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Mark J. van der Laan and Susan Gruber

Abstract

We consider estimation of the effect of a multiple time point intervention on an outcome of
interest, where the intervention nodes are subject to time-dependent confounding by intermediate
covariates.

In previous work van der Laan (2010) and Stitelman and van der Laan (2011a) developed
and implemented a closed form targeted maximum likelihood estimator (TMLE) relying on the
log-likelihood loss function, and demonstrated important gains relative to inverse probability of
treatment weighted estimators and estimating equation based estimators. This TMLE relies on an
initial estimator of the entire probability distribution of the longitudinal data structure. To enhance
the finite sample performance of the TMLE of the target parameter it is of interest to select the
smallest possible relevant part of the data generating distribution, which is estimated and updated
by TMLE. Inspired by this goal, we develop a new closed form TMLE of an intervention specific
mean outcome based on general longitudinal data structures. The target parameter is represented
as an iterative sequence of conditional expectations of the outcome of interest. This collection of
conditional means represents the relevant part, which is estimated and updated using the general
TMLE algorithm. We also develop this new TMLE for other causal parameters, such as parameters
defined by working marginal structural models. The theoretical properties of the TMLE are also
practically demonstrated with a small scale simulation study.The proposed TMLE is building upon
a previously proposed estimator Bang and Robins (2005) by integrating some of its key and
innovative ideas into the TMLE framework.

KEYWORDS: Asymptotic linearity of an estimator, causal effect, efficient influence curve,
confounding, G-computation formula, influence curve, longitudinal data, loss function, marginal
structural working model, nonparametric structural equation model, positivity assumption,
randomization assumption, semiparametric statistical model, treatment regimen, targeted maximum
likelihood estimation, targeted minimum loss based estimation, TMLE
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1 Introduction

Many studies generate data sets that can be represented as n independent and iden-
tically distributed observations on a specified longitudinal data structure. For ex-
ample, the longitudinal data structure might represent measurements collected on
a randomly sampled subject over a certain time period. Some of these measure-
ments might represent an exposure or treatment, and one might be concerned with
assessing the effect of this exposure or treatment on a final outcome of interest.
For that purpose, one may code the observed data structure as a time-ordered O =
(L(0), A(0),...,L(K),A(K),Y = L(K + 1)), where L(0) are baseline covari-
ates, A(t) denotes an exposure or treatment at “time” ¢, and L(¢) denotes covariates
measured between two subsequent treatments A(¢ — 1) and A(t), while Y is the
final outcome measured after the final treatment.

We will use the notation L(k) = (L(0),...,L(k)) and similarly A(k) =
(A(0), ..., A(k)) to denote histories of a time-dependent process. By specifying a
causal graph (Pearl (1995), Pearl (2000)), or equivalently, a system of nonparamet-
ric structural equations, it is assumed that each component of the observed longi-
tudinal data structure (e.g, L(k)) is a function of a set of observed parent variables
(often the whole history, e.g. A(k—1), L(k— 1)) and an unmeasured exogenous er-
ror term. Such a causal model provides a parameterization of the distribution of the
observed data structure O, and allows one to define a post-intervention distribution
that represents the distribution O would have had under a specified intervention on
the nodes A = (A(0),..., A(K)). These nodes (A(0),..., A(K)) are called the
intervention nodes. Causal effects of interventions on these intervention nodes are
defined as parameters of a collection of post-intervention distributions defined by a
specified set of interventions.

For the sake of presentation, in the main part of this article we focus on es-
timation of the intervention specific mean outcome for a single static intervention
that sets A = a. The post-intervention distribution will be denoted with P, and
let L, be a random variable with this distribution, which is also called a counter-
factual. Under the assumption that the intervention nodes are sequentially random-
ized, conditional on the observed parent nodes, and a positivity assumption, one
can identify the post-intervention distribution P, of the counterfactual L, by the so
called G-computation formula P®. This G-computation formula P* is defined by
the product over all L(k)-nodes of the conditional distribution of the L(k)-node,
given its parents, and A(k — 1) = a(k — 1). Thus, the latter probability distribu-
tion P® is defined by the distribution P of the data O, and only equals the desired
distribution P, of the counterfactual L, under the above mentioned nonparamet-
ric structural equation model, sequential randomization assumption and positivity
assumption. This G-computation formula P® for the distribution of L, also pro-
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vides a G-computation formula Ep.Y® for the mean of Y,. This establishes that,
under the causal model and required above mentioned identifiability conditions, the
causal quantity of interest can be written as a function W of the data generating dis-
tribution, namely W (P) = Ep.Y*, where the latter represents the statistical target
parameter or estimand of interest.

Assuming these identifiability conditions, a current and important topic is
the statistical estimation of the G-computation estimand Ep. Y based on observing
n independent and identically distributed copies of the longitudinal data structure O.
The statistical estimation problem is defined by specifying the statistical model M
(the set of possible probability distributions of O) and the definition of the statistical
target parameter U : M — IR. We consider a statistical model that only makes
statistical assumptions about the intervention mechanism, where the latter is defined
by the conditional distribution of the intervention node A(k), given the parent nodes

(A(k — 1), L(k)) of the intervention node, across the intervention nodes, while we

put no restrictions on any of the conditional distributions of L(k), given (A(k —

1), L(k —1)).

