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Abstract
In this paper we discuss estimation of transition probabilities for semi–Markov multi–state

models. Non–parametric and semi–parametric estimators of the transition probabilities for a large
class of models (forward going models) are proposed. Large sample theory is derived using the
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1 Introduction

Medical investigations are often concerned with the evaluation of the effect of sev-
eral time–dependent stochastic events acting on the same subject. In this direction,
multi–state models describe the evolution of subjects between a finite number of
states or systems exposed to several kinds of events (Andersen, 2002, Putter et al.,
2007, Xu et al., 2010, Beyersmann et al., 2012). Usually multi–state models are
specified in terms of transition intensities, which may involve two different time
scales: the calendar time since the origin of the process, and the duration time in the
current state. The corresponding models are termed clock–forward and clock–reset
models, respectively, in Putter et al. (2007). The classical way to deal with calen-
dar time dependence of the transition intensities, is using a Markov model. Its basic
assumption is that, given the current state and the study time, the next transition is
independent of the rest of the history. For such a process the transition probabilities
and the transition intensities are linked by the Kolmogorov backward and forward
differential equations. By solving these equations, the transition probabilities can
be expressed as a function of transition intensities in the form of product integral
(Aalen and Johansen, 1978, Andersen et al., 1993). However, in some applications
the Markov assumption is not plausible, since transition intensities may depend on
the duration time in the current state. For instance, in modeling the evolution of the
human papillomavirus (HPV), which is known to be associated to cervical cancer,
the Markov assumption would not account for the strong association between infec-
tion duration and progression to cervical abnormality (Kang and Lagakos, 2007).
The homogeneous semi–Markov models are a first step toward the inclusion of the
duration time dependence into the model. They assume that the future evolution of
the system depends on the history only through the current state and the duration
time in the current state. Many efforts have been spent to study statistical inference
for these semi–Markov models. Indeed, Lagakos et al. (1978) presented nonpara-
metric maximum likelihood estimation for the semi–Markov kernel, proposing a
plug-in estimator. Their approach allows an arbitrary number of states as well as
right censored observations. In Gill (1980) the theory of stochastic integration and
counting processes provides a rigorous derivation of the consistency and weak con-
vergence of the estimator of the semi–Markov kernel proposed by Lagakos et al.
(1978). However, as pointed by Gill (1980), the asymptotic Gaussian process does
not have an independent increment structure, thus it can not be transformed into the
standard Brownian bridge or Brownian motion to construct confidence bands for
the semi–Markov kernel.

Estimation of the transition probabilities for the semi–Markov homoge-
neous models under the Cox proportional hazards model was studied in Dabrowska
(1995): more precisely, a modulated Markov renewal process was considered, whose
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intensities have the form of a Cox regression, with the baseline intensities being
functions of the backwards recurrence time of the process. In general it was proven
that in case of time fixed covariates or of time dependent covariates depending only
on this reset time scale, the parameter estimates have the same asymptotic distribu-
tion as in the classical Cox regression. Moreover, in the case of time–independent
covariates, thanks to the renewal nature of the process, it was possible to estimate
the transition probabilities and obtain confidence intervals by bootstrapping. For
the special case of the three state irreversible illness–death model, Shu et al. (2007)
give explicit formulas for the transition probabilities and associated variances.

The aim of the present paper is to introduce non–parametric and semi–
parametric estimators of the matrix of transition probabilities with right–censored
and left–truncated data for a large class of homogeneous semi–Markov models.
Homogeneous here refers to the assumption that transition intensities depend on
duration only. Furthermore, we study the asymptotics of such estimators, provid-
ing estimates for their standard errors. The novelty of the paper is the derivation
of closed form plug–in estimators of the standard errors of the transition probabili-
ties for a large class of models (i.e. forward–going models). These are essentially
obtained by the functional delta–method applied to certain convolution integrals of
the semi–Markov kernels. For these kernels we use the estimators proposed in the
papers by Gill (1980) and Dabrowska (1995) and their large sample behavior. They
are the building block of our analysis: thanks to a representation theorem linking
the semi–Markov kernel to the transition probabilities via a convolution functional,
we are able to transfer the asymptotics of the kernels to the estimator by the applica-
tion of the functional delta method. Fundamental in this regard is the evaluation of
the Hadamard derivative of such convolution integrals. In order to apply our analy-
sis to real data, we also implement in R estimates of the transition probabilities and
their standard errors for a very large class of homogeneous semi–Markov models.
Essentially the only limitation is that the paths of the process have to be without
loops.

Finally, since for models with many states the calculation of the proposed
estimator may be time consuming, we sketch the basic ideas of a resampling method
(wild bootstrap) following Lin et al. (1994). These ideas can be used to obtain confi-
dence bands rather than the pointwise confidence intervals provided by our plug–in
formulas.

The paper is organized as follows. In Section 2, the basic definitions are
given. In Section 3 we propose our estimator for the transition probabilities and
derive their asymptotic behavior. We also give the basic ideas on how to construct
confidence bands. In Section 4 we describe the implementation in R and we apply
our software to data from the NECOSAD study on renal replacement therapy. Fi-
nally, Section 5 discusses further developments and how to overcome the present
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limitations (e.g. inclusion of non–homogeneous semi–Markov models and loops).

2 Notations and basic definitions

In order to define a Markov renewal process, we shall use the definitions and the
formalism of Dabrowska et al. (1994) and Dabrowska (1995). Let 0 = T0 < T1 <
T2 < .. . < Tm be consecutive times of entrance into the states S0,S1,S2, . . .Sm ∈
{1, . . . ,r}, then (S,T ) = (S`,T`)`≥0 forms a Markov renewal process if the sequence
of states visited S = (S` : ` ≥ 0) is a Markov chain and the sojourn times Jm+1 =
Tm+1−Tm satisfy:

P{Sm+1 = j,Jm+1 ≤ τ|S0,T0, . . . ,Sm,Tm}= P{Sm+1 = j,Jm+1 ≤ τ|Sm}

The matrix Q(τ) := Q jk(τ) : j,k ≤ r with

Q jk(τ) = P{Sm+1 = k,Jm+1 ≤ τ|Sm = j}

is then the semi–Markov kernel of the process (S,T ).
We remark that the conditional distribution of the pair {Sm+1,Tm+1} given

the whole history up to step m and the fact that the process did not end yet, depends
only on {Sm,Tm}. If we denote by

ν(t) := sup{m≥ 0 : Tm ≤ t}

the counting process registering the number of jumps made up to time t, we can
finally define:

Definition 2.1 The process {S(t); t ≥ 0} defined by

S(t) := Sν(t)

is called a homogeneous semi–Markov process determined by {S`,T`}`.

We now consider the semi–Markov kernel Q jk(τ) and we define the following quan-
tities useful in the sequel:

H j(τ) :=
r

∑
k=1

Q jk(τ) = P(Jm+1 ≤ τ|Sm = j). (2.1)
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2.1 Counting Process Formulation

Since the asymptotic results for the estimator of the semi–Markov kernel are ob-
tained using a representation of the process in terms of counting processes, we give
in this section the basic formalism used in order to include also right–censored
data. For a given realization of the process, define N̄ jk(t) = ∑m≥1 I(Tm ≤ t,Sm =
k,Sm−1 = j), the number of observed j→ k transitions before time t. N̄ jk(t) is such
that the sample paths are almost surely finite, right continuous integer valued with
jump of size 1, with no two processes jumping at the same time and N̄ jk(0) = 0.
We also consider the same random censorship considered in Gill (1980) and in
Dabrowska et al. (1994). Thus the times at which the process is observed are de-
termined by the predictable zero–one process K(t) = ∑m I(Tm < t ≤ Cm), where
Cm ∈ [Tm,Tm+1] are stopping times (e.g. censoring variables). We introduce now
the counting processes which count the observed number of j→ k transitions before
sojourn time u:

Ñ jk(u) := ]{m≥ 1 : Sm−1 = j,Sm = k,Tm−Tm−1 ≤ u,K(Tm) = 1}
and Ñ(u) := ∑ j,k Ñ jk(u). Besides, let

Ỹj(u) := ]{m≥ 1 : Sm−1 = j,Tm−Tm−1 ≥ u,K(Tm−1 +u) = 1}
be the number of observed sojourn times in state j that are not smaller than u.
Suppose we have n independent identically distributed observations of Ñ jk(u) and
Ỹj(u), we denote with N jk(u) and Yj(u) the sum over the n realizations, dropping in
the notation the dependence on n. Finally, we define N j(u) = ∑

r
k=1 N jk(u) the total

number of transitions from j.

