
Volume 8, Issue 1 2012 Article 8

The International Journal of
Biostatistics

A Refreshing Account of Principal
Stratification

Fabrizia Mealli, University of Florence
Alessandra Mattei, University of Florence

Recommended Citation:
Mealli, Fabrizia and Mattei, Alessandra (2012) "A Refreshing Account of Principal
Stratification," The International Journal of Biostatistics: Vol. 8: Iss. 1, Article 8.
DOI: 10.1515/1557-4679.1380 

©2012 De Gruyter. All rights reserved.



A Refreshing Account of Principal
Stratification
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Abstract
Pearl (2011) invites researchers to contribute to a discussion on the logic and utility of

principal stratification in causal inference, raising some thought-provoking questions. In our
commentary, we discuss the role of principal stratification in causal inference, describing why
we view the principal stratification framework as useful for addressing causal inference problems
where causal estimands are defined in terms of intermediate outcomes. We focus on mediation
analysis and principal stratification analysis, showing that they generally involve different causal
estimands and answer different questions. We argue that even when principal stratification may not
answer the causal questions of primary interest, it can be a preliminary analysis of the data to assess
the plausibility of identifying assumptions. We also discuss the use of principal stratification to
address issues of surrogate outcomes. Our discussion stresses that a principal stratification analysis
should account for all the principal strata and evaluate the distributions of potential outcomes in
each of the principal strata. To this end, we view a Bayesian analysis particularly suited for drawing
inference on principal strata membership and principal strata effects.
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Effects, Surrogacy
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1 Introduction
Our discussion on the role of principal stratification in causal inference queues up
those of other authors (Baker et al., 2011, Egleston, 2011, Gilbert et al., 2011, Joffe,
2011, Prentice, 2011, Sjölander, 2011, VanderWeele, 2011), so we can benefit from
their comments, by focussing on some issues, which we believe need to be further
clarified, but neglecting some other aspects, which have already been discussed.

A principal stratification with respect to a post-treatment variable is a par-
tition of units into latent classes defined by the joint potential values of that post-
treatment variable under each of the treatments being compared. From this stand-
point, some previous works (e.g., Robins (1986, 1998), Robins and Greenland
(1989a,b, 1994), Baker and Lindeman (1994), Imbens and Angrist (1994), Angrist
et al. (1996), Imbens and Rubin (1997a,b), Rubin (1998), Frangakis and Rubin
(1999), Hirano et al. (2000), Heckman and Vytlacil (2001)), which temporally pre-
cede the formalization of the concept of principal stratification by Frangakis and
Rubin (2002), can be viewed as examples of principal stratification. By definition,
principal strata are not affected by treatment assignment, therefore a principal strat-
ification can be used as any classification of units, to define meaningful causal esti-
mands conditional on principal strata, to discover treatment effect heterogeneities,
to state identifying assumptions as behavioral assumptions on the principal strata.

According to this definition, a principal stratification is a partition of units,
therefore we essentially agree with the first of the four different interpretations of
the term principal stratification proposed by Pearl (2011), where a principal stratifi-
cation is defined ‘as a partition of units by response type.’ The concept of response
type has been used more generally than the concept of principal stratification, as
clarified in the next Sections. We view Pearl’s interpretations 2 and 3 as possible
applications of the framework of principal stratification rather than as an interpre-
tation of the term principal stratification. Pearl’s interpretation 4 highlights that a
principal stratification analysis focuses on principal strata effects, but we do not
view this approach as an ‘intellectual restriction’ (see the discussion in Sections 4
and 5).

A principal stratification is the core of the principal stratification frame-
work, which can be defined as a general approach to formalize and address causal
inference problems where causal estimands are defined in terms of intermediate
outcomes, which are on the causal pathway between the treatment and the primary
endpoint.

A principal stratification analysis focuses on the analysis of principal strata
and principal strata effects: once a principal stratification has been defined, the ob-
jective is to draw inference on principal strata membership and principal strata ef-
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fects (comparisons of treatments conditional on principal strata), or more generally
on the distribution of potential outcomes within strata.