The G-computation formula for the causal quantity of interest can now be
represented as a target parameter mapping the statistical model to the real line, and
this target parameter is a pathwise differentiable functional of the data generating
distribution on this statistical model. The canonical gradient D*(P) ata P € M of
the pathwise derivative of ¥ : M — IR at P, which defines the pathwise derivative
along paths through P, is also called the efficient influence curve at P (formally de-
fined in Section 2.2 below). An estimator is asymptotically efficient at P if and only
if it is asymptotically linear at P with influence curve equal to this canonical gradi-
ent D*(P). Thus, it is no surprise that the construction of an efficient estimator of
U(P) under i.i.d sampling from P will need to involve the utilization of the canon-
ical gradient/efficient influence curve D*(P). In fact, an efficient estimator will
at least need to approximately solve the so called efficient influence curve equation
(also called the efficient score equation) defined by setting the empirical mean of the
efficient influence curve at the estimator equal to zero. However, this requirement,
by no means, defines an efficient estimator: for example, there are infinite possible
estimators P,, of F, that will solve the (one-dimensional) efficient influence curve
equation ), D*(P)(0;) = 0 in the infinite dimensional P. In particular, a non-
parametric maximum likelihood estimator (NPMLE), assuming it would be well
defined, would solve all score equations, including this efficient influence curve
equation. However, due to the curse of dimensionality, an NPMLE is often ill de-
fined, and has poor practical performance. Another class of estimators are so called
estimating equation based estimators that aim to represent D*(P) as an estimating
function D*(W(P), n(P)), and given an estimator 7,, of the nuisance parameter 7, it
defines the estimator of ) as the solution of ) _, D*(¢,1,,)(O;) = 0. This approach
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for constructing an efficient estimator has various previously outlined disadvantages
(see e.g. van der Laan and Rubin (2006); van der Laan and Rose (2011)) such as
1) the efficient influence curve D*(P) might not allow a representation as an esti-
mating function, 2) the estimating equation might have no or multiple solutions, 3)
it might be the case that even in the limit EyD*(1), 1) = 0 has multiple solutions
so that the efficient influence curve estimating function simply does not identify
the true vy, 4) the resulting estimator 1, and 7,, are not compatible with a single
probability distribution, and, more generally, the estimator ¢/,, does not necessarily
respect the global constraints implied by the statistical model M and the target pa-
rameter mapping ¥ : M — IR. The latter explains the often erratic behavior of
these estimators in the context of practical violations of the positivity assumptions
(for example, resulting in an estimated probability that is negative or larger than 1).

Targeted minimum loss based estimation (TMLE) provides a template for
the construction of semiparametric locally efficient double robust substitution es-
timators of the target parameter of the data generating distribution in a semipara-
metric censored data or causal inference model based on a sample of independent
and identically distributed copies from this data generating distribution (van der
Laan and Rubin (2006); van der Laan (2008); van der Laan and Rose (2011)). It
relies on an initial estimator of a relevant part of the data generating distribution
(defined as a minimizer of the risk of a loss function), and updates this estimator in
a targeted manner using a least-favorable parametric fluctuation model whose loss-
based score at zero fluctuation spans the efficient influence curve. The estimator is
defined by iteratively maximizing an empirical risk over this least favorable para-
metric submodel through the current estimator, and often exists in closed form by
only requiring a finite number of iterations. Since TMLE is a substitution estimator
it respects the global constraints implied by the statistical model and target parame-
ter mapping. By construction, the update of the initial estimator solves the efficient
influence curve equation. As a consequence, the resulting plug-in estimator of the
target parameter is double robust and asymptotically efficient, under appropriate
regularity conditions. The choices of the so called relevant part, its loss function,
the least-favorable submodel through this relevant part, and the choice of iterative
updating algorithm, define the actual TMLE.

1.1 Existing TMLE approach for estimating an intervention spe-
cific mean outcome

In previous work van der Laan (2010) and Stitelman and van der Laan (2011a) de-
veloped and implemented a closed form targeted maximum likelihood estimator of
the intervention specific mean outcome, defining the relevant part as the relevant
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factor of the density of O, using the log-likelihood loss function. Stitelman and
van der Laan (2011a) demonstrated dramatic gains of this TMLE relative to inverse
probability of treatment weighted estimators and estimating equation based esti-
mators, based on simulated and an analysis of a randomized controlled trial with
a time until event outcome that is subject to drop-out informed by time-dependent
biomarkers. This TMLE relies on an initial estimator of the G-computation formula
P it writes U (P) = U1 (P?%) = Ep.Y“, obtains an initial estimator of P*, updates
this initial estimator based on a least favorable fluctuation indexed by an estimator
of the intervention mechanism, and plugs it in W;. Thus, this estimator requires
estimating the entire density of the longitudinal data structure.

To enhance the finite sample performance of TMLE of the target parameter
it is of interest to select the smallest possible relevant part of the data generating
distribution in the definition of TMLE, which is estimated and updated by TMLE.
That is, one might have two representations of the target parameter as a function of a
relevant part of P: foreach P € M, U(P) = U1 (Q1(P)) and V(P) = V¥o(Q2(P))
for different parameters/relevant parts ()1(P) and @Q2(P) defined as minimizers of
the risk of different loss functions. Each of these representations will imply a TMLE
involving an initial estimator of the relevant part ();(P), an update (0%, based on
iterative minimization of an empirical risk along a least favorable fluctuation model
through the current update of the estimator of @);(P), and corresponding plug-in
TMLE V;(Q3,) of the target parameter 1)y = W([%), j = 1, 2. In addition, suppose
that 1(P) is a smaller parameter than ()5(P) in the sense that Q);(P) is a (many
to one) function of ()2(P). The initial estimator and updated estimator (TMLE) of
(- also yields an initial and updated estimator of (), (and both TMLE’s solve the
efficient influence curve equation), so from that point of view the main difference
between the two resulting TMLEs is the behavior of the estimator of the (more)
relevant part ();. Even though both TMLE are double robust and asymptotically
efficient under regularity conditions, this behavior can easily affect the finite sam-
ple performance of the TMLE of 1y, and, in fact, it can also affect its asymptotic
behavior (by converging to a different limit or by violating the regularity conditions
allowing for the asymptotic linearity). If the initial estimator of (), is based on a
bias-variance trade-off with respect to (w.r.t.) the larger parameter Q)2(P) (e.g., by
using cross-validation w.r.t. the loss function for ()s), then this plug-in estimator of
(1 based on this estimator of (), will generally be worse than an estimator of (),
that directly addresses the bias-variance trade-off w.r.t. (). For example, if the tar-
get parameter W(P) only depends on the conditional mean of the outcome Y, given
its parents, then an estimator of this conditional mean based on a loss function for
this conditional mean might achieve a better rate of convergence than an estimator
based on an estimator of the conditional density of Y, given its parents. It is not a
mistake to use a plug-in estimator of the conditional mean based on an estimate of
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the conditional density, but one wants to fit this conditional density based on a crite-
rion for a candidate estimator that reflects the performance of the resulting plug-in
estimator of the conditional mean. In addition, by focusing on what really needs to
be estimated, the resulting TMLE can also become much simpler to implement.