2.2 Estimation of Semi–Markov kernel Q

The non–parametric estimation of the semi–Markov kernel Q(t) is given by Gill
(1980): the estimator of Q̂(t) is derived in two steps: first estimating the survival
probability H j(t) in state j by Ĥ j(t), defined by

1− Ĥ j(t) = ∏
s≤t

(
1−

∆N j(s)
Yj(s)

)
, (2.2)

with N j(·) := ∑k N jk(·), and then defining Q̂ jk(t) by

Q̂ jk(t) =
∫ t

0
(1− Ĥ j(s−))

dN jk(s)
Yj(s)

. (2.3)

Estimation and large sample theory for the non–parametric estimator of the kernel
is reviewed in Appendix A.
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We recall as well the semi–parametric estimator proposed by Dabrowska
(1995), which incorporates covariates through the Cox regression form. In the
present paper we restrict our attention to the case of time–independent covariates
Z that preserve the Markov renewal properties of the process. If we define the
following Breslow–like estimator for the baseline hazard:

Â jk;0(t,β ) :=
∫ t

0

I(S(0)jk (u,β )> 0)

nS(0)jk (u,β )
dN jk(u)

with

S(0)jk (u,β ) = n−1
n

∑
i=1

Ỹ (i)
j (u)eβ>Z(i)

jk , (2.4)

where β are the regression parameters and (Ỹ (i)
j ,Z(i)

jk ) is the realization of the pro-
cess (Ỹj,Z jk) associated with the i–th subject. Hence, in analogy to Gill (1980), for
an individual with covariate Z, the semi–Markov kernel Q(τ;Z jk) can be written in
terms of product integrals:

Q jk(τ;Z) =
∫ t

0

(
∏
[0,s)

(1−dA j(s;Z))
)

dA jk(s;Z jk), (2.5)

where A j(s;Z) = ∑`A j`(s;Z j`). Under continuity conditions, (2.5) can be rewrit-
ten:

Q jk(τ;Z) =
∫ t

0
exp{−A j(u;Z)}dA jk(u;Z jk).

In Appendix B a more precise definition of the model is given and the large sample
theory of the empirical estimator suggested by (2.5) is derived. This derivation is
essentially based on the results contained in Dabrowska (1995).

3 Inference for transition probabilities

3.1 Estimation of transition probabilities

The results of this section hold both for the non–parametric and semi–parametric
case. In the latter case, Z jk will be suppressed in the notation. For homogeneous
semi–Markov models we have that the transition probabilities satisfy the follow-
ing Volterra integral equation of second order, also known as the Markov renewal
equation:
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Pjk(t) = δ jk(1−H j(t))+
r

∑
`=1

∫ t

0
P̀ k(t−u)dQ j`(u), (3.6)

where Pjk(t) = P(S(t) = k|S(0) = j) and 1−H j(t) is the survival probability in
state j. In words, in order to find the process in state j at time t, given that it was in
state i at time 0, it either should stay there (if j = k), or pass to any state `, at some
time u and take t−u time units to go from there to k.

Following Çinlar (1969), if M is a matrix of measures and V a matrix of
measurable functions, the convolution of M and V (written M∗V) is defined by:

(M∗V) jk(t) := ∑
`

∫ t

0
V`k(t− s)dM j`(s).

Since the matrix multiplication is not commutative, neither is the convolution. Re-
peated convolutions are defined in the usual manner as K ∗M ∗V(t) = K ∗ (M ∗
V)(t). It is straightforward that repeated convolutions between matrices are asso-
ciative when all matrices involved are non-negative. Hence, the renewal equations
(3.6) can be written:

P(t) = h(t)+Q∗P(t), (3.7)

where h(t) is the diagonal matrix whose diagonal elements are h j(t)= 1−∑k Q jk(t).
In order to obtain an estimator for these transition probabilities, we want to relate
them to the semi–Markov kernel in a statistically treatable form. For this reason we
introduce:

Q(m)
jk (τ) = P j(Sm = k,Tm ≤ τ) = P(Sm = k,Tm ≤ τ|S0 = j). (3.8)

Q(m)
jk (t) satisfies the following recursive equations, that can be written in term of

convolution integrals:

Q(m+1)
jk (τ) = ∑

`

∫
τ

0
Q j`(du)Q(m)

`k (τ−u) = (Q∗Q(m)) jk(τ) = (Q∗ ...∗Q) jk(τ).

For the solutions of the Volterra equations, a useful representation can be given in
terms of the number of renewals R jk(t):

R jk(τ) = E
(

∑
m

I(Sm=k,Tm≤τ)|S0 = j
)
= ∑

m
Q(m)

jk (τ).

If we define the space M as the space of all function V bounded on finite intervals
and Borel–measurable, the following theorem holds indeed (Çinlar, 1969):
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Theorem 3.1 The Markov renewal equation (3.7) has a solution V∈M if and only
if R∗h ∈M . Furthermore, if ‖∑k Q j,k‖∞ < 1 for some t, then R∗h exists and it is
the unique solution of V(t) = h(t)+Q∗V(t).

Hence, as a consequence of Theorem 3.1, the unique solutions of (3.7) can be writ-
ten as:

P(t) = (R∗h)(t). (3.9)

The relation (3.9) links the semi–Markov kernel to the transition probabilities.
Thus, it plays the role of the product integral formulation for Markov processes,
where, given the cumulative hazards matrices A (Aalen and Johansen, 1978), the
transition probabilities can be written in the form:

P(s, t) = ∏
(s,t]

(I+A(du)).

Hence, an estimator of the transition probability Pjk(t) is given by

P̂jk(t) = ∑
m

Q̂(m)
jk ∗ (1− Ĥk)(t). (3.10)

At this point, the last ingredient for the statistical inference is to derive the asymp-
totics of the estimator (3.10) so far obtained.

3.2 Asymptotics for the transition probabilities

Since from the representation theorem, the transition probabilities we want to esti-
mate can be viewed as a functional (precisely, an integral convolution) of the under-
lying process generating the data, it is natural to use the functional delta method.
In this section we first recall the main results about the functional delta method,
following and borrowing notation from van der Vaart (1998). We recall an im-
portant property of Hadamard differentiability: the chain rule. Consider the maps
φ : D 7→ E and ξ : E 7→ F that are Hadamard differentiable at θ and φ(θ), respec-
tively. Then the composed map ξ ◦φ : D 7→ F is Hadamard differentiable at θ , and
the derivative is the map obtained composing the two derivative maps. Thus, it al-
lows to evaluate a complicated derivative, decomposing it into a sequence of basic
maps, for which Hadamard differentiability is known or can be proven easily.

In our example, thanks to the representation Theorem 3.1 we can rewrite
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the transition probabilities in term of the semi–Markov kernels Q jk. Hence, we are
interested in applying the functional delta method for the map

Q 7→ P.

For this reason, once we are able to calculate the Hadamard derivatives of the con-
volution kernels, we have the asymptotics of the transition probabilities via the delta
method.

