV

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

Likelihood

Figure 3: Four fitted quantile functions for each of the four methods, for a typical
simulation with double exponential errors.

6 Application to the functional connectivity data
As discussed in the introduction, our motivating application was to investigate
whether the distribution of functional connectivity conditional on age, for each of a
large set of brain connections, differs between controls and individuals with ADHD.
We explored this question using resting-state scans from 128 normal control par-
ticipants, age 7–25, and 46 participants in the same age range with ADHD, all
acquired at New York University. The 39 regions of interest we studied were iden-
tified by Dosenbach et al. (2007) as relevant to task control; as such it is reasonable
to ask whether connections among these regions may tend to develop anomalously
in ADHD. Dosenbach et al. (2007) found that the correlation matrix of resting state
fMRI signals in these regions could be partitioned into a set of distinct networks. In
particular, their analysis assigned 11 of the 39 ROIs to a “frontoparietal” network
associated with active control, and 7 ROIs to a “cinguloopercular” network associ-
ated with stable maintenance; another 4 ROIs were found in the cerebellum, while
the remaining ROIs were dispersed among five small clusters. For each scan we
computed the mean BOLD time series for voxels in each of the ROIs, from which
we obtained the 39× 39 matrix of temporal correlations for each connection (pair
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of ROIs). In what follows, “connectivity” refers to the Fisher (1921) z-transformed

values of these correlations. Of the
(

39
2

)
= 741 connections for which connec-

tivity growth charts could potentially be created, many show no significant change
with age, and growth charts for such connections are unlikely to be useful for detect-
ing abnormal development. We therefore prescreened for connections that change
with age, as follows (cf. Church et al., 2009). For each of the 741 connections, we
fit a penalized spline (mean) regression of connectivity on age using the R package
mgcv, and tested the effect of age using the F test of Wood (2006); we retained the
100 connections found most significant by this test (approximate p < .026).

For k = 1, . . . ,100, let Fk(·|x),Gk(·|x) denote the cumulative distribution
function of connectivity, conditional on age x, for the kth retained connection, in
controls and ADHD individuals respectively. The global null hypothesis that we
seek to test is

Fk(·|x) = Gk(·|x) for all ages x, for k = 1, . . . ,100. (19)

The maturational delay theory of ADHD (Rubia, 2007) suggests focusing on a par-
ticular type of departure from this null hypothesis: namely, that for some connec-
tions, many individuals with ADHD will have connectivities in either the left or
the right tail of the control distribution for their age. We designed the following
procedure to detect departures of this type. For k = 1, . . . ,100,

1. apply nonparametric quantile regression to the 128 controls to construct 10th-
and 90th-percentile growth charts, i.e., estimates of F−1

k (0.1|·) and F−1
k (0.9|·),

for the kth connection;
2. determine lk, the number of ADHD participants (out of 46) who fell below

the estimated 10th percentile for their age, and uk, the number above the 90th
percentile;

3. calculate the test statistic

tk = max{lk,uk}. (20)

Connections with tk ≥ 12 (see Appendix D for an explanation of how this threshold
was chosen) were identified as those for which ADHD may be associated with ab-
normal development. The 10th and 90th percentiles were chosen heuristically. We
could have chosen more extreme quantiles, and correspondingly a lower threshold
than tk = 12; but this would likely have reduced stability due to greater variability
of the percentile curves.

Of the 100 connections tested, 8 were detected (i.e., met the tk ≥ 12 thresh-
old) based on percentile curves with smoothing parameter selected by either like-
lihood or 5-fold CV (see the upper panels of Figure 4). In addition, 4 connections
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Figure 4: Estimated 10th- and 90th-percentile curves for the 128 controls, shown as
light circles, with the 46 ADHD participants displayed as dark squares. The head-
ing for each plot indicates the pair of ROIs whose connectivities are plotted (aI/fO
= anterior insula/frontal operculum; dACC/msFC = dorsal anterior cingulate cor-
tex/medial superior frontal cortex). Upper panels: two connections with tk ≥ 12, ac-
cording to either likelihood or 5-fold CV; in both cases, many of the young ADHD
participants have unusually high connectivity. Lower left: a connection identified
by 5-fold CV, but not by the likelihood method, as having tk ≥ 12—evidently due to
undersmoothing by 5-fold CV. Lower right: a connection spuriously identified by
GACV (i.e., high tk derived from the GACV-based curves), due to undersmoothed
percentile curves.