Inspired by this goal of selecting a small relevant part () (and obtaining a
simple to implement TMLE), we develop a new closed form TMLE of an inter-
vention specific mean outcome based on general longitudinal data structures. The
target parameter is represented as an iterative sequence of conditional expectations
of the outcome of interest, and this collection of conditional means represents the
relevant part, which is estimated and updated using the general TMLE algorithm.
We also develop this new TMLE for other causal parameters, such as parameters
defined by working marginal structural models (MSM), parametric models for the
marginal mean of counterfactual outcomes. The theoretical properties of the TMLE
are also practically demonstrated with a small scale simulation study. The proposed
TMLE builds upon a previously proposed estimator by Bang and Robins (2005) by
integrating some of its key and innovative ideas into the TMLE framework.

It will be of interest to further study and evaluate the practical performance
of this TMLE in future studies, in particular, in comparison with other TMLEs such
as the one proposed in van der Laan (2010) and Stitelman and van der Laan (2011a)
based on the log-likelihood loss function. A practical advantage of the TMLE pre-
sented in this article is that it is easier to implement since it only involves fitting
K (iteratively defined) regressions, while the TMLE in van der Laan (2010) based
on the log-likelihood involves fitting K conditional densities of L(K). It should be
noted again that by using a more targeted loss function for the initial estimator such
as the one in this article, the TMLE based on fitting conditional densities can still
be as good as a TMLE based on only fitting the required conditional means (see
also the Appendix in van der Laan and Rose (2011) and van der Laan and Gruber
(2010) for efficient influence curve based targeted loss functions that can be used
to build the initial estimator). In other words, as remarked above, it is not a mistake
to use a plug-in estimator based on an estimate of the whole density of the data,
but one wants to fit this density based on a criterion for a candidate estimator that
reflects the performance of the resulting plug-in estimator of the target parameter.
Nonetheless, a gain in simplicity for the implementation is of great interest, even
when both types of TMLE would be similar w.r.t. their statistical behavior.
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1.2 Immediately relevant literature overview

Different type of estimators of the causal effect of a multiple time point intervention
have been proposed. These estimators can be categorized as

e inverse probability of treatment/censoring weighted (IPTW) estimators,

e estimating equation based estimators based on solving an estimating equation
in the parameter of interest, for a given estimator of nuisance parameters of
the estimating equation, such as the augmented IPTW estimating equation,

e nonparametric maximum likelihood estimators, maximum likelihood
based estimators based on parametric models (also called G-computation es-
timators), or data adaptive loss-based learning algorithms,

e targeted maximum likelihood (or more general, minimum loss-based) esti-
mators (TMLE) defined in terms of an initial estimator of relevant part of
data generating distribution, loss function for this relevant part, least favor-
able fluctuation submodel through an initial or current estimator that is used
to iteratively update the initial estimator until convergence, and plugging this
updated estimator into the parameter mapping.

We will now briefly discuss these different types of estimators and then highlight
the new contribution of this article to the current literature.

The IPTW estimator relies on an estimator of the intervention mechanism,
the maximum likelihood estimator relies on an estimator of the relevant factor of
the likelihood, while the augmented IPTW estimator and TMLE utilize both es-
timators. The augmented IPTW and the TMLE both solve the efficient influence
curve equation, and are thereby so called double robust, and locally asymptotically
efficient. The TMLE is also a substitution estimator and is therefore guaranteed to
respect the global constraints of the statistical model and target parameter mapping.

IPTW estimation is presented and discussed in detail in (Robins, 1999; Her-
nan et al., 2000). Augmented IPTW is originally developed in Robins and Rotnitzky
(1992). Further development on estimating equation methodology and double ro-
bustness is presented in (Robins et al., 2000; Robins, 2000; Robins and Rotnitzky,
2001) and van der Laan and Robins (2003). For a detailed bibliography on locally
efficient estimating equation methodology we refer to Chap. 1 in van der Laan and
Robins (2003).

For the original paper on TMLE we refer to van der Laan and Rubin (2006).
Subsequent papers on TMLE in observational and experimental studies include Be-
mbom and van der Laan (2007), van der Laan (2008), Rose and van der Laan (2008,
2009, 2011), Moore and van der Laan (2009a,b,c), Bembom et al. (2009),



van der Laan and Gruber: TMLE of Causal Effects of Multiple Time Point Interventions

Polley and van der Laan (2009), Rosenblum et al. (2009), van der Laan and Gru-
ber (2010), Stitelman and van der Laan (2010), Gruber and van der Laan (2010b),
Rosenblum and van der Laan (2010), Wang et al. (2010), and Stitelman and van der
Laan (2011b). For a general comprehensive book on this topic, which includes
most of these applications on TMLE and many more, we refer to van der Laan
and Rose (2011). An original example of a particular type of TMLE (based on a
double robust parametric regression model) for estimation of a causal effect of a
point-treatment intervention was presented in Scharfstein et al. (1999) and we refer
to Rosenblum and van der Laan (2010) for a detailed review of this earlier literature
and its relation to TMLE.

van der Laan (2010) and Stitelman and van der Laan (2011a) (see also
van der Laan and Rose (2011)) present a closed form TMLE, based on the log-
likelihood loss function, for estimation of a causal effect of a multiple time point
intervention on an outcome of interest (including survival outcomes that are sub-
ject to right-censoring) based on general longitudinal data structures. In this article
we integrate some key ideas from the double robust estimating equation method
for longitudinal data proposed in Bang and Robins (2005) into the framework of
targeted minimum loss based estimation. The resulting TMLE enhances the Bang
and Robins (2005) estimator by 1) incorporating data adaptive estimation in place
of parametric models, 2) generalizing it to parameters for which there exists no
mapping of the efficient influence curve into an estimating equation, 3) avoiding
the potential problem of estimating equations having no or multiple solutions, and
4) incorporating robust choices of loss functions and hardest parametric submod-
els so that the resulting TMLE is a robust substitution estimator (e.g., the squared
error loss and linear fluctuation for conditional means is replaced by a robust loss
and logistic fluctuation function). The new TMLE may have advantages relative
to the TMLE based on the log-likelihood loss function as developed in van der
Laan (2010) and Stitelman and van der Laan (2011a), as explained above. We also
generalize this new TMLE to causal parameters defined by projections on working
marginal structural models.