3.2.1 Hadamard derivative of R jk(t)

Before starting with the calculation of the derivative of the expected number of
renewals, we recall some elementary properties of the convolution operator. Let us
introduce the linear space VK[0,T ], consisting of elements belonging to DK,K[0,T ],
the space of K×K matrices of right–continuous and with left–hand limits processes
(e.g. cadlag) in the time interval [0,T ], such that their variation norm is bounded.
For V1,V2 ∈ VK[0,T ], it is easy to verify that also V1 ∗V2 (t) ∈ VK[0,T ]. Also the
continuity (with respect to the sup norm) and the compact differentiability of the
convolution operator are immediate.
Let us assume now that Q ∈ VT [0,T ] and that there are maps ϕ1,ϕ2 ∈ V K[0,T ]→
V K[0,T ]. For a better understanding of the meaning of Hadamard derivative, it may
be useful to try to derive formally the derivative of ψ = ϕ1(Q)∗ϕ2(Q), component
by component. Indeed, we can write:

ψ(Q) jk(t) =
K

∑
`=1

∫ t

0
ϕ2(Q)`k(t− s)dϕ1(Q) j`(s).

Thus

ψ(Q+ ε fε) jk(t) =
K

∑
`=1

∫ t

0
ϕ2(Q+ ε fε)`k(t− s)dϕ1(Q+ ε fε) j`(s)

=
K

∑
`=1

∫ t

0

(
ϕ2(Q)`k(t− s)+ ε ϕ̇2(Q)[fε ]`k(t− s)+o(ε)

)
· d

[
ϕ1(Q) j`+ ε ϕ̇1(Q)[fε ] j`+o(ε)

]
(s)

= ψ(Q) jk(t)

+ ε

( K

∑
`=1

∫ t

0
ϕ̇2(Q)[fε ]`k(t− s)dϕ1(Q) j`(s)
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+
K

∑
`=1

∫ t

0
ϕ2(Q)`k(t− s)dϕ̇1(Q)[fε ] j`(s)

)
+o(ε).

Hence, passing formally to the limit:

ψ̇(Q)[f] = lim
ε→0

ψ(Q+ ε fε)−ψ(Q)

ε
= ϕ1(Q)∗ ϕ̇2(Q)[f]+ ϕ̇1(Q)[f]∗ϕ2(Q).

Actually, we can make this derivation rigorous, by proving the following result:

Proposition 3.2 Let Q be a function with bounded variation norm and belonging
to V K[0,T ]. Moreover, let ϕ1,ϕ2 ∈ V K[0,T ]→ V K[0,T ] and ψ ∈ V K[0,T ]→
V K[0,T ] defined as the convolution ψ(Q) = ϕ1(Q)∗ϕ2(Q). If both ϕ1 and ϕ2 are
Hadamard differentiable with derivatives ϕ̇1 and ϕ̇2 respectively, then ψ is also
Hadamard differentiable, with derivative:

ψ̇ = ϕ̇1 ∗ϕ2 +ϕ1 ∗ ϕ̇2. (3.11)

Proof. For any ε > 0, let fε ∈DK,K[0,T ] such that fε → f in DK,K[0,T ] as ε → 0.
Moreover, let us use the following notation:

Q
εf(t) := Q(t)+ ε fε(t).

Hence, we can write:

1
ε

(ψ(Q
εf)−ψ(Q))(t)

=
1
2

∫ t

0
dϕ1(Q(s))

[
ϕ2(Qεf)−ϕ2(Q)

ε
(t− s)− ϕ̇2(Q)[f](t− s))

]
+

1
2

∫ t

0

[
dϕ1(Qεf)−dϕ1(Q)

ε
(s)−dϕ̇1(Q)[f](s))

]
ϕ2(Q)(t− s)

+
1
2

∫ t

0

[
dϕ1(Qεf)−dϕ1(Q)

ε
(s)−dϕ̇1(Q)[f](s)

]
ϕ2(Qεf)(t− s)

+
1
2

∫ t

0
dϕ1(Qεf(s))

[
ϕ2(Qεf)−ϕ2(Q)

ε
(t− s)− ϕ̇2(Q)[f](t− s)

]
+

1
2

∫ t

0
dϕ1(Q(s))ϕ̇2(Q[f])(t− s)

+
1
2

∫ t

0
dϕ̇1(Q)[f](s)ϕ2(Q)(t− s)

+
1
2

∫ t

0
dϕ1(Qεf)(s)ϕ̇2(Q[f])(t− s))
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+
1
2

∫ t

0
dϕ̇1(Q)[f](s)ϕ2(Qεf)(t− s), (3.12)

where we have just added and subtracted terms. Hence, from the Hadamard differ-
entiability of ϕ1 and ϕ2, the boundedness of the measures dφ1 and dφ2, it follows
that the first four terms converge to zero as ε → 0. Using the hypothesis on the
measures dϕ and of the maps ϕ the theorem easily follows.

In particular, as a consequence we have:

Q̇(2)
= Q∗ f+ f∗Q,

Q̇(3)
= Q∗ Q̇(2)

[f]+ f∗Q(2) = Q(2) ∗ f+Q∗ f∗Q+ f∗Q(2).

It is easy to prove by induction, using Theorem 3.2, that Q̇(m)
(t) can be rewritten in

the form:

Q̇(m)
[f](t) =

m

∑
`=1

Q(m−`) ∗ f∗Q(`−1)(t). (3.13)

In case R ∈M , it makes sense to consider its Hadamard derivative. In case of
forward–going models, where loops in the sample space are not allowed since each
state can be visited at most once, the following lemma holds:

Lemma 3.3 The expected number of renewals R(t) is Hadamard differentiable,
with derivative:

Ṙ[f](t) = ∑
m

m

∑
`=1

Q(m−`) ∗ f∗Q(`−1)(t). (3.14)

As pointed out in Dabrowska (1995), this property continues to hold also for non
forward–going models. The difference is that the estimator will contain a number
of terms increasing with the number of subjects, in such a way that the estimate is
asymptotically unbiased.

In order to apply the delta method, we have to consider the Hadamard
derivative at

f(t) = n1/2
(

Q̂(t)−Q(t)
)

whose asymptotics is given in Appendix B and C for the non–parametric and semi–
parametric case respectively:

n1/2(Q̂(t)−Q(t)) D−→ X(t),
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where X(t) is a Gaussian process. As a consequence of the delta method we also
have:

n1/2(R̂(t)−R(t)) D−→ Ṙ[X](t) = ∑
m

m

∑
`=1

Q(m−`) ∗X∗Q(`−1)(t). (3.15)

Clearly the process Ṙ[X](t) is Gaussian, with expectation zero as a consequence of
the linearity of the expectation and from the properties of X(t).

3.2.2 Asymptotics for P jk(t)

In this subsection, we want to derive the large sample theory for the transition prob-
abilities. We want to emphasize the fact that the results of this section are valid for
both the non–parametric and the semi–parametric models. In fact, by the functional
delta method we transfer the knowledge of the asymptotic behavior of Q to P via
the differentiable map Q→ P. We derive the asymptotic variance of the asymptotic
Gaussian process, in such a way that a pointwise confidence interval for the esti-
mator may be constructed. In order to include in the same formalism for both the
non–parametric and semi–parametric models, we drop the explicit dependence of
the latter on the vector of covariate Z jk. Furthermore, the asymptotic variance will
be written in terms of the covariance matrices of the asymptotic process X(t), whose
expressions are contained in Appendix A for the non–parametric case and in Ap-
pendix B for the semi–parametric case. Moreover, for the sake of completeness, the
estimators of the semi–Markov kernel given in Gill (1980) for the non–parametric
case and in Dabrowska (1995) for the semi–parametric case are recalled and the
main results reviewed in Appendix A and B respectively.