The role of principal stratification in drawing causal inference in the pres-
ence of noncompliance with treatment assignment and truncation by death has al-
ready been widely discussed, and we agree with comments by other authors, who
recognize the importance of principal stratification in addressing these issues. Re-
garding the complier average causal effect (CACE), we would only like to further
stress that CACE may be of intrinsic interest per se and cannot be generally inter-
preted as an approximation to the population average causal effect (ACE) unless
additional assumptions are introduced, and we are in fact not aware of any paper,
where CACE is interpreted as an approximation to the population ACE (see also
the recent discussion in the economic literature, e.g., Imbens (2010)). We actually
view it as a benefit of principal stratification, showing for which units the effect of
treatment assignment can be interpreted as the effect of treatment received, and pro-
viding explicit assumptions for identification. We will briefly return on this issue in
Section 4 because the role of the different assumptions is best seen (and generally
accepted) in the noncompliance setting, while the same issues are still debated in
mediation related analysis.

The role of principal stratification in dealing with issues of mediation and
surrogate endpoints is still controversial and we believe that some further discussion
on these topics may be useful.

2 The Potential Outcomes Approach
Consider a random sample of units, indexed by i = 1, . . . ,n. Following Pearl’s no-
tation as much as possible (Pearl, 2011), let X denote a binary treatment variable.
Each unit i can be potentially assigned either a standard treatment (X = 0) or a
new treatment (X = 1). The objective is to assess the causal effect of the X = 1
versus the X = 0 treatment on an outcome Y . Let Z stand for an additional post-
treatment variable, which is on the causal pathway between the treatment and the
main endpoint, Y : Z represents the actual treatment received in randomized exper-
iments suffering from treatment noncompliance; the missing indicator in studies
with missing outcome values; the survival indicator when outcomes are censored
by death. When focus is on disentangling direct and indirect effects, Z stands for
an intermediate variable, which may mediate the effect of the treatment on the pri-
mary outcome, in some way channeling part of the treatment effect. In problems
of surrogate endpoints, the intermediate variable Z is a potential surrogate, that is,
a variable that could be used in place of the primary endpoint, when measurement
of the primary outcome is too expensive, inconvenient or unfeasible in a reasonable
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time spell. Each of these situations, or combinations of them, can be viewed as
special applications of principal stratification, which is a general framework that
can be used to represent and tackle intrinsically different problems. While some
principal stratification analyses may be mathematically equivalent, they can differ
on fundamental issues of study design, on interpretation, on the specific (union of)
principal strata of interest, and on the potential identifying structural and modeling
assumptions.

We now briefly introduce the potential outcomes approach to causal in-
ference, sometimes also referred to as the ‘Rubin Causal Model’ (RCM, Holland
(1986)). For a more comprehensive account of the approach, readers can refer to,
e.g., Rubin (1974, 2005). The RCM has two essential parts, where the concepts of
potential outcomes and assignment mechanism have a leading role, and a third op-
tional part, which involves extensions to include model-based inference. Therefore,
although the concept of potential outcomes is basic in the RCM approach, it is just
one of the several elements and concepts, which this framework consists of.

Let Yi(x) and Zi(x) denote the potential outcomes of Y and Z, respectively,
if unit i were assigned treatment X = x, x = 0,11. The observed data include the
assigned treatment level, Xi, and the observed values of the outcomes, which can be
defined as Zobs

i = XiZi(1)+ (1−Xi)Zi(0) and Y obs
i = XiYi(1)+ (1−Xi)Yi(0). As a

result, only one potential outcome can be observed for each unit once a treatment is
applied. Therefore, in order to draw valid causal inferences, it is crucial to posit an
assignment mechanism, which is the process that determines which units receives
which treatment, hence which potential outcomes are observed.

The assignment mechanism is a well-defined mathematical concept, which
describes, as a function of all observed covariates, and of all potential outcomes un-
der study, the probability of any vector of assignments. Covariates are pre-treatment
variables, which are not affected by the treatment. Formally, let X be the n-vector
of treatment assignments, with ith element Xi, and let Y(x), and Z(x), x = 0,1, de-
note the n-dimensional vectors of the potential outcomes with ith elements equal
to Yi(x) and Zi(x), respectively. Finally, let C denote the n×K matrix of observed
covariates, with ith row equal to Ci. The assignment mechanism is defined as the
conditional probability of each vector of assignments given the observed covariates
and potential outcomes: Pr (X | C,Y(0),Y(1),Z(0),Z(1)).

The third optional part of the potential outcomes perspective involves a
distribution on the quantities being conditioned on in the assignment mechanism,
including the potential outcomes, thereby allowing model-based causal inference

1Note that the notation is adequate if we assume that the potential values Zi(x) and Yi(x) for
individual i do not depend on the treatments received by other individuals and that there are no
hidden versions of the treatment (Stable Unit Treatment Value Assumption: SUTVA; Rubin (1980)).
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(Rubin, 2005). In model-based causal inference the potential outcomes are viewed
as random variables, and any function of them, including causal estimands of in-
terest, are also random variables. Here, we take this more general view, assuming
that potential outcomes, on top of X, are random variables. Therefore, we view
the quantities associated with each sampled unit, Xi, Yi(0),Yi(1),Zi(0),Zi(1), and
the observed covariates, Ci, as a joint draw from the population distribution, and
we consider the observed values of these quantities to be realizations of random
variables and the unobserved values to be unobserved random variables.