1.3 Organization

This article is organized as follows. In Section 2 we start out with defining the
estimation problem in terms of the longitudinal unit data structure, the statistical
model for the probability distribution of this unit data structure, the G-computation
formula for the distribution of the data under a multiple time point intervention,
and the corresponding target parameter being the intervention specific mean out-
come. Subsequently, we define the target parameter as a function of an iteratively
defined sequence of conditional means of the outcome under the distribution spec-
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ified by the GG-computation formula, one for each intervention node. For the sake
of developing the TMLE based on this representation of the target parameter, we
present a particular orthogonal decomposition of the canonical gradient/efficient in-
fluence curve of the target parameter mapping, where each component corresponds
with a “score” of these conditional means (due to Bang and Robins (2005)). In
Section 3 we present the TMLE of this target parameter in terms of an iteratively
defined sequence of loss functions for the iteratively defined sequence of condi-
tional means, an initial estimator using iterative loss-based learning to estimate each
of the subsequently defined conditional means, an iteratively defined sequence of
least favorable parametric submodels that are used for fluctuating each conditional
mean subsequently, and finally the TMLE algorithm that updates the initial estima-
tor by iteratively minimizing the loss-based empirical risk along the least favorable
parametric submodel through the current estimator. The TMLE solves the efficient
influence curve estimating equation, which provides a basis for establishing the
double robustness of TMLE and statistical inference. In Section 4 we review the
statistical properties of this TMLE and statistical inference. In Section 5 we carry
out a small scale simulation study comparing this TMLE with an IPTW and a para-
metric MLE-based estimator. We conclude with some remarks in Section 6. The
more technical results and generalization are deferred to the Appendix. A formal
presentation of sequential loss-based cross-validation is presented in the Appendix.
In the Appendix we also demonstrate that this new TMLE is compatible with a
probability distribution and is thus a true substitution estimator. The Appendix also
present a generalization of the TMLE for causal parameters defined by working
marginal structural models. The Appendix concludes with R-code implementing
the newly proposed TMLE.

2 Longitudinal data structure, model, target param-
eter, efficient influence curve

We start out with formally defining the estimation problem in terms of data, statisti-
cal model, and target parameter mapping. For the sake of TMLE, we need to decide
on representing ¥ (P) as a U1 (Q(P)) for a mapping ¥, of some relevant part Q(P)
of P, present a loss function for Q(P), and a least favorable fluctuation through Q).
Instead of defining the relevant part of the distribution of O as its relevant factor
Q@ of its density, we define it as an iteratively defined sequence Q® of conditional
means indexed by the intervention a. The latter is a function of the relevant factor
of the likelihood and thus represents a strictly smaller relevant part of P than its
factor: i.e., for each P € M, Q*(P) is a function of Q(P). Finally, we utilize



van der Laan and Gruber: TMLE of Causal Effects of Multiple Time Point Interventions

a representation of the efficient influence curve in terms of scores of these itera-
tively defined conditional means, due to Bang and Robins (2005), fully preparing
us to select the loss function and least favorable fluctuation models that defines the
TMLE.

2.1 The statistical estimation problem in terms of data, model,
and target parameter

We observe n i.i.d. copies of a longitudinal data structure
0 = (L(0), A(D), ..., L(K), A(K),Y = L(K + 1)),

where A(j) denotes a discrete valued intervention node, L(0) baseline covariates,
L(j) is a time-dependent confounder realized after A(j — 1) and before A(j), j =
1,...,K,and Y is a final univariate outcome of interest. There are no restrictions
on the dimension and support of L(j), j =0,..., K.

The probability distribution P, of O can be factorized according to the time-
ordering as

Py(0) = HPO k) | Pa(L HPO k) | Pa(A(k)))
= H Qo,.(x)(0) HQO,A(k)(O)
= (0(0)90(0),

where Pa(L(k)) = (L(k — 1), A(k — 1)) and Pa(A(k)) = (L(k), A(k — 1))
denote the parents of L(k) and A(k) in the time-ordered sequence, respectively.
Recall that L(k) = (L(0),..., L(k)), and A(k) = (A(0),...,A(k)). Note also
that Qo () denotes the true conditional distribution of L(k), given Pa(L(k)), and,
o, A(k) denotes the true conditional distribution of A(k), given Pa(A(k)). We will
also use the notation gg., = H?:o ga(j)- We consider a statistical model M for I
that possibly assumes knowledge on go. If Q is the set of all values for )y and
G the set of possible values of g, then this statistical model can be represented as
M={P=Qg:Q € Q,g € G}. In this statistical model Q puts no restrictions
on the conditional distributions Qo r,x), k = 0,..., K + 1.
Let

K+1

D= 1] @ uwk), (1)
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where Q7 ) (I(k)) = Qru)(l(k) | I(k — 1), A(k — 1) = a(k — 1)). This is the so
called G-computation formula for the post-intervention distribution corresponding
with the intervention that set all intervention nodes A(K) equal to a(K). Let L* =
(L(0), L*(1),...,Y* = L*K + 1)) denote a random variable with probability
distribution P* with final component Y*. Our statistical target parameter is the
mean of Y, U(P) = EpaY?, thus defining ¥ : M — IR. This target parameter
only depends on P through () = Q(P). Therefore, we will also denote the target
parameter mapping with U : Q = {Q(P) : P € M} — R, acknowledging the
abuse of notation.