The last step for obtaining the asymptotic distribution of the transition prob-
abilities is to apply the delta–method to equation (3.9). From Proposition 3.2, we
have:

Ṗ(t) = Ṙ∗h(t)+R∗ ḣ(t). (3.16)

If we denote by X(t) the limiting process of n1/2(Q̂−Q)
D−→ X(t), then by the

functional delta-method and (3.16) we have the following weak convergence result:

n1/2(P̂−P)(t) D−→∑
m

m

∑
`=1

Q(m−`) ∗X∗Q(`−1) ∗h(t)−R∗ X̃(t) =: D(t), (3.17)

where X̃ is the matrix with elements X̃ jk := δ jk ∑b X jb. Hence, by linearity of the
convolution integrals and from the properties of stochastic integration, it follows
that this limiting process D(t), defined in (3.17) is a zero–mean Gaussian process.
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What we have to evaluate now to estimate the standard errors of the proposed esti-
mator, is the variance for any time point t. We first denote with

E(g,h)
( j,k) (s, t) := E(X jk(s)Xgh(t)), (3.18)

the covariance matrix of the limiting process X(t). In order to simplify the notation
in the forthcoming calculations, we give the following definitions:

D(t) = D(a)(t)−D(b)(t), (3.19)

where

D(a)(t) := ∑
m

m

∑
`

Q(m−`) ∗X∗Q(`−1) ∗h (t) (3.20)

and
D(b)(t) := R∗ X̃ (t).

Thus, the variance calculation can be split in the terms:

var(D jk(t)) = var(D(a)
jk (t))+var(D(b)

jk (t))−2cov(D(a)
jk (t)D(b)

jk (t)). (3.21)

For the first term of (3.21) we can write:

var(D(a)
jk (t)) = ∑

m1,m2

m1

∑
k1=1

m2

∑
k2=1

L jk(m1,k1;m2,k2), (3.22)

where

L jk(m1,k1;m2,k2)

= ∑
a1,b1,
a2,b2

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

×
∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

∫ t

0
du2

∫ t−u2

0
Q(m2−k2)

j,a2
(ds2)

×
∫ t−u2−s2

0
Q(k2−1)

b2,k
(dt2)hk(t−u1)hk(t−u2) E(a2,b2)

(a1,b1)
(t1, t2)). (3.23)

As regards var(D(b)
jk (t)), we have:

var(D(b)
jk (t)) = ∑

`1,`2

∫ t

0
R jk(ds1)

∫ t

0
R jk(ds2)E

(`1,`2)
(k,k) (t− s1, t− s2), (3.24)
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For the last term, we have:

E(D(a)
jk (t)D(b)

jk (t)) = ∑
m1,m2

m1

∑
k1=1

M jk(m1,k1;m2). (3.25)

where

M jk(m1,k1;m2) = ∑
a1,b1,

`

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

×
∫ t

0
Q(m2)

j,k (ds2)E
(b1,`)
(a1,k)

(t1, t− s2)hk(t−u1). (3.26)

Therefore, inserting (3.22)–(3.26) into (3.21), we obtain the final result for the vari-
ance of the process. The derivation of equations (3.22)–(3.26) is deferred to Ap-
pendix C.

We conclude this section with a remark. Since as we have seen during this
calculation, the asymptotic process for the transition probabilities has a very com-
plicated covariance structure, one can think of estimating the standard errors by
simulation. An alternative way could be to approximate the process of interest with
a simpler one, in the sense that sampling from its distribution is easier than in the
original process. We give the main idea of this method in the next section.

3.3 Confidence bands via resampling

In this subsection we will construct the confidence bands via arguments similar to
the ones used in Lin et al. (1994). As we have seen in the previous section, the
limiting process of the semi–Markov kernel is asymptotically distributed as a zero
mean Gaussian process, but with a very complicated covariance structure. More-
over, the limiting process is clearly with non– independent increments. Thus, the
usual machinery for deriving confidence bands cannot be applied: the usual idea
of rescaling the time in such a way that the process is equivalent to a Brownian
bridge, here does not work. Hence, in order to face this problem, we approximate
the cumulative hazards with a sum of normal Gaussian variables, that are equivalent
to the original process thanks to the local martingale central limit theorem. After-
wards, one can apply the functional delta method and its chain rule property. We
will introduce the notation for the semi–parametric case, the non–parametric case
being similar. The first step is to define

Wjk(t,β ;Z jk) := Ψ jk(t,β )+(η?
jk(t,β ))

>
Σ
−1U(τ,β ), (3.27)

where Ψ and U are the processes of Proposition B.1. By the same proposition we
have the convergence n1/2(Â jk(t)−A jk(t))→Wjk(t,β ;Z jk). Define the zero–mean
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martingales M̃(i)
jk (·) associated to the counting processes Ñ(i)

jk (·), associated to the

i–th subject with covariate vector Z(i)
jk :

M̃(i)
jk (t) = Ñ(i)

jk (t)−
∫ t

0
Y (i)

j (u)eβ>Z(i)
jk dA jk;0(u). (3.28)

By Dabrowska (1995), we can rewrite (3.27) in terms of the martingale processes,
obtaining:

Wjk(t,β ;Z jk) = n−1/2
n

∑
i=1

(∫ t

0

eβ>Z(i)
jk

s(0)jk (u,β )
dM̃(i)

jk (u)

+ η
?
jkΣ
−1

∑
l,m

∫
τ

0
(Z(i)

jk − elm(u,β ))dM̃(i)
lm(u)

)
,

with s(0)jk and elm defined as in Appendix B. The idea of the approximation essen-
tially relies on the fact that:

E(M̃(i)
jk (t)) = 0, (3.29)

var(M̃(i)
jk (t)) = E(Ñ(i)

jk (t)), (3.30)

for any j,k and i. In fact, we basically replace {M̃(i)
jk (t)}k with {G(i)

jk Ñ(i)
jk (t)}k, where

G(i)
jk are independent standard normal variables. Any distribution for G(i)

jk will do as
long as it has zero mean and unit variance (see Mammen (1992) for more details).
In the bootstrap procedure, we regard G(i)

jk as random and consider all the other
quantities as fixed. Hence

W ∗jk(t,β ;Z jk) = n−1/2
n

∑
i=1

(
G(i)

jk

∫ t

0

eβ>Z(i)
jk

s(0)jk (u,β )
dÑ(i)

jk (u)

+ η
?
jkΣ
−1

∑
l,m

G(i)
lm

∫
τ

0
(Z(i)

jk − elm(u,β ))dÑ(i)
lm (u)

)
. (3.31)

The only thing one has to prove is that W ∗i j(·) and Wi j(·) converge weakly to two
zero mean Gaussian processes having the same limiting distribution. We skip the
details, since they are similar in spirit to the ones contained in Lin et al. (1994).
Hence, in order to approximate Wjk(·), we simply obtain a large number of real-

izations from W ∗jk(·) by generating random samples {G(i)
jk }, while fixing the data at
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their observed values.
Finally, by the functional delta–method we can derive the confidence bands

for the transition probabilities, using the chain rule for the Hadamard differentia-
tion. In fact, if ϕ1 : B1→ B2 and ϕ2 : B2→ B3 are Hadamard differentiable at x∈ B1
and ϕ1(x)∈ B2 respectively, then ψ = ϕ2 ◦ϕ1 : B1→ B3 is Hadamard differentiable
at x with derivative ϕ̇2(ϕ1(x))[ϕ̇1(x)]. In our case we have for the map ψ:

A ϕ1−→Q ϕ2−→ P.

We have that ∀f ∈DK,K[0,T ]

[ϕ1(f)] jk(t) =
∫ t

0
e−f j(s) df jk(s),

where f j := ∑
K
k=1 f jk. Moreover, ∀g ∈DK,K[0,T ]

[ϕ2(g)] jk(t) = R(g) jk(t).