3 Principal Strata and Principal Causal Effects
The framework of principal stratification uses the potential outcomes of post-treat-
ment intermediate variables to classify units into strata that are not affected by
treatment assignment and therefore can be used just as any pre-treatment covari-
ate. Formally, the (basic) principal stratification with respect to the post-treatment
variable Z (with support Z ) is the partition of subjects into sets such that all sub-
jects in the same set have the same vector (Zi(0);Zi(1)). A principal causal effect
is a comparison between the potential outcomes Yi(0) and Yi(1) within a particular
stratum (or union of principal strata). Henceforth we only focus for simplicity on
average causal effects, therefore a principal causal effect (PCE) is formally defined
as PCE(z0,z1) = E[Yi(1)−Yi(0) | Zi(0) = z0,Zi(1) = z1].

According to this definition, a principal stratification can be interpreted ‘as
a partition of units by response type’, where a ‘response type’ is defined by the
joint potential values of the intermediate post-treatment outcome. In the presence
of a post-treatment intermediate variable, the term ‘response type’ is often used to
refer to a cross-classification of units defined by the joint potential values of both
the intermediate outcome and the primary outcome (e.g., Robins and Greenland
(1992), Pearl (1993), Balke and Pearl (1994a,b), Heckerman and Shachter (1995),
Balke and Pearl (1997), Chickering and Pearl (1997), Cai et al. (2008)). This par-
tition of units is generally finer than the one that would be used in the principal
stratification framework, where units are usually classified into strata defined by
the joint potential values of the intermediate post-treatment outcome only, without
involving the potential values of the primary outcome. We argue that both these
cross-classifications of units are conceptually well-sound and may be reasonable,
although one or the other partition can be more attractive in some settings.

For instance, when focus is on causal estimands that depend on the joint
distribution of potential outcomes, the partition of units defined by the joint po-
tential values of both the intermediate outcome and the primary outcome might
be useful. On the other hand, when causal estimands of interest are defined as
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comparisons of marginal distributions of potential outcomes within principal strata,
cross-classifying units into strata defined by the joint potential values of both the in-
termediate and the primary post-treatment outcome can be cumbersome and might
introduce severe complications and practical difficulties, although it is conceptu-
ally straightforward. Limiting the analysis to principal causal effects, even if it
may be viewed as a restriction by someone, has led to extended methods to address
causal questions involving categorical or continuous intermediate variables (e.g.,
Jin and Rubin (2008), Schwartz et al. (2011)); multivariate intermediate variables
(e.g. Mattei and Mealli (2007), Frumento et al. (2012)); intermediate variables with
categorical, continuous or multivariate treatment variables.

A cross-classification of units defined by the joint potential values of both
the intermediate outcome and the primary outcome sometimes involves potential
outcomes of the form Yi(x,z), which would be the value of Y if, possibly contrary
to fact, X were set to x and Z were set to z. The potential outcomes Yi(x,Zi(x) =
z), which are generally avoided in a principal stratification analysis, are a priori
counterfactuals for units who exhibit a value of the intermediate outcome Z under
treatment x not equal to z, because in one specific experiment, they can be never
observed for such type of units (Rubin, 2004)2. The role of potential outcomes
of the form Yi(x,z) in the potential outcomes approach is controversial and some
discussion on it can help understanding.

In the RCM, an intermediate variable is initially viewed as a post-treatment
variable, which can be potentially affected by treatment assignment; therefore a
principal stratification with respect to that variable is defined and principal causal
effects are generally the causal estimands of initial interest. Given a principal strat-
ification with respect to Z, we can still hypothesize that there exist potential out-
comes of the form Yi(x,z), but some of these potential outcomes are ‘a priori coun-
terfactuals’: for units with Zi(x) 6= z, Yi(x,z) is not in the data, and in a specific
experiment or study it is ‘a priori counterfactual’ because it cannot be observed, not
even on units of the same type assigned the opposite treatment. Therefore, although
we can hypothesize the existence of ‘a priori counterfactuals’, they are conceptually
different from potential outcomes of the form Yi(x), which are observable potential
outcomes: we observe Yi(1) for some units under treatment and Yi(0) for some other
units under control. For instance, and to repeat the concept again, when both the
treatment, X , and the intermediate variable, Z, are binary, four potential outcomes
could be defined for each unit, i: Yi(0,0), Yi(1,0), Yi(0,1) and Yi(1,1). However,