Consider the nonparametric structural equation model (NPSEM ) defined

b
’ L(k) = fruwy(Pa(L(k)),Urwy), k=0,..., K +1,
and
A(k) = faw)(Pa(A(k)),Uawy) k=0,..., K,
in terms of a set of deterministic functions (frp) : k=0,..., K + 1), (faw : k =
0,...,K), and an exogenous vector of random errors U = (UL(O), o Urs),s

Uiy, -+, Ux K)) (Pearl (1995), Pearl (2000)). This allows one to define the coun-
terfactual L, by deterministically setting all the A(k) equal to a(k) in this system
of structural equations. Here we used the notation L; for the counterfactual, while
above we used the notation L® for the random variable with probability distribu-
tion defined by the G'-computation formula P*. The probability distribution of this
counterfactual L; is called the post-intervention distribution of L. Under the se-
quential randomization assumption stating that A(k) is independent of L;, given
Pa(A(k)), and the positivity assumption, P(A(k) = a(k) | L(k),A(k — 1) =
a(k — 1)) > 0 a.e., the probability distribution of L, is identified and given by
the G-computation formula F§ defined by the true distribution F, of O under this
system. Thus under these causal assumptions L; and L* have the same probability
distribution. In particular, for any underlying distribution defined by the distribu-
tion of the exogenous errors U and the collection of functions (i.e., f7x) and fax)),
we have that £Y; = Ep.Y* = W(P) for the distribution P of O implied by this
underlying distribution. Thus the causal model and causal parameter F'Y; (and its
identifiability) implies a statistical model M defined as the set of possible proba-
bility distributions P of O, and a statistical target parameter ¥ : M — RR. For the
sake of defining the estimation problem of EY7 in this causal model, only the statis-
tical model M and the statistical target parameter are relevant. As a consequence,
the estimation of W(Fy) based on the statistical knowledge P, € M as developed in
this article also applies to estimation of the intervention specific mean EYj; in this
causal model.
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2.2 Representation of target parameter as function of an itera-
tively defined sequence of conditional means

By the iterative conditional expectation rule (tower rule), we can represent F/paY *
as an iterative conditional expectation, first conditioning on E“(K ), then condition-
ing on L¢(K — 1), and so on, until the conditional expectation given L(0), and
finally taking the mean over L(0). Formally, this defines a mapping from () onto
the real line defined as follows:

e Compute Qf = EqaY = E(Y | AK) = a(K), L(K)) by computing the
integral of Y w.r.t. conditional distribution Q§ of Y, given L(K), A(K) =
a(K).

e Given Qf, next compute Qf ) = Egq (K)Q%/, obtained by integrating out
L(K) in Q% w.r.t. the conditional distribution Q (k) of L(K), given L(K —
1),A(K —1)=a(K —1).

e This process is iterated: Given Q‘i(k), compute Q%(k—n = EQaL<k_1>Q%(k)’
starting at £ = K + 2 and moving backwards until the final step,

o QaL(o) =Eq, Q%@) ath = 1.

For notational convenience, here we define QQL( Kt2) = Y. Note that Q%(k) =
Q) (L(k — 1)) is a function of O through L(k — 1), and, in particular, Q7 , is
a constant. We also note that in terms of counterfactuals or the distribution of P¢
we have Qf ) = Eq(Y* | L*(k — 1)). Of course, if this process is applied to the
true distribution (), then we indeed obtain the desired intervention specific mean:
QL) = LoY* = Y(Qo).

Instead of representing our target parameter as a function of ) = (Qy,
Qrk), - - -, Qr)), we will view it as a function of an iteratively defined sequence
of conditional means Q* = (QY, Ty Q%(O)), WhereiQ‘i(k) is viewed as a

parameter (i.e., Eg Q“L(k+1)) of Q“L(k), given the previous Q“L(k+1). We will write

- %(k)
U (Q®) if we want to stress that our target parameter only depends on () through
this iteratively defined )*. Note that indeed (Q“ is a function of ().

2.3 Representation of efficient influence curve of target param-
eter as sum of iteratively defined scores of iteratively defined
conditional means

Given the statistical model M, and target parameter ¥ : M — IR, efficiency theory
teaches us that an estimator ¥ (viewed as mapping from empirical distribution into
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R) is asymptotically efficient at P, among the class of regular estimators of W (F)
if and only if the estimator is asymptotically linear at F, with influence curve equal
to the canonical gradient D*(F,) of the pathwise derivative of ¥ : M — R at P:
ie., U(P,) —U(R) =1/n S D*(Py)(0;) 4+ op(1/4/n). We remind the reader
that a pathwise derivative for a path { P(¢) : ¢} C M through P at ¢ = 0 is defined
by %W(P(e)) ’610. If for all paths through P this derivative can be represented as
PD*(P)S = [ D*(P)(0)S(0)dP(0), where S is the score of the path at ¢ = 0, and
D*(P) is an element of the tangent space at P, then the target parameter mapping
is pathwise differentiable at P and its canonical gradient is D*(P). The canonical
gradient forms a crucial ingredient for the construction of double robust semipara-
metric efficient estimators, and, in particular, for the construction of a TMLE. We
note that, due to the factorization of P = ()¢ and that the target parameter only de-
pends on P through (), the canonical gradient does not depend on the model choice
for g. In particular, the canonical gradient in the model in which g is known equals
the canonical gradient in our model M, which assumes some model G, possibly
a nonparametric model (Bickel et al. (1997)). The following theorem provides the
canonical gradient and presents a particular representation of the canonical gradient
that will be utilized in the definition of our TMLE presented in the next section. The
proof is presented in the appendix. This form of the efficient influence curve was
previously established in Bang and Robins (2005).