The Hadamard derivative of ϕ2 is Ṙ, already evaluated in (3.14). As regards ϕ̇1(A),
for a test function h ∈DK,K[0,T ] it is given by(

ϕ̇1(A)[h]
)

jk(t) =
∫ t

0
e−A j(s) dh jk(s)−∑

`

∫ t

0
h j`(s)e−A j(s) dA jk(s).

Since n1/2(Â−A)
D−→W, for P = ψ(A) and P̂ = ψ(Â), the limiting distribution of

n1/2(P̂−P) is given by ψ̇(A)[W], which equals, by the chain rule, ϕ̇2(Q)[ϕ̇1(A)[W]].
If the wild bootstrap W∗(t) has W(t) as limiting distribution, then since ψ = ϕ2◦ϕ1
is Hadamard differentiable, using results of Gill (1989), the limiting distribution of
n1/2(P̂−P) is consistently estimated by Z∗ = ϕ̇2(Q̂)[ϕ̇1(Â)[W∗]].

4 Application: implementation in R and data from
the NECOSAD study

We apply our methods to data from the NECOSAD study, an observational renal
replacement study following patients after initial dialysis (see Termorshuizen et al.
(2003)), either hemodialysis (HD) or peritoneal dialysis (PD). A total of 1879 dial-
ysis patients, 692 (37%) on PD, 1187 (63%) on HD were followed for a median of
8.7 years. Covariates considered are age (in years), categorized in three categories
(age< 40, 40 ≤age≤ 60, age> 60), the initial dialysis therapy (hemodialysis and
peritoneal dialysis) and two covariates describing patient’s comorbidity at baseline:
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Figure 1: Multi–state model for NECOSAD data

cardiovascular disease (cvd) and diabetes mellitus (dm). The covariate frequencies
in the population are shown in Table 1. The majority of the population (55%) was
more than 60 years old at initiation of dialysis, one third of the population had car-
diovascular disease as comorbidity, and 20% of the patients were diabetic at the start
of dialysis. We model the subject’s clinical history as a realization of a multi–state
model, with transitions among the five states of clinical interest: dialysis (denoted
with “dial” in the sequel), first kidney transplantation (Tx), relapse followed by a
second dialysis, second transplantation, and death as absorbing state. The multi–
state model described is shown in Figure 1, where the number of observed transi-
tions in our data is reported in between brackets. In order to test the violation of

Table 1: Covariate frequencies in the population.

Covariate Frequency %
Age (yrs)

< 40 223 11.9
40−60 610 32.5
> 60 1046 55.7

Initial dialysis therapy
Peritoneal dialysis 692 36.8
Hemodialysis 1187 63.2

Cardiovascular disease
No 1129 60.1
Yes 618 32.9

Diabetes mellitus
No 1344 71.5
Yes 385 20.5

Markov renewal assumption for the multi–state model considered, one can test for
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each transition the significance of covariates depending on the history. We checked
whether the arrival time in state 2 (the past) is significant for the transitions 2→ 5
and 2→ 3, by including it as a covariate in a Cox model for the transition hazards,
obtaining p = 0.12 and p = 0.19 respectively. Similar results were obtained for the
other transitions, so that the dataset studied can be seen as a good benchmark for
our model.

Our implementation in R is aimed at extending the existing mstate pack-
age (for an overview see de Wreede et al. (2010)), in order to include also semi–
Markov multi–state models. As we mentioned in the introduction, we want to limit
our attention only to the models without loops. Hence we would like to have
a criterion that, given the matrix tmat, tells the user whether or not the model
has loops. One possible way to check this, is by defining a matrix T with Tjk =
1/#{ transitions from j} if j→ k is possible and null otherwise, and then looking
at expT −1: if the diagonal terms are all null, then there are no loops. The function
Matrix.Exp in the msm package (Jackson, 2011) can be used for the calculation of
the exponential of a square matrix. Afterwards, one can check the maximal length
p of the allowed path in the following way:

p = max{k ∈ N : T k 6= 0}.

For instance, in our dataset the maximal path length p is 4, attained for the path
1→ 2→ 3→ 4→ 5.

In case of non–parametric models, following Gill (1980), the semi–Markov
kernel Q jk(t) can be estimated in two steps: at first we estimate the survival prob-
abilities in the state j at time t with the estimator 1− Ĥ j(t) given in (A-1), then by
(A-2) we obtain Q̂ jk(t). In (A-1) we estimate the hazard for the transition j→ k
with the non–parametric estimator:

dÂ jk(t) =
dN jk(t)
Yj(t)

.

Summing over all event times up to time t, one obtains the Nelson–Aalen estimator
Â jk(t) of the cumulative hazard for the transition j → k. Estimates for the cu-
mulative hazards (with and without covariates) can be obtained using the mstate

function msfit: after having fitted a model stratified on the transitions by means
of the function coxph from the survival package, this fitted model is the input
of msfit, a function calculating transition hazards Â jk(t) and associated standard
errors at all event points. The plot of the non–parametric cumulative transition haz-
ards are shown in Figure 2.
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We can now proceed with the implementation of the estimator for the transi-
tion probabilities. Since the maximal length of an allowed path is 4, the sum (3.10)
consists of a finite number of terms:

P̂ jk(t) =
4

∑
m=1

Q̂(m)
jk ∗ (1− Ĥk)(t).

Hence, one has just to estimate convolution integrals, with the same convolving
kernel Q. For example, the convolved term Q(2)

jk (t) can be estimated by

Q̂(2)
jk (t) =

5

∑
s=1

∑
`

∆Â js(t`)(1− Ĥ j(t`))Q̂sk(t− t`).

Figure 3 shows a plot of the estimated death probabilities P̂15(t) and P̂25(t), along
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Figure 2: Non–parametric cumulative transition hazards

with 95% pointwise confidence intervals, obtained from the asymptotic results of
Section 3.2. The pointwise confidence intervals were obtained on the log–scale,
for instance the upper curve of the confidence interval of P̂15(t) was obtained by
exp
(

log P̂15(t) + 1.96× SE(log P̂15(t))
)
, with SE(log P̂15(t)) = SE(P̂15(t))/P̂15(t)

given by the delta–method. As we have seen, once we have the semi–Markov ker-
nels and the convolved kernels, it is straightforward to estimate the transition prob-
abilities. Hence, for the non–parametric estimator of the transition probabilities, we
can summarize our findings in Figure 4, which shows stacked probability plots of
P̂1k(t) (left) and P̂2k(t) (right). The distance between two consecutive curves rep-
resents the probabilities. The most striking difference between the left and right
panel is the much larger death probability from 1st dialysis (P̂15(t)) compared to
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Figure 3: Non–parametric death probabilities with 95% confidence interval

the death probability from 1st Tx (P̂25(t)). One should be careful in interpreting
this causally as a positive treatment effect of transplantation, since only relatively
healthy patients are considered for transplantation.