2This notation includes potential outcomes of the form Yi(x,Zi(1−x)), which would be the value
of Y if X were set to x and Z were set to the value that it would attain under treatment X = 1− x.
Without an assignment mechanism on the intermediate variable Z, it is not clear to us if this notation
is fully consistent with SUTVA.
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two out of four possible potential outcomes, Yi(0,z0) and Yi(1,z1), with z0 6= Zi(0)
and z1 6= Zi(1), become ‘a priori’ counterfactuals, because they cannot be observed
for any subset of units in a specific study or experiment.

Causal estimands involving potential outcomes of the form Yi(x,z) require
that both the treatment and the post-treatment variable Z can somehow be manipu-
lated. When an hypothetical intervention on the intermediate variable is conceivable
and Z can be regarded as an additional treatment, there are no ‘a priori counterfac-
tuals’. In such a case potential outcomes have to be defined as a function of a mul-
tivariate treatment variable, (X ,Z), and a compound assignment mechanism should
be specified. In other words, all values Yi(x,z), x = 0,1, z ∈ Z , are potentially
observable, although only one will ultimately be realized and therefore possibly
observed: the potential outcome corresponding to the treatment actually assigned.
For instance, as before, if both treatments are binary, there are four potential out-
comes for each unit i: Yi(0,0), Yi(1,0), Yi(0,1), Yi(1,1), and none would be ‘a priori
counterfactual.’ This distinction will be further discussed in Section 4.

Pearl (2011) suggests that a principal stratification analysis has several ad-
vantages, ‘stemming primarily from the parsimony achieved by’ characterizing
units by their principal stratum membership, rather than their baseline features (de-
noted by u). Although the parsimony of principal strata classification is undoubt-
edly useful, we argue that another advantage of principal stratification is its role in
dealing with nonignorability issues.

Assume for simplicity that the treatment assignment mechanism is uncon-
founded, a special case of ignorable treatment assignment mechanism (Rubin, 1978).
Unconfoundedness of the treatment, which usually holds by design in randomized
experiments, amounts to assuming that within cells defined by the values of ob-
served pre-treatment variables, Ci, the treatment is assigned independently of the
relevant post-treatment variables: Yi(0),Yi(1),Zi(0),Zi(1) ⊥ Xi |Ci, for all i. How-
ever, unconfoundedness of the treatment does not in general hold conditional on
Zobs

i . Therefore net comparisons of treated and control units conditional on Zobs
i

generally lack causal interpretation, because these two groups of units are obtained
by conditioning on different variables (Zi(0) and Zi(1), respectively), or, in other
words, on different subsets of the baseline features, u, for units under treatment and
under control. On the other hand, unconfoundedness of the treatment implies that
Yi(0),Yi(1) ⊥ Xi | Zi(0),Zi(1),Ci so that potential outcomes are independent of the
treatment given the principal strata, and treated and control units can be compared
conditional on a principal stratum, which includes points u characterizing units that
have the same vector (Zi(0),Zi(1)). Therefore principal stratification represents the
coarsest choice of groups of units (i.e., subpopulations, types of units, or subsets of
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the support of u, named equivalence classes in Pearl (2011)), conditional on which
we still have ignorability of the treatment, Xi.

4 Principal Stratification and Mediation Analysis
The framework of principal stratification focuses on local causal effects, that is,
causal effects for specific subpopulations (principal strata). Despite the local na-
ture of principal strata effects, we view the concept of principal stratification as a
useful principle for addressing the topic of direct and indirect causal effects. Prin-
cipal stratification makes it clear that evidence on the direct effect of the treat-
ment on the primary outcome is provided by principal strata where the interme-
diate variable is unaffected by the treatment, i.e., Zi(0) = Zi(1). Formally, the
(average) Principal Strata Direct Effect (PSDE) of X on Y at level z, z ∈ Z , is
simply the principal causal effect for the stratum where Zi(0) = Zi(1) = z, i.e.,
PSDE(z) = E[Yi(1)−Yi(0) | Zi(0) = Zi(1) = z]. A principal strata direct effect can
also be named ‘dissociative effect’, because it measures an effect on the outcome
that is dissociative with an effect on the intermediate variable. Therefore, only in
strata where the intermediate variable is unaffected by the treatment (strata com-
prising units with Zi(0) = Zi(1)) can we hope to learn something about the direct
effect of the treatment, even if these strata may not be interesting strata per se.