were detected by 5-fold CV but not by the likelihood method, and the reverse was
true for 1 connection. For each of these 5 connections, inspection of the fits re-
vealed the reason for the disparate results: 5-fold CV chose very small λ for the
10th and/or the 90th percentile curve, leading to undersmoothing (see the lower left
panel of Figure 4 for an example). In contrast to the likelihood and 5-fold CV meth-
ods, smoothness selection by GACV led to tk values of very dubious utility, due to
extreme undersmoothing; see the lower right panel of Figure 4 for an example.
The 9 connections that were detected with likelihood-based smoothness selection
are depicted in Figure 5. To some extent, this set of connections respects Dosen-
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bach et al.’s (2007) assignment of the 39 ROIs to distinct networks. Eight of the
9 connections are within the frontoparietal network or between it and the cerebel-
lum, or else within the cinguloopercular network or between it and the cerebellum.
Further investigation and validation of these findings awaits future analyses with
larger samples. See Fair et al. (2010) for a previous investigation of resting state
network disparities between ADHD individuals and controls, using very different
methodology and a different set of ROIs.

Frontoparietal	
  network	
  

Cinguloopercular	
  network	
  

Cerebellum	
  

Other	
  regions	
  of	
  interest	
  

Figure 5: An approximate two-dimensional rendering of the 39 ROIs of Dosen-
bach et al. (2007). Line segments indicate connections for which our method, with
likelihood-based smoothness selection, detected evidence of anomalous develop-
ment in ADHD. (There are 9 such connections, but one is not shown because it
involves two ROIs that are superimposed in this rendering.)
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7 Discussion
We have adduced evidence, from simulations and a real-data example, that GACV
and SIC, the two standard methods for automatic smoothness selection in nonpara-
metric quantile regression, perform suboptimally for estimation of extreme quan-
tiles. Consequently—in particular, for applications such as ours, which necessitate
fitting quantile curves for a large number of response variables—we recommend
either multifold CV or a likelihood approach. Each of these alternatives has its rel-
ative strengths. On the one hand, multifold CV is much faster and simpler than the
likelihood method, and had slightly lower prediction and estimation error overall in
the simulations (Tables 1 and 2). On the other hand, the distributions of df displayed
in Figure 2 suggest that the likelihood method is the most stable, and this seems to
be borne out by our analysis of the ADHD data. We recommend multifold CV for
data analysts seeking a fast, straightforward, generally reliable approach to smooth-
ness selection. We hope that future work will reduce the computational burden of
the likelihood approach, and thereby make it more attractive as a practical option
for routine use.

Li et al. (2007) propose a kernel approach to nonparametric quantile regres-
sion, which employs a quadratic penalty as in Nychka et al. (1995), Yuan (2006),
and the present work, but solves the optimization by a new algorithm that finds the
entire solution path (i.e., the solution for all smoothing parameter values) rather
than by PIRLS. Their simulations, like ours, found that GACV and SIC (which
are defined somewhat differently in their framework) performed better for the me-
dian than for extreme quantiles. It would be interesting to investigate whether our
likelihood-based smoothness selection can be adapted to the Li et al. (2007) algo-
rithm.

While a great deal of recent work (e.g., Krivobokova and Kauermann, 2007,
Welham et al., 2007, Wood, 2011, and references therein) has advocated likelihood-
based smoothness selection derived from mixed-model formulations of smoothing
problems, to the best of our knowledge all such work has focused on linear or other
exponential family models. The present work extends likelihood-based smoothing
parameter selection into the novel domain of nonparametric quantile regression.

Our likelihood approach to smoothness selection can be viewed as empir-
ical Bayes estimation of λ . A fully Bayesian method for nonparametric quantile
regression might achieve similar results with greater computational efficiency than
the algorithm of Section 4.3. After completing this paper we became aware of a
non-spline-based approach of this type, due to Yue and Rue (2011), that uses inte-
grated nested Laplace approximations with Gaussian Markov random field priors.
Yue and Rue (2011) note that their method encounters some difficulties with ex-
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treme quantiles, on which the present paper has focused. Detailed comparisons of
empirical Bayes and fully Bayesian approaches await further work.