As regards the semi–parametric estimator, we allowed the effects of covari-
ates to be different across transitions. Given the low number of observed transitions,
we did not include covariate effects for the transitions 2nd dialysis→ death and 2nd

Tx→ death. We note that none of the covariate effects were significant for these
transitions and they were subsequently removed. The effect of the covariates on
the transitions are summarized in Table 2. The table confirms some known clinical
facts in renal transplantation; it clearly reflects that both in patients starting their tra-
jectory on renal replacement therapy on hemodialysis as well as in patients starting
on peritoneal dialysis, increased age and the presence of comorbid conditions are
contra–indications for (being put on a waiting list of) renal transplantation, while
being clear risk factors for death. No clear effect of these factors were found for
restart of dialysis after having had a renal transplant. This can be explained by the
fact that transplant rejection is a main underlying reason, with histoincompatibility
known as important risk factor.
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Figure 4: Stacked non–parametric transition probabilities
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Figure 5: Cumulative baseline transition hazards

Figure 5 shows the estimated cumulative baseline transition hazards for this
model. To illustrate prediction in this model, we consider three patients: A with
age< 40, B with age 40−60 and C with age > 60, all without diabetes and without
cardiovascular disease. In Figure 6 we show the transition probabilities for subjects
starting from first dialysis under peritoneal dialysis (PD) and hemodialysis (HD)
and in Figure 7 the transition probabilities considered are from the first transplant.
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The larger death probabilities starting from 1st dialysis compared to starting from
1st Tx, shown in Figure 4, are also present here. Also in both Figure 6 and Figure 7
we see increasing death probabilities with increasing age, in accordance with the
results of Table 2.
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Figure 6: Stacked transition probabilities from first dialysis
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Finally, we want to illustrate the application of the resampling technique
to derive pointwise confidence intervals in the presence of covariates. If we con-
sider both dialysis states (states 1, first dialysis, and 3, second dialysis, in Figure 1)
to be equally (un)desirable, interest could be in the estimation of the probability
of being in dialysis. Note that this idea is similar to the popular current leukemia
free–survival in bone marrow transplantation (Craddock et al., 2000). For a patient
starting in 1st dialysis, we would be interested in P11(t)+P13(t), while for a patient
starting in 2nd dialysis, this probability would be P33(t). We sample independent
standard normal variables G(i)

jk per each transition, per each individual and we es-
timate W∗(t) in (3.31). Subsequently, X∗(t) and Z∗(t) are calculated. Since Z∗(t)
serves as an approximation to the distribution of n1/2(P̂(t)−P(t)), the α/2 and
1−α/2 quantiles, z∗

α/2(t) and z∗1−α/2(t), of the bootstrap replications of Z∗(t) may

be used as approximations of those of n1/2(P̂(t)−P(t)), leading to the (1−α)100%
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bootstrap confidence interval:
(

P̂(t)− z∗1−α/2(t)/
√

n, P̂(t)− z∗
α/2(t)/

√
n
)

. Fig-
ure 8 shows the results based on B = 100 replications, for a patient under hemodial-
ysis with age below 40 years and no comorbidities. In Figure 8 we also reported the
confidence intervals obtained by the asymptotic distribution of the transition prob-
abilities. Note that the bootstrap confidence intervals of the bootstrap are wider,
probably due to a small sample effect. A small remark about these two different ap-
proaches. Despite the complexity of the limiting process, the R implementation of
the covariance matrix is straightforward and the computation time is reasonable. As
regards the bootstrap approach, it allows to derive approximated confidence bands,
results essentially out of reach with a plug–in estimator. On the other hand, if one is
interested in the computation of pointwise confidence intervals, the wild bootstrap
method is time–consuming, mostly due to the multidimensional convolution inte-
grals that one has to evaluate. Hence, in this case the use of the plug–in estimator
for the variance of transition probabilities is recommended.
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Figure 8: Probability of being in dialysis with 95% confidence intervals calculated
by asymptotic results and via wild bootstrap
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5 Discussion

A first natural generalization of the present paper would be the extension to non–
homogeneous semi–Markov models. In Monteiro et al. (2006) the authors estimate
the transition matrices for this class of models for window–censored data based on
non–parametric estimators of the cumulative transition hazards. However, besides
the limitation on the censoring mechanism, they do not derive the confidence inter-
vals. We think that the theoretical results of this paper can be generalized also to
the non–homogeneous case. The main difficulty is the implementation, since our
approach of evaluating efficiently the convolution integral, is strictly related to the
univariate nature of the time.

A further step in generalizing our analysis regards the inclusion of loops in
the software developed. As we have already mentioned before, the limitation on
the allowed paths comes only from the implementation. From a theoretical point
of view indeed, the results from Gill (1980) and Dabrowska (1995) hold also in the
case of loops. The inclusion of paths with loops may be possible, provided that one
gives some a priori criterium to stop the sum of the convoluted kernels after a finite
number of iterations. This can be done fixing a value ε , and determine the maximal
path length in a such way that

mmax := min{m : sup
t

Q̂m
jk(t)< ε}

∀ j,k. Of course this cut–off will be used only at the implementation level. All the
estimates will remain an infinite sum and the model will not become a hierarchical
model, where each possible sequence of states visited has the property that none of
the states can be reached from the subsequent states.

A Estimation and large sample theory for Q(t) (non–
parametric)

A.1 Estimation of semi–Markov kernel

In this section we review the main results from Gill (1980) about statistical infer-
ence for the semi–Markov kernel. Since for the semi–Markov kernel we can write:

Q jk(t) = P(Sm+1 = k,Jm+1 ≤ t|Sm = j)

=
∫ t

0
P(Sm+1 = k,Jm+1 ∈ (u,u+du]|Sm = j)
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=
∫ t

0
P(Sm+1 = k,Jm+1 ∈ (u,u+du]|Sm = j,Jm+1 > u)P(Jm+1 > u|Sm = j)

with Jm+1 := Tm+1−Tm, the estimators of Q jk is built up in two steps: first estimat-
ing H j by Ĥ j, defined by

1− Ĥ j(t) = ∏
s≤t

(
1−

∆N j(s)
Yj(s)

)
(A-1)

with N j(·) := ∑k N jk(·) and afterwards we can define Q̂ jk(t) by

Q̂ jk(t) =
∫ t

0
(1− Ĥ j(s−))

dN jk(s)
Yj(s)

. (A-2)

For a real valued stochastic process X = {X(t); t ∈ [0,∞)} whose sample path have
left hand limits, X− is the process defined by X−(0) = 0 and X−(t) = X(t−). In
dealing with an indexed family, we write Xi− for (Xi)−. Moreover, ∆X is the process
X−X−. For the estimator Q̂ jk(t) we have the following weak convergence theorem:

Theorem A.1 Suppose that the number of observed sojourn times is almost surely
finite and choose τ j, j ≤ r such that EYj(τ j) > 0. Then considered as a random
element of ∏ j(D[0,τ j])

r+1, {n1/2(Q̂ jk(t)−Q jk(t), n1/2(Ĥ j(t)−H j(t)} is asymp-
totically distributed as{ ∫

(0,t]

1−H j−(s)
EYj(s)

dW jk(s)−Q jk(t)
∫
(0,t)

1−H j−(s)
1−H j(s)

1
EYj(s)

dWj(s)

+
∫
(0,t)

Q jk(s)
1−H j−(s)
1−H j(s)

dWj(s)
EYj(s)

,(1−H j(t))
∫
(0,t]

1−H j−(s)
1−H j(s)

dWj(s)
EYj(s)

}
,

where the W jk are jointly zero mean Gaussian processes with independent mul-
tivariate increments, the sets {Wjk;k ≤ r}, j = 1, . . . ,r being independent of one
another; Wj = ∑k Wik; and

var(Wjk(t)) =
∫ t

0
EY j(s)

(
1−

∆Q jk(s)
1−H j−(s)

)
dQ jk(s)

1−H j−(s)
, (A-3)

cov(Wjk(t),Wjk′(t)) = −
∫ t

0
EYj(s)

∆Q jk(s)
1−H j−(s)

dQ jk′(s)
1−H j(s−)

. (A-4)

The integral with respect to W jk and Wj are stochastic integrals in the sense of
Meyer (the Wjk are square integrable martingales with respect to the natural family
of σ–algebras) or can equivalently be defined by formal integration by parts.
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A.2 Asymptotic covariance of semi–Markov kernel