Causal mediation analysis focuses on disentangling direct and indirect ef-
fects, which are generally defined at the individual level and averaged over the
whole population. Formally, Robins and Greenland (1992) and Pearl (2001) give
the following definitions of (average) natural direct an indirect effects: NDE(x) =
E[Yi(1,Zi(x))−Yi(0,Zi(x))] and NIE(x) = E[Yi(x,Zi(1))−Yi(x,Zi(0))], x = 0,1.
These effects provide a decomposition of the average total causal effect (ACE) into
the sum of a natural direct effect and a natural indirect effect: ACE = NDE(x)+
NIE(1− x). Conversely, principal stratification does not in general allow one to
decompose the total effect into overall direct and indirect effects, unless additional
assumptions are made, but the average total effect of the treatment X on the out-
come Y (ACE) is the weighted average of PCEs across units belonging to different
principal strata:

ACE = E[Yi(1)−Yi(0)]
= ∑

(z0,z1)

PCE(z0,z1)πz0,z1 = ∑
z0=z1=z

PSDE(z)πz + ∑
z0 6=z1

PCE(z0,z1)πz0,z1,

where πz0,z1 is the proportion of subjects belonging to principal stratum {i : Zi(0) =
z0,Zi(1) = z1}, and πz = πz,z.
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If PSDE(z) = 0, for each z ∈ Z , then there is no evidence on the direct
effect of the treatment after controlling for the mediator, because the causal effect of
treatment on the outcome exists only in the presence of a causal effect of treatment
on the intermediate variable. This does not mean that there is no natural direct
effect of the treatment: The PCEs for units belonging to principal strata where the
post-treatment variable is affected by treatment (also named ‘associative effects’)
generally combine natural direct and indirect effects. Formally, we can easily show
that NDE(x) = ∑z0=z1=z PSDE(z)πz +∑z0 6=z1 E[Yi(1,Zi(x))−Yi(0,Zi(x)) | Zi(0) =
z0,Zi(1) = z1)]πz0,z1 , x = 0,1. Therefore, even if PSDE(z) = 0, for each z ∈ Z ,
NDE(x) can be non-zero (VanderWeele, 2008).

The assumptions that allow us to identify principal strata effects and natural
direct and indirect effects are of a different nature and a careful evaluation of their
plausibility is crucial.

To clarify the role of the different assumptions, we first turn back to ran-
domized studies suffering from treatment noncompliance, where these issues are
best seen and, to some extent, accepted. In a randomized study, let X be the ini-
tial binary treatment assignment (or instrument); Z(x) represents the actual binary
treatment received under assignment x, x = 0,1 (the intermediate variable), Y (x),
x = 0,1, are the two potential outcomes if units are assigned treatment or control. A
principal stratification approach cross-classifies units into four groups based on their
compliance behavior: compliers (if Zi(x) = x for x = 0,1), never-takers (if Zi(x) = 0
for x = 0,1), always-takers (if Zi(x) = 1 for x = 0,1) and defiers (if Zi(x) = 1−x for
x = 0,1). Assuming monotonicity, thus ruling out the existence of defiers, compli-
ers are the only group where we can learn something about the effect of treatment
received, as never-takers (always-takers) are never (always) observed taking the
treatment in this experiment. The average causal effect for this subpopulation, the
compliers average causal effect, CACE = E[Yi(1)−Yi(0)|Zi(0) = 0,Zi(1) = 1], is
an associative effect, which essentially combines direct and indirect effects of X .
In order to interpret CACE as the causal effect of the receipt of the treatment, i.e.,
as an indirect effect only of the assignment through the treatment received, an ad-
ditional assumption is required, which rules out direct effects of the assignment for
compliers, for whom the treatment assignment and the treatment received are com-
pletely confounded. This exclusion restriction for compliers is an assumption of a
different nature from the exclusion restriction for noncompliers, because it is about
the interpretation of CACE, not about issues concerning identifying or estimating
it (e.g., Mealli and Rubin (2002)). Note that the exclusion restriction for compli-
ers is routinely made, often implicitly, also in randomized experiments with full
compliance, where the desire to make this assumption more plausible underlies the
widespread practice of blinding and double blinding experiments. In order to iden-
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tify CACE, the following assumptions are sufficient: unconfoundedness of treat-
ment assignment (which holds by design in randomized studies), monotonicity of
compliance and compound exclusion restriction for never-takers and always-takers.
However, these assumptions are not sufficient to identify the average effect of the
treatment for the full population (ACE): If ACE is the causal estimand of interest,
additional assumptions are required, which allow one to carry out extrapolation of
causal effects of the treatment received, Z, for non-compliers. Similarly, we argue
that assumptions of a different nature are required depending on if the focus is on
principal causal effects, which are local treatment effects (like CACE), or natural
direct and indirect effects, which are population causal effects (like ACE). See, for
example, Ten Have and Joffe (2012) for a recent review of the alternative sets of
assumptions needed to identify and estimate different direct and indirect effects.