Appendix A Penalized iteratively reweighted
least squares algorithm

We describe here a modified version of the algorithm of Nychka et al. (1995)
to solve minimization problem (2) by PIRLS (see Wood, 2006). Given the kth-
iteration estimate γ̂

(k), the updated estimate is

γ̂
(k+1) = argmin

γ

[
n

∑
i=1

w(k)
i (yi−bT

i γ)2 +λγ
T Pγ

]
,

with weights w(k)
1 , . . . ,w(k)

n chosen so that the estimating equation for this minimiza-
tion, namely ∑

n
i=1 2w(k)

i (yi− bT
i γ)(−bi)+ 2λPγ = 0, is approximately equivalent

to the estimating equation for minimization (2). Supposing for the moment that
all residuals are nonzero, the latter estimating equation is ∑

n
i=1[τ − I(yi− bT

i γ <

0)](−bi)+ 2λPγ = 0, and hence, for γ in the vicinity of γ̂
(k), the left sides of the

last two equations can be approximately equated by setting

w(k)
i =

τ− I
[
yi−bT

i γ̂
(k) < 0

]
2
[
yi−bT

i γ̂
(k)
] (21)

for i = 1, . . . ,n.
In general, some estimated residuals may equal 0 (see Li et al., 2007), the

only point at which ρτ is not differentiable. In Nychka et al. (1995), this problem
is addressed by replacing ρτ with an approximating function that is differentiable
everywhere. In our implementation, we set a large upper bound for the weights and
truncate when the residual is very small and thus (21) is very large (Gentle, 2007,
p. 233). Note that very small residuals imply negligible contributions to the sum in
(2), and thus the effect of truncating the weights is to replace a negligible portion
of that sum with an even smaller quantity.

The above heuristic argument suggests that the PIRLS iterates should con-
verge to the spline coefficient vector γ solving (2). Nychka et al. (1995) suggest
running the algorithm for each candidate λ in descending order, using the fit for
each λ as the initial estimate for the next smaller λ .
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Appendix B Derivation of ACV
By invoking two approximations, we arrive at a somewhat more streamlined varia-
tion on Yuan’s (2006) derivation of (8) as approximately equal to (7).

The first approximation is based on the observation that

ρτ [yi− ĝ[−i]
λ

(xi)] =
yi− ĝ[−i]

λ
(xi)

yi− ĝλ (xi)
ρτ [yi− ĝλ (xi)],

provided that the leave-one-out residual yi− ĝ[−i]
λ

(xi) and the full-data residual yi−
ĝλ (xi) are of the same sign. Since the signs should usually be the same for most
i, and moreover the exceptions should tend to be i such that both residuals are
relatively small, we obtain

1
n

n

∑
i=1

ρτ [yi− ĝ[−i]
λ

(xi)]≈
1
n

n

∑
i=1

yi− ĝ[−i]
λ

(xi)

yi− ĝλ (xi)
ρτ [yi− ĝλ (xi)]. (22)

The second approximation is obtained by viewing ĝλ (xi) as a function of
the responses, and considering two expressions for its partial derivative with re-
spect to yi. On the one hand, although ∂ ĝλ (xi)/∂yi may not exist for all i, at least
heuristically we can equate it with hii (as in Yuan, 2006). On the other hand, the
leave-one-out lemma for quantile smoothing splines (Yuan, 2006, Lemma 3.1) says
that, if the ith response yi is replaced by ĝ[−i]

λ
(xi) and the model is refitted to this

modified data set with smoothing parameter λ , then the new function estimate is
precisely ĝ[−i]

λ
. Thus, we can approximate ∂ ĝλ (xi)/∂yi by the slope of the secant

from (yi, ĝλ (xi)) to (ĝ[−i]
λ

(xi), ĝ
[−i]
λ

(xi)). Putting these together, we have

hii ≈
ĝλ (xi)− ĝ[−i]

λ
(xi)

yi− ĝ[−i]
λ

(xi)
.