We define:
DQ := n1/2(Q̂−Q)(t) (A-5)

we recall that from Theorem A.1 DQ(t) is asymptotically distributed as:

DQ(t) D−→ X(t),

with
X jk(t) :=

∫ t

0
a j(s)dWjk(s)−

∫ t−

0
b j,k(s)dW j(s), (A-6)

where

a j(s) :=
1−H j(s−)
EYj(s)

(A-7)

and

b j,k(s) :=
Q jk(t)−Q jk(s)

EYj(s)
1−H j(s−)
1−H j(s)

, (A-8)

where Wjk are jointly zero mean Gaussian processes with independent multivariate
increments. Moreover:

var(Wjk(s)) =
∫ s

0
dc j,k(u), (A-9)

cov(Wjk(s)Wj,k′(s)) =
∫ s

0
ddk,k′

j (u) k 6= k′, (A-10)

cov(Wjk(s)Wj′,k′(s
′)) = 0 j 6= j′ or s 6= s′, (A-11)

where we define

dc j,k(s) := EYj(s)
(

1−
∆Q jk(s)

1−H j(s−)

)
dQ jk(s)

1−H j(s−)
(A-12)

and

ddk,k′
j (s) :=−EY j(s)

∆Q jk(s)
1−H j(s−)

dQ jk′(s)
1−H j(s−)

. (A-13)

The goal of this Appendix is to evaluate the following expectation:

E(l,m)
( j,k) (z,w) := E(X jk(z)Xlm(w)). (A-14)

Thus, using these new notation for the theorem, we have:

E(l,m)
( j,k) (z,w) = E

[(∫ z

0
a j(s)dWjk(s)−

∫ z

0
b j,k(s)dW j(s)

)
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×
(∫ w

0
al(t)dQl,m(t)−

∫ w

0
bl,m(t)dWl(t)

)]
=: A l,m

j,k (z,w)−Bl,m
j,k (z,w)−C l,m

j,k (z,w)+D l,m
j,k (z,w). (A-15)

Thus, thanks to the properties of the process Wj,k, we can easily evaluate each term
of (A-15):

A l,m
j,k (z,w) := E

(∫ z

0

∫ w

0
a j(s)al(t)dWj,k(s)dWl,m(t)

)
= δ j,l

∫ z∧w

0
a2

j(s)
(
(1−δkm)ddk,m

j (s)+δkmdc j,k(s)
)

(A-16)

Bl,m
j,k (z,w) := E

(∫ z

0

∫ w

0
a j(s)bl,m(t)dWjk(s)dWl(t)

)
=δ j,l ∑

`

∫ z∧w

0
a j(s)b j,m(s)

(
(1−δk`)ddk,`

i (s)+δk`dc j,k(s)
)
(A-17)

C l,m
j,k (z,w) := E

(∫ z

0

∫ w

0
al(s)b j,k(t)dWj(s)dWl,m(t)

)
= δ j,l ∑

`

∫ z∧w

0
al(s)b j,k(s)

(
(1−δ`m)dd`,m

j (s)+δ`mdc j,m(s)
)
(A-18)

D l,m
j,k (z,w) = E

(∫ z

0

∫ w

0
b j,k(s)bl,m(t)dW j(s)dWl(t)

)
=δ j,l ∑

`,r

∫ z∧w

0
b j,k(s)b j,m(s)

(
(1−δ`r)dd`,r

j (s)+δ`rdc j,r(s)
)
(A-19)

Hence, inserting (A-16), (A-17), (A-18), (A-19) in (A-15), we have the expression
of the correlations E(l,m)

(i, j) (z,w) in terms of the basic quantities of the limiting process
Z(t):

E(l,m)
( j,k) (z,w) = A l,m

j,k (z,w)−Bl,m
j,k (z,w)−C l,m

j,k (z,w)+D l,m
j,k (z,w). (A-20)
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B Estimation and large sample theory for Q(t)(semi–
parametric)

B.1 Estimation of semi–Markov kernel

In this subsection we recall the main results of Dabrowska (1995) about semi–
parametric semi–Markov models which incorporate covariates through the Cox re-
gression form. We restrict our attention to the case of time–independent covariates
that preserve the Markov renewal properties of the process. We remark that, despite
the fact that in the more general setting of time–dependent covariates dependent
on the backwards recurrence time (Dabrowska, 1995) large sample theory for the
cumulative hazards is known, the estimation of the transition probabilities in this
case is out of reach.

Let S(t) be the state occupied by the process at time t and let L(t) be the
backward recurrence time, in other words the time elapsed between t and the last
jump of the process before t. Thus, under the Cox proportional hazards model
assumptions, the evolution of the process Ñ jk(·) is determined by the intensities

dA jk(t;Z jk) = I(S(t−) = j)eβ>Z jk α jk;0(L(t)), (B-1)

where α jk;0(L(t)) is a baseline hazard function and β a vector of coefficients as-
sociated to the vector Z. In Dabrowska et al. (1994) it was shown that the esti-
mates of the regression parameters β and the baseline cumulative hazards A0; jk(t) =∫ t

0 α jk;0(u)du can be derived by profile likelihood in the same way as in the ordi-
nary Cox regression (Andersen et al., 1993). Indeed if we define the following
Breslow–like estimator for the baseline hazard:

Â jk;0(t,β ) :=
∫ t

0

I(S(0)jk (u,β )> 0)

nS(0)jk (u,β )
dN jk(u)

with

S(0)jk (u,β ) = n−1
n

∑
i=1

Ỹ (i)
j (u)eβ>Z(i)

jk , (B-2)

where (Ỹ (i)
j ,Z(i)

jk ) is the realization of the process (Ỹj,Z jk) associated with the i–th
subject, the following theorem has been proved in Dabrowska (1995) (Proposition
2.1) to which we refer the reader for the proof and details:

Proposition B.1 n1/2(β̂−β ) is asymptotically distributed as Σ−1(τ,β )U(τ,β ) and
n1/2(Â jk;0(t, β̂ )−A jk;0(t,β )) as Ψ jk(t,β )+η>jk(t,β )Σ

−1(τ,β )U(τ,β ),
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where U(t,β ) and [Ψ(t,β )] = [Ψ jk(t,β )] are independent (vector and matrix val-
ued) mean zero Gaussian process with covariance given by:

cov[U(s,β ),U(t,β )] = Σ(s∧ t,β ),
cov[Ψ jk(s,β ),Ψm`(t,β )] = γ jk;m`(s∧ t,β ),

where Σ and γ are defined in Appendix B by B-4 and B-7, respectively.

If we define η?
jk(t,β ) = η jk(t,β )+ Â jk;0(t, β̂ )Z jk, by Taylor expansion we can de-

rive the asymptotics for A jk(t;Z jk):

Lemma B.2 n1/2(Â jk(t, β̂ ;Z jk)−A jk(t,β ;Z jk)) has the same asymptotic distribu-
tion of

eβ̂>Z jk
(

Ψ jk(t,β )+(η?
jk)
>(t,β )Σ−1(τ,β )U(τ,β )

)
,

where U(t,β ) and [Ψ(t,β )] = [Ψ jk(t,β )] are the same processes of Proposition
B.1.

Hence, in analogy of Gill (1980), for an individual with covariate Z, the semi–
Markov kernel Q(τ;Z jk) can be written in terms of product integrals:

Q jk(τ;Z) =
∫

τ

0

(
∏
[0,s)

(1−dA j(s;Z))
)

dA jk(s;Z jk), (B-3)

where A j(s;Z) = ∑`A j`(s;Z j`). Under continuity conditions, (B-3) can be rewrit-
ten:

Q jk(τ;Z) =
∫

τ

0
exp{−A j(u;Z)}dA jk(u;Z jk).

In the next section, the large sample theory of the empirical estimator suggested by
(B-3) will be derived. This derivation is essentially based on the results contained
in Dabrowska (1995).