In principal stratification analysis, challenges in identifying principal strata
effects stem primarily from the fact that we cannot, in general, observe the prin-
cipal stratum to which a subject belongs, because we cannot directly observe both
Zi(0) and Zi(1). The observed groups defined by the treatment, Xi, and the ob-
served value of the intermediate outcome, Zobs

i , generally comprise mixtures of
principal strata, therefore assumptions that allow us to untie these mixtures of prin-
cipal strata are required to identify PCEs. Unfortunately, outside the noncompli-
ance/instrumental variables setting, assumptions such as the exclusion restrictions
cannot be invoked (exclusion restrictions would rule out a priori the direct effects
that are being sought!). Depending on the substantive empirical setting, other as-
sumptions can be introduced, which however generally lead only to partial identi-
fication of PCEs (e.g., Zhang and Rubin (2003), Lee (2009), Imai (2008), Mattei
and Mealli (2011)), unless coupled with distributional assumptions (e.g. Hirano et
al. (2000), Mattei and Mealli (2007), Jin and Rubin (2008), Zhang et al. (2009),
Schwartz et al. (2011)). Those may be critical, and that is the reason why we are
advocating the use of Bayesian methods that allow one to also conduct sensitiv-
ity analysis to model specification (e.g., Mattei and Mealli (2007), Jin and Rubin
(2008)). Although these additional assumptions may be arguable in some settings,
they generally do not involve comparisons of units belonging to different strata, be-
cause they aim at identifying local causal effects rather than overall average direct
and indirect effects.

Causal mediation analysis focuses on causal estimands defined using poten-
tial outcomes of the form Yi(x,z), which are not observed in a specific experiment
for units in some principal strata. In order to identify and estimate natural direct
and indirect effects assumptions are required, which generally involve estimating
causal effects for units for which the data contains no or little information. These
assumptions generally require to specify an assignment mechanism for the medi-
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ating variable, Z, thereby requiring that Z could be, at least in principle, regarded
as an additional treatment and could be at least potentially controlled by external
interventions. If we are willing to entertain hypothetical interventions on the in-
termediate variable Z, assumptions on the compound assignment mechanism for
the multivariate treatment variable, (X ,Z) should be contemplated. We agree with
Pearl (2011) that these assumptions may be reasonable in some studies, but there
are also studies where hypothetical interventions on the intermediate variable are
not conceivable. Therefore, as in the analysis of observational studies, an important
preliminary step in mediation analysis is to evaluate very carefully the possibility
and plausibility to conceptualize interventions on the mediating variable. If this
preliminary step is successful, that is, if an intervention on the mediating variable
is, at least in principle, conceivable, we can try to substitute physical manipulations
with reasonable assumptions concerning the rules used to assign the values of the
intermediate variable, positing an assignment mechanism on the mediating variable
(Mealli and Rubin, 2003, Jin and Rubin, 2008).

For instance, sequential ignorability assumptions are often made in media-
tion analysis (e.g., Robins (1999), Jo (2008), Imai et al. (2010), Ten Have and Joffe
(2012)). These assumptions imply unconfoundedness of the mediator (conditional
on some observed confounders), which allows one to extrapolate information on
potential outcomes of the form Yi(x,Zi(1− x)) from the observed data. In non-
compliance settings, a similar assumption would require unconfoundedness of the
treatment received, which amounts to assuming that within cells defined by the val-
ues of pre-treatment variables, the treatment received is randomly assigned. This
assumption guarantees that conditional on the covariates, comparing individuals by
the actual treatment received leads to valid inference on causal effects. Therefore,
unconfoundedness of the treatment received implies that we can compare treated
and untreated units with the same value of the covariates, also if they belong to dif-
ferent principal compliance strata. In other words, this assumption allows us to use
extrapolation across principal strata to draw inference about potential outcomes for
units on which the data contains no or little information (such as, the potential out-
comes Yi(x,Zi(x) = 1) for never-takers and the potential outcomes Yi(x,Zi(x) = 0)
for always-takers). In noncompliance/instrumental variable settings, this is specif-
ically the assumption we want to avoid, because it is believed that the treatment
received is plausibly confounded. The nature of these extrapolations may be less
credible than the inferences for a particular subpopulation, such as the compliers
(see, e.g., Imbens (2010), pages 414–416) or the subpopulations of units for which
the intermediate variable is unaffected by the treatment.