Theorem 1 Ler D(Q,g)(0O) = Y%:(ggm — U(Q), where we use the notation
I(B) for the indicator of an event B. This is a gradient of the pathwise derivative
of V in the model in which g is known. For notational convenience, in this theorem
we often use a notation that suppresses the dependence of function-evaluations on
Q, g and O. The efficient influence curve is given by D* = f;%l Dy, where D}, =
II(D | T},) is the projection of D onto the tangent space T), = {h(L(k), Pa(L(k)) :
Eg(h | Pa(L(k))) = 0} of Q) in the Hilbert space L§(P) with inner-product
(hi,ha)p = Phyihs. Recall the definition Q“L(k) = BE(Y® | L%k — 1)), and the
recursive relation Q“L(k) = EQZ(k>QaL(k+1)'

We have
* I(A(K) = a(K -
Dy = (AK) ( ))(Y—QKH)’
go:K
and
x I(A(k?—l) :d(k‘_ 1)) . .
Dk N go:k—1 {QL(k+1) N EQ%,(}@) QL(kJrl)} )
_ I(A(k - ;()).:la(k —-1)) (@ — o} k= Kroros0)

12
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In particular, B B B B
DS = Q%u) - EL(O)Q%(I) = Q%(l) - \I’(Qa)
We note that for each k = K +1,...,0,

D(Q.g) = DZ(Q%U@), Q%(k-&-l)’ go:k—1)

depends on @, g only through QL(k;—H its conditional mean QL(k under Q‘i(k), and
Go:k—1-

The following theorem states the double robustness of the efficient influence
curve as established previously (e.g, van der Laan and Robins (2003)).

Theorem 2 Consider the representation D*(Q%, g, ¥(Q%)) of the efficient influ-
ence curve as provided in Theorem I above. We have for any g for which g(A(K) =
a(K),L(K)) > 0a.e,

PyD*(Q% 9, %(Q5)) = 0if Q* = Qf or g = go.

3 TMLE of intervention specific mean

In this section we develop the TMLE. Firstly, we present an overview of the gen-
eral procedure in terms of initial estimator of the relevant part Q¢, loss function,
least favorable fluctuation model, and the iterative updating algorithm. In subsec-
tion 3.2 we present the practical implementation of the TMLE, while the remaining
subsections present the main ingredients of the TMLE in more detail.

3.1 Overview of TMLE

The first step of the TMLE involves writing our target parameter as ¥ (Q?), as done
above. Secondly, we construct an initial estimator Q¢ of Q¢2, and g,, of go. In addi-
tion, we need to present a loss function LW(Q“) for Q2, possibly indexed by a nui-
sance parameter 7), satisfying Q4 = argmin PL,,(Q%), and a parametric submodel
Qa
{Q%(e, g) ¢} in the parameter space of %, so that the linear span of the loss-based
score L, (Q%(e,g)) at e = 0 includes the efficient influence curve D*(Q, g) of
the target parameter mapping at P = (g. Specifically, for each component Qg L(k)

(k+1)(QL(k ) in-
dexed by “nuisance” parameter Q% L(k+1)? and a corresponding submodel () k) (€,9)
through QL(k) at € = 0 so that 6£QL“€+1)(CQL(,€)(6 g)) at ¢ = 0 equals the k-th

of Q¢ = ( _%(0), .. QL(K+1)) we propose a loss function L, ;e
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component DZ(Q“L(k), Q%(k +1) g) of the efficient influence curve D* as defined in
Theorem 1, k = 0,.. ., I{ + 1. Theﬁsum loss function ZkK:JBl ﬁk’Q%(kJrl)(Q%(k)) is
now a loss functionifor (Q‘z(o), e Q‘z( K +1)) and the corresponding “score” of the
submodel through () defined by all these k-specific submodels spans the complete
efficient influence curve.

Finally, we will present a particular closed form targeted minimum loss-
based estimation algorithm that iteratively minimizes the empirical mean of the loss
function over this parametric submodel through the current estimator of Q¢ (start-
ing with initial estimator), updating one component at a time. This algorithm starts
with updating the initial estimator Q% L(K+1), ,, of Q4 L(K+1) based on the (/K + 1)-th

loss function £K+1(QL K+1)) resulting in update QL(K+1) = QL (K+1)m (€x.ns In)
with €x,, = argmin P,L(Q% T(rc+1) .(€,9,)). It iterates this updating process go-

ing backwards until obtaining the update Q7 , = Qf () (€0, gn) of the initial
estimator Q‘i(o) ,, of Q“L where ¢, = argmm P, ﬁQL(l) (Q“L(O) .. (€,9)) using

the most recent updated estimator Q ", of QO r(1)- This yields the TMLE Q%* of
the vector of conditional means Qg. In partlcular 1ts first component Q%" L) is the

TMLE of \IJ(QO) Qo,L 0)°
By the fact that the MLE of ¢, solves the score equation, it follows that the
TMLE solves P, D;(Qf k)n,QL(kH - 1) foreach k = K +1,...,0. In

particular, this implies that (Q%*, g,,) solves the efficient influence curve equation:
P,D*(Q%*, g, ¥(Q%*)) = 0. Before we proceed with specifying the TMLE in
detail, we first present the summary of the practical implementation of the proposed
TMLE.

In the following, we will assume that Y is bounded (i.e, Py(Y € (a,b)) =
for some a < b < 00), and thereby, without loss of generality, we will assume that
Y € [0,1]. A special case would be that Y is binary valued with values in {0, 1}.

3.2 Summary of practical implementation of TMLE

Let g, be an estimator of gy. Firstly, we carry out a regression of Y onto A(K) =
a(K), L(K). For example, we might fit a multivariate linear logistic regression of
Y; onto a set of main terms that are univariate summary measures Z; extracted from
L;(K) among the observations with A4;(K) = a(K). Alternatively, we use data
adaptive machine learning algorithms to fit this underlying regression.
Subsequently, we fluctuate this initial estimate to better target the fit towards
the parameter of interest by using the initial estimator of Q§., = Eo(Y | A(K) =
a(K), L(K)) as an offset in a univariate logistic regression with clever covariate

14
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I(A(K) = a(K))/go.x.n» and fit the corresponding univariate logistic regression
of Y among the observations with A(K) = a(K ), minimizing the negative log
likelihood loss function. This yields the TMLE Q of the last component QYO of
Qs. _ } _

We now run a logistic regression of QY onto A(K —1) = a(K —1), L(K —
1), among the observations with A;(K — 1) = a(K — 1). This initial estimator of
Q“L( K =B L*(K — 1)) is used as an offset in a univariate logistic regression
of Qy,, with clever covariate I(A(K —1) = a(K —1))/go.rc—1,n- Let Q7 , be the
resulting fit of Qci( K)- This is the TMLE of Q‘i( K),0 (second from last component
of Q9).