B.2 Asymptotic distribution of semi–Markov kernel

In this section we recall the results from Dabrowska (1995) about the asymptotic
covariance matrix f or the semi–Markov kernel, adapted to our context. We also
recall the notation used and the following definitions, needed for stating the theorem
in case of the semi–parametric proportional hazards model.
Given S(0)jk (t,β ), defined in (B-2), we denote with S(1)jk (t,β ) and S(2)jk (t,β ), the vector
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and respectively the matrix of the first and second partial derivatives of S(0)jk (t,β )
with respect to β . We define, in a neighborhood of the true parameter value β0:

s(p)
jk (t,β ) := E(S(p)

jk (t,β )),

for p = 0,1,2. Moreover, set

e jk(t,β ) :=
s(1)jk (t,β )

s(0)jk (t,β )
,

v jk(t,β ) :=
s(2)jk (t,β )

s(0)jk (t,β )
− e jk(t,β )⊗2

and define
Σ(t,β ) := ∑

j,k

∫ t

0
v jk(u,β )s(0)jk (u,β )α jk;0(u)du. (B-4)

All the quantities so far recalled are commonly used in the proportional hazards
setting. Furthermore, we want to introduce quantities specifically used in semi–
Markov framework. Let us define:

η jk(t) :=−
∫
(0,t]

e jk(u,β ))dA jk;0(u), (B-5)

η
?
jk(t,Z jk) := η jk(t)+A jk;0(t)Z jk, (B-6)

γ jk;c`(t,β ) := δ j,c δk,`

∫
(0,t]

(
s(0)jk (u,β )

)−1
α0, jk(u)du. (B-7)

Proposition B.3 Let τ j be a point such that EYj(τ) > 0, j = 1, . . . ,r and suppose
that EY j(0)3 < ∞ and the semi–Markov kernel Q continuous. Then the process√

n(Q̂ jk(·|Z)−Q jk(·|Z)) converges weakly in D[0,τ]r×r to mean zero Gaussian
process X, with covariance

E(X jk(t)Xlm(s)) = e2β ′0 Z (C1(X jk(t),Xlm(s))+C2(X jk(t),Xlm(s))
)

(B-8)

with

C1(X jk(s),Xgh(t)) := ∑
q1,p1,

q2

∆p1q1(k)∆p1q2(k)
[

Q jq1(t ∧ s)
∫ s∧t

0
dQ jq2(s1)γ jp1, jp1(s1)

−
∫ s∧t

0
dQ jq2(s1)Q jq1(s1)γip1,ip1(s1)+Q jq2(t ∧ s)

∫ s∧t

0
dQ jq1(s1)γ jp1, jp1(s1)

32

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 23



−
∫ s∧t

0
dQ jq1(s1)Q jq2(s1)γ jp1, jp1(s1)

+1(t > s)(Q jp1(t)−Q jp1(s))
∫ s

0
dQ jq2(s1)γ jp1, jp1(s1)

+1(t < s)(Q jq2(s)−Q jq2(t))
∫ s

0
dQ jp1(s1)γ jp1, jp1(s1)

]
,

and

C2(X jk(t),Xlm(s)) :=[
∑
p1q1

∆p1q1(k)
∫ t

0
dQ jq1(s1)η

?
jp1

(s1)

]T

Σ
−1

[
∑
p2q2

∆p2q2(m)
∫ s

0
dQlq2(s2)η

?
l p2

(s2)

]
,

where
∆ab(c) := δac−δbc.

For uniformity with the notation used in Appendix A for the non–parametric case,
we denote with E(g,h)

( j,k) (s, t) the covariance matrix:

E(g,h)
( j,k) (s, t) := E(X jk(s)Xgh(t)). (B-9)

C Asymptotic variance for the transition probabili-
ties

The variance calculation can be split in the terms:

var(D jk(t)) = var(D(a)
jk (t))+var(D(b)

jk (t))−2cov(D(a)
jk (t)D(b)

jk (t)). (C-1)

For the first term, we can write:

var(D(a)
jk (t)) = ∑

m1,m2

m1

∑
k1=1

m2

∑
k2=1

E
([

Q(m1−k1) ∗X∗Q(k1−1) ∗h(t)] jk

×[Q(m2−k2) ∗X∗Q(k2−1) ∗h(t)
]

jk

)
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=: ∑
m1,m2

m1

∑
k1=1

m2

∑
k2=1

L jk(m1,k1;m2,k2). (C-2)

Hence, integrating by parts and using the fact that for any m > 0, Q(m)(0) = 0 and
X(0) = 0, for the each term of the sum we have:

L jk(m1,k1;m2,k2)

= ∑
a1,b1,
a2,b2

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

×
∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

∫ t

0
du2

∫ t−u2

0
Q(m2−k2)

j,a2
(ds2)

×
∫ t−u2−s2

0
Q(k2−1)

b2,k
(dt2)hk(t−u1)hk(t−u2)E

(
Xa1,b1(t1)Xa2,b2(t2)

)
= ∑

a1,b1,
a2,b2

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

×
∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

∫ t

0
du2

∫ t−u2

0
Q(m2−k2)

j,a2
(ds2)

×
∫ t−u2−s2

0
Q(k2−1)

b2,k
(dt2)hk(t−u1)hk(t−u2) E(a2,b2)

(a1,b1)
(t1, t2)), (C-3)

where in the last step we used (A-20) for evaluating E(Xa1,b1(t1)Xa2,b2(t2)). Thus
inserting (C-3) in (C-2) we have var(D(a)(t)).

As regards var(D(b)
jk (t)), we can write:

var(D(b)
jk (t)) = ∑

`1,`2

∫ t

0
R jk(ds1)

∫ t

0
R jk(ds2)E(Xk`1(t− s1)Xk`2(t− s2))

= ∑
`1,`2

∫ t

0
R jk(ds1)

∫ t

0
R jk(ds2)E

(`1,`2)
(k,k) (t− s1, t− s2), (C-4)

where in the last step we apply the results of Appendix A or B in case of non–
parametric or semi–parametric models respectly.

As regards the last term:

E(D(a)
jk (t)D(b)

jk (t)) = ∑
m1,m2

m1

∑
k1=1

E
([

Q(m1−k1) ∗X∗Q(k1−1) ∗h(t)] jk

×[Q(m2) ∗ X̃
]

jk

)
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=: ∑
m1,m2

m1

∑
k1=1

M jk(m1,k1;m2). (C-5)

Similarly to the estimate (C-3), we have:

M jk(m1,k1;m2) = ∑
a1,b1

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

×
∫ t

0
Q(m2)

i,k (ds2)E
(

Xa1,b1(t1)X̃kk(t− s2)

)
hk(t−u1)

= ∑
a1,b1,

`

∫ t

0
du1

∫ u1

0
Q(m1−k1)

j,a1
(ds1)

∫ s1

0
Q(k1−1)

b1,k
(dt1)

×
∫ t

0
Q(m2)

j,k (ds2)E
(

Xa1,b1(t1)Xk`(t− s2)

)
hk(t−u1)

= ∑
a1,b1,

`

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

×
∫ t

0
Q(m2)

j,k (ds2)E
(

Xa1,b1(t1)Xk`(t− s2)

)
hk(t−u1)

= ∑
a1,b1,

`

∫ t

0
du1

∫ t−u1

0
Q(m1−k1)

j,a1
(ds1)

∫ t−u1−s1

0
Q(k1−1)

b1,k
(dt1)

×
∫ t

0
Q(m2)

j,k (ds2)E
(b1,`)
(a1,k)

(t1, t− s2)hk(t−u1). (C-6)

Therefore, inserting (C-2), (C-5), (3.19), in (C-1), we obtain the final result for the
variance of the process.
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