Using this expression, (22) becomes

1
n

n

∑
i=1

ρτ [yi− ĝ[−i]
λ

(xi)]≈
1
n

n

∑
i=1

ρτ [yi− ĝλ (xi)]

1−hii
,

i.e., (7) is approximated by (8), as was to be shown.

Appendix C Maximizing with respect to θ

Step 3 of the algorithm given in Section 4.3 consists of defining a function mλ (θ)
and maximizing it with respect to θ . We have found that the procedure of Brent
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(1973) implemented in the R function optimize works well for this purpose, pro-
vided the search interval (θmin,θmax] is chosen carefully. We take θmin = 0 and
choose θmax as follows.

Let λ0,θ0 be arbitrary positive values. For any λ > 0 and θ > mλ0(θ0)
−1/n,

we have
mλ (θ)≤ θ

−n < mλ0(θ0), (23)

where the first inequality follows from (16). Since our goal is to maximize the ap-
proximate likelihood over both λ and θ , (23) implies that when maximizing mλ (θ)
for each candidate λ , it suffices to consider θ between 0 and

mλ0(θ0)
−1/n = θ0

[
1
N

N

∑
j=1

exp

{
− 1

θ0

n

∑
i=1

ρτ

(
yi− xT

i β̃ τ −
√

θ0/λ0zT
i u∗j
)}]−1/n

.

(24)
In particular, taking the limit of (24) as λ0→∞ and then minimizing with respect to
θ0 yields the value m∞(θ̂∞)

−1/n = e
n ∑

n
i=1 ρτ(yi− xT

i β̃ τ); we take this as our initial
θmax. But since (23) and (24) are valid for any λ0,θ0, if at any point we find a
(λ0,θ0) such that mλ0(θ0) > θ−n

max, we can restrict the search interval further by
updating θmax to the smaller value mλ0(θ0)

−1/n. This suggests a modified step 3
consisting of the following substeps:

(i) Set θmax =
e
n ∑

n
i=1 ρτ(yi− xT

i β̃ τ) and set λ to the largest candidate value.
(ii) Find θ̃λ = argmaxθ∈(0,θmax]mλ (θ).

(iii) Update θmax to min{θmax,mλ (θ̃λ )
−1/n}.

(iv) If λ is the smallest of the candidate values, stop; otherwise set λ to the next
largest candidate and return to substep (ii).

We would expect θ̂λ = argmaxθ>0 mλ (θ) to tend to decrease as λ decreases. Con-
sequently, considering the candidate λ s in descending order should increase the
probability that θ̃λ found in substep (ii) is equal to θ̂λ .

Appendix D Choice of threshold
We explain here why, in Section 6, connections for which tk ≥ 12 [see (20)] were
taken to exhibit “significant” departure from the null hypothesis (19). Let x1, . . . ,x46
and be the ages of the 46 ADHD participants, and let yk,1, . . . ,yk,46 denote their con-
nectivities for the kth of the 100 connections considered. Under the null hypothesis,
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the values zki ≡ F−1
k (yki|xi) are independent U(0,1) variables. Ignoring error in es-

timating the quantile curves, we have

tk ≥ m if and only if either z(m) < 0.1 or z(47−m) > 0.9,

where z(1), . . . ,z(46) are the order statistics of the zi’s. Hence Pr(tk≥m)=Pr{u(m)<
0.1 or u(47−m) > 0.9} where u(1), . . . ,u(46) are the order statistics of 46 independent
U(0,1) variables. We estimated the latter probability for a range of values of m by
simulation, and thereby obtained a table of p-values for tk, from which the false
discovery rate (FDR) can be estimated for the observed t1, . . . , t100 by the step-up
procedure of Benjamini and Hochberg (1995). The threshold tk = 12 is the smallest
value such that, with percentile curves estimated by either the likelihood method
or 5-fold CV, we obtained FDR< .05. While our simulated p-values are asymptot-
ically valid under assumptions guaranteeing the consistency of penalized quantile
regression splines (Pratesi et al., 2009), we acknowledge that we have not studied
their small-sample properties. Nevertheless, we consider our choice of threshold to
be adequately justified given the exploratory nature of this analysis.
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