This process of subsequent estimation of the next conditional mean, given
the TMLE fit of the previous conditional mean, followed by a targeting flucutation,
is iterated. Thus, for any £k € {K + 1,...,1}, run a logistic regression of the
previous TMLE fit QL (k1) ONLO Ak —1) = a(k — 1),L(k — 1), among the
observations Ak(k 1) = a(k—1), and use this fit as an offset in a univariate logistic
regression of QL (k+1),n, With clever covariate I(A(k—1) =a(k —1))/gok—_1.- Let

‘z(* K)m be the resulting logistic regression fit of Q“L( k- This is the TMLE of Q“L( £),0°
k=K+1,..., L

Consider now the fit Q“L’(*l)m at the £ = 1 step. This is a function of
L(0). We estimate Q% oy With the empirical mean %2%1 Q7 (Li(0)). Let
QY = ( %(*k) k = 0,...,K + 1) be the TMLE of Q4. The last estimate
L Zl L Q .(Li(0)) is the TMLE @*L(O),n = W(Q%*) of our target parameter

L(1),
QL W (E5)-

3.3 Loss function for Q¢

For each £k, Q“L is a function that maps L(k — 1) into (0,1). For each k =

K+1,...,0,we deﬁne the following loss function for Q4 (1 indexed by “nuisance”
parameter Q2 Lokt
kQL(k+1)<QL ) = —I(AU{ — 1) = C_L(k _ 1)) >

{QaL(kH) log QaL(k:) +(1— _%(k+1 ) log(1 QL(k )}

For notational convenience, here we define Q‘z( Kt2) = Y, so that the loss function
for Q¢ is given by

Lx1(Qy) = —I(A(K) = a(K)) {Ylog Q% + (1 - Y)log(1 - Q%) } .
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Indeed, we have that

Eo(Qf (LK), Lk = 1)) | A(k — 1) = a(k — 1), L(k — 1))
= argmin Ep L, QL(k+1)(Qa )

QL(k)
In other words, given any function Q¢ Tk of L(k), L(k — 1), the minimizer of
the expectation of the loss function ﬁkai oy OVET all candidates QCLL(M, is the ac-

tual conditional mean under () L(k) of Q%(k +1) (see e.g., Gruber and van der Laan
(2010a)). In particular, if the “nuisance” parameter Q“L(k +) of this loss function is

correctly specified, then this minimizer equals the desired Qg Lk
An alternative choice of loss function is a (possibly weighted) squared error
loss function:

ﬁk,@g(k+1)(QaL(k)> = ](A(k - 1) = a(k - 1)) (Q%(k—&-l) - QaL(k))Q-

However, this choice combined with linear fluctuation submodels (as in Bang and
Robins (2005)) will yield a non-robust TMLE that does not respect the global con-
straints of the model and target parameter, for the same reason as presented in Gru-
ber and van der Laan (2010a).

These loss functions for Q“ across k can be combined into a single loss

function £,(Q%) = Y11 ! "o L (QF )| indexed by a nuisance param-
”k:Q%(k+1>
etern = (mp : k = 0,...,K + 1). This can be viewed as a sum loss function

indexed by nuisance parameters 7, and, at correctly specified nuisance parame-
ters, it is indeed minimized by (). However, the nuisance parameters are them-
selves minimizers of the risk of these loss functions, so that it is sensible to define
Q¢ as the solution of the iterative minimization of the risks of the loss functions:

Y = QQL(KJr2 fork=K+2,...,1, QOL 1) = argmm EOEQ L(k)<QL k1) ).

L(k: 1)

This is indeed the way we utilize this loss function for Q¢ in both the definition of
the TMLE, as well as in the definition of the initial estimator of ().

3.4 Least favorable parametric submodel

In order to compute a TMLE we wish to determine a submodel {Q“L(k)(ek, g): €}
through QL(k at e, = 0 so that

d
dek kQLkH)(QL (€, 9)) = Dy(Q,9). )

€x=0
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Recall the definition of D} (@), g) in Theorem 1. We can select the following sub-
model

. ~a N 1
logitQ7 1) (9, ) = logitQ7 ) + o k=K+1,...,0,
0:k—1
where we define go.—1 = 1. This submodel does indeed satisfy the generalized
score-condition (2). In particular, the submodel Q%(eo, .., €x11,9) defined by

these k-specific submodels through Q“L(k), k=0,...,K + 1, and the above sum

loss function £g.(Q%) = kK:Jrol Ly, Ga o) (Q“L(k)) satisfies the condition that the

generalized score spans the efficient influence curve:
> : 3)
e=0

Here we used the notation ((ho, ..., hx41)) = {D_, cxhi : ¢} for all linear com-
binations spanned by the components of A.

d

D'(Q.9) €  §iLe(@(e.a)

3.5 Initial estimator

For notational convenience, in the remainder of the paper we will interchangeably
use the notation Q) and Q. Firstly, we fit Q% , based on a loss-based learning
algorithm with loss function L 1(Q%. ), or the squared error loss function. Note
that this loss function is not indexed by an unknown nuisance parameter. For exam-
ple, one could fit Q% 41 by fitting a parametric regression model for this conditional
mean using standard software. However, in general, we recommend the utilization
of machine learning algorithms based on this same loss function. Given an estima-
tor Q% 41, of Q%,1, we can fit Q% based on a loss-based learning algorithm with
loss function £ KQ% (Q%). For example, a fit could be obtained by fitting a linear
or logistic regression model for the conditional mean of Q% +1,n as a linear function
of a set of main terms extracted from L(K — 1). This process can be iterated. So
for k = K + 1tok = 1, we fit Qf with a loss-based learning algorithm based on
loss function Lk’Q(Ierl (Q%), given the previously selected estimator of the nuisance
parameter ¢, in this loss function. Finally, Q“LL(O)’n =1/ny" Q% (Li(0)). In
this manner, we obtain a fit Q% of Q% = (Q“L(O), o ,Q“L(KH)). We can estimate
go with a log-likelihood based learning algorithm, which results in an estimator g,
of go. We refer to the Appendix for a formal presentation of sequential loss-based
cross-validation as an ingredient for sequential loss-based learning.
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3.6 TMLE algorithm