If one is seeking natural direct and indirect effects, we suggest to prelimi-
nary conduct a principal stratification analysis, looking at the distribution of covari-
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ates and outcomes within each principal stratum (which is possible using likelihood
or Bayesian analysis, e.g., Frumento et al. (2012)), and to decide whether mixing in-
formation across principal strata is reasonable, instead of doing it a priori under no
confounding assumptions. In fact, although a principal stratification analysis may
not answer the primary question of interest of a mediation analysis, it can turn out
to be useful also to clearly understand the different nature of the assumptions lead-
ing to identify and estimate natural direct and indirect effects and principal strata
direct effects. To be more specific: The observed data, Xi, Zobs

i and Y obs
i , contain

information on the potential outcome Yi(x,Zi(1− x)) only for the subpopulation of
units for which the intermediate variable is unaffected by the treatment. For this
type of units Zi(0) = Zi(1), which implies that Yi(x,Zi(1− x)) = Yi(x,Zi(x)) and,
hence, Yi(x,Zi(1− x)) is observed for units receiving treatment x. As a result, the
natural direct effect for this type of units corresponds to the weighted average of
the principal strata direct effects PSDE(z) with weights πz, z ∈ Z . The observed
data are uninformative regarding the natural direct effects for other subpopulations
of units, for which the treatment affects the intermediate variable, as associative
effects combine direct and indirect effects. However, we argue that a principal
stratification analysis that involves all the principal strata, including strata where
Zi(0) 6= Zi(1), may provide some insights on the mediated effects by comparing as-
sociative and dissociative effects, at least under specific assumptions. For instance,
if units belonging to different principal strata had similar distributions of the covari-
ates (that is, similar observed characteristics) and/or similar outcome levels under
one of the treatment levels, we could reasonably assume that subpopulations where
the treatment affects the intermediate outcome are characterized by the same direct
effects as subpopulations where the mediating variable is unaffected by the treat-
ment. Under this assumption indirect effects within principal strata can be derived
by difference between associative effects and principal strata direct effects, and the
overall (natural) indirect effect defined as weighted average of these indirect effects
with weights the strata proportions. To be clear, suppose that the intermediate vari-
able Z is binary taking on values 0 and 1 and focus on the natural direct effect of
X on Y intervening to fix the mediator Z to the value it would have taken if X had
been set to the control level X = 0, NDE(0). Because the intermediate variable
is binary, the basic principal stratification partitions units into four latent groups:
00 = {i : Zi(0) = 0,Zi(1) = 0}; 01 = {i : Zi(0) = 0,Zi(1) = 1}; 10 = {i : Zi(0) =
1,Zi(1) = 0}; and 11 = {i : Zi(0) = 1,Zi(1) = 1}. If the mean potential outcome
under control for units belonging to principal stratum 01 is estimated to be approx-
imately equal to the mean potential outcome under control for units belonging to
principal stratum 00: E[Yi(0)|Zi(0) = 0,Zi(1) = 1] = E[Yi(0)|Zi(0) = 0,Zi(1) = 0],
then it may be reasonable to assume that E[Yi(1,Zi(0))|Zi(0) = 0,Zi(1) = 1] =
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E[Yi(1,Zi(0))|Zi(0) = 0,Zi(1) = 0]. Analogously, if the mean potential outcome
under control for units belonging to principal stratum 10 is estimated to be approx-
imately equal to the mean potential outcome under control for units belonging to
principal stratum 11: E[Yi(0)|Zi(0) = 1,Zi(1) = 0] = E[Yi(0)|Zi(0) = 1,Zi(1) = 1],
then it may be reasonable to assume that E[Yi(1,Zi(0))|Zi(0) = 1,Zi(1) = 0] =
E[Yi(1,Zi(0))|Zi(0) = 1,Zi(1) = 1]. Under these assumptions, units belonging to
principal strata 01 and 10 are characterized by the same natural direct effect as units
belonging to principal stratum 00 and 11, respectively: NDE01(0) =NDE00(0), and
NDE10(0) = NDE11(0). Therefore,

NDE(0) = NDE00(0)π00 +NDE11(0)π11 +NDE10(0)π01 +NDE10(0)π10

= NDE00(0)(π00 +π01)+NDE11(0)(π11 +π10)

= PSDE(0)(π00 +π01)+PSDE(1)(π11 +π10).

and the natural indirect effect, NIE(1), can be derived by difference: NIE(1) =
ACE −NDE(0) = ACE −PSDE(0)(π00 +π01)−PSDE(1)(π11 +π10). A similar
reasoning could be applied to derive the natural direct effect of X on Y intervening
to fix the mediator Z to the value it would have taken if X had been set to the
treatment level X = 1, NDE(1).

5 Surrogate Endpoints
In studies where measurement of the primary outcome, Y , may be too expensive or
unfeasible in a practical time spell, surrogate variables are often used to evaluate
the effects of the treatment on Y .

Pearl (2011) shows ‘strong reservation’ regarding the use of principal strat-
ification for addressing surrogate problems, interpreting the use of principal strati-
fication in this setting as ‘an intellectual restriction that confines its analysis to the
assessment of strata-specific effects.’ Although a principal stratification analysis
focuses on principal strata causal effects (strata-specific effects), we argue that it
should not be used only to assess the ‘principal surrogacy’ condition, which only
involves dissociative effects: an intermediate variable Z is a principal surrogate if
all the dissociative effects are zero. In order to gain insights on how the effect of
treatment on the surrogate relates to the effect of treatment on the outcome, a full
principal stratification analysis, which aims at evaluating the effect of the treatment
in each of the principal strata, should be conducted. In addition to providing infor-
mation on the principal surrogacy condition, a full principal stratification may warn
against potential paradoxes, such as the ‘surrogate paradox’ (Chen et al., 2007).
Specifically, a principal surrogate may lead to a surrogate paradox if the treatment
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has a positive (negative) effect on the surrogate, which in turn has a positive (neg-
ative) effect on the primary outcome, but the treatment has a negative (positive)
effect on the primary outcome. In this situation, some associative effects should
have opposite signs, so investigating the effect of the treatment in each of the prin-
cipal strata may provide some insights on the transportability of the effect of the
treatment on the surrogate to the effect of the treatment on the outcome, which we
agree with Pearl (2011) is the primary purpose of a surrogate.

As said before, a pitfall of a full principal stratification analysis is that identi-
fication of principal strata effects may create challenges, because the groups which
these effects refer to are only partially observed. However, advanced statistical
methodologies, such as flexible Bayesian models (Schwartz et al., 2011), have been
recently developed to face identification and estimation issues.

6 Conclusion
Our discussion aims at clarifying the role of principal stratification in causal in-
ference and explaining why it can be useful to address causal problems involving
post-treatment variables. Principal stratification does not always answer the causal
question of primary interest, but it often provides useful insights, compelling to ex-
plicitly delineate the critical assumptions needed for a causal interpretation of the
estimands of interest, and allowing for a clear assessment of the consequences of
violation of these assumptions.

Most of existing studies, either using principal stratification or criticizing
this framework in favor of alternative approaches, focus only on some principal
causal effects ignoring the other ones. For instance, studies aiming at evaluating
surrogate endpoints or direct effects of the treatment usually focus on causal ef-
fects for subpopulations of units where the potential surrogate outcome/mediating
variable is unaffected by the treatment (principal strata direct effects), and neglect
information on principal strata where Zi(0) 6= Zi(1). We argue that a principal strat-
ification analysis should involve all the principal strata, studying the characteristic
of each principal stratum, and evaluating the distributions of potential outcomes in
each principal stratum. Conducting a full principal stratification analysis may be a
challenging task, due to the fact that principal strata membership is only partially
observed. To address this issue, our preference would go for the Bayesian paradigm,
which appears to be particularly appropriate for dealing with problems of causal
inference. With a Bayesian principal stratification analysis, we can transparently
specify causal models, explicitly define and separate structural behavioral assump-
tions and model assumptions, and clearly define priors on parameters. A principal
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stratification analysis that does not neglect any strata may provide substantial infor-
mation on the causal problem at hand, by discovering heterogeneities in the treat-
ment effects across principal strata, providing insights even on indirect effects of the
treatment, and warning against potential paradoxes, such as the ‘surrogate paradox’
(Chen et al., 2007). In our view, principal stratification is a principal framework for
addressing causal inference problems in the presence of post-treatment variables.
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