We already obtained an initial estimator Qz,n, k=20,...,K +1and g, Let

Kion =Y.Fork =K +1tok =1, we compute

€rn = argmin P, Ly ge.« n(szn(ek, gn)),
€k ’
and the corresponding update Q7 = Qf , (€x.n, g ). Finally, Q7 , =
1/n Y27 QY (Li(0)). This defines the TMLE Q4" = (Qy .k =0,..., K 4+ 1) of
QS = (Q&L(O)a R QS,L(K—i—l))'
_ Finally, we compute the TMLE of ¢ as the plug-in estimator corresponding
with Q&
Na,* Ak 1 . ~Na,*

V(@Qr") = Qo =~ D QTn(Li(0)).

i=1

We note that this single step recursive TMLE is an analogue to the recursive
algorithm in Bang and Robins (2005) (operating on estimating functions), and the
single step recursive TMLE in van der Laan (2010) and Stitelman and van der Laan
(2011a).

Remark: Iterative TMLE based on common fluctuation parameter. One could
have used a hardest parametric submodel Q%(¢, g) = (Q%(e,g) : k=10,..., K +1)
with a common ¢, = ¢ for all £ = 0,..., K + 1, and use the sum-loss func-
tion L£5.(Q") so that the generalized score £ L5.(Q%(€, g)) at zero fluctuation
equals the efficient influence curve. An iterative TMLE is now defined as fol-
lows: Set j = 0, compute ¢}, = argmin P, Lxa;(Q%7 (€, gn)), compute the update

Q%+l = Q%I (el | g,), and iterate this updating step till convergence (i.e., €/ = 0).
Notice that the common €/, now provides an update of all K +1 components of Q%7,
and that the nuisance parameter in the loss function is also updated at each step.
The final Q%* solves the efficient influence curve equation P,D*(Q%, g,) again.
However, the above TMLE algorithm with the multivariate e-fluctuation parameter
using the backwards (recursive) updating algorithm, converges in one single step
and thus exists in closed form. Therefore, we prefer this single step TMLE (ana-
logue to the expressed preference of the single step (backwards updating) TMLE
above the common-¢ iterative TMLE in van der Laan (2010)).

Remark: TMLE using Inverse probability of treatment weighted loss function.
Alternatively, we can select the submodels

10gitQF (1 (ex) = logitQ] ;) + €1, k= K +1,...,0,
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and, foreach k = K +1,...,0, given Q“L(k +1) and g, the following loss function
for QaL(k):

Ek?©i(kj1)vg( %(k))
I(A(k—D=a(k) | A ~a o A
= —fAk=al) {QaL(k+1) log QF 1) + (1- QaL(k+1)) log{1 — QaL(k)}} .

90:k—1

This choice of loss function and submodel also satisfies the generalized score con-
dition (2). The same single step recursive (backwards) TMLE applies.

4 Statistical properties and inference for
TMLE

The TMLE Q%* solves P, D*(Q%*, g,,, U (Q%*)) = 0, where the efficient influence
curve D*(Q%, g, ¥(Q%)) is presented in Theorem 1. Due to the double robustness
stated in Theorem 2, the estimator W(Q%*) will be consistent for 1) if either Q%*
or g, is consistent. In addition, under regularity conditions, if g, = go, ¥(Q%*)
will also be asymptotically linear with influence curve D*(Q%*, gy, 1), where Q®*
is the possibly misspecified limit of Q%* (e.g., Theorem A5 in Appendix Al8,
van der Laan and Rose (2011)). As shown in van der Laan and Robins (2003)
(Theorem 2.3 section 2.3.7), if g,, is a maximum likelihood based consistent esti-
mator of gy according to a model G with tangent space 7,(F,), then under similar
regularity conditions, the TMLE W¥(Q%*) is asymptotically linear with influence
curve D*(Q**, go, o) — IL(D*(Q™*, g0, %o) | Ty(F)), where II(- | T,(F)) is the
projection operator onto 7,(Fy) C LZ(P) within the Hilbert space L3(F,) with
inner product {hy, ho)p, = Pohihy. Note that if Q¥* = Qg, then the latter influ-
ence curve is the efficient influence curve D*(Q8, go, ¢o), so that, in this case, the
TMLE is asymptotically efficient. Therefore, under the assumption that G contains
the true gy, we can conservatively estimate the asymptotic covariance matrix of

V(W (Qe") — W(QF)) with
Y, = PuD*(Q%", gn, ) DX Q%" gny ) T

If one is only willing to assume that either Q%* or g, is consistent, then the influ-
ence curve is more complex (see Theorem 2.5 in van der Laan and Robins (2003),
and Theorem A5 in Appendix A18 in van der Laan and Rose (2011)), and we rec-
ommend the bootstrap, although one can still use X, as a first approximation, and
confirm findings of interest with the bootstrap.

Formal asymptotic linearity theorems with precise conditions can be estab-
lished by imitating the proof in Zheng and van der Laan (2011) for the natural direct
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effect parameter, and Zheng and van der Laan (2010) and van der Laan and Rose
(2011) for the additive causal effect parameter. In fact, the asymptotic linearity
theorem for the TMLE presented in this article will have very similar structure
and conditions to the asymptotic linearity theorem stated in the above referenced
articles. General templates for establishing asymptotic linearity are provided in
van der Laan and Robins (2003) and van der Laan and Rose (2011) as well.

5 Simulation studies

The TMLE presented in this paper provides a streamlined approach to the anal-
ysis of longitudinal data that reduces bias introduced by informative censoring
and/or time-dependent confounders. Simulation studies presented in this section
illustrate its application in two important areas, the estimation of the effect of
treatment in a randomized controlled trial (RCT) with informative drop-out and
time-dependent treatment modification, and estimation of the effect of treatment
on survival in an observational study setting. TMLE performance is compared
with two IPTW estimators. The first is an unstabilized IPTW estimator defined
as YIF™W = B[I(A;(K) = a(K))/go.x.:Yi). The second IPTW estimator uses
normalized weights, and is defined as Y FTV" = E[I(A;(K) = a(K))m/gox:Yi)s
where m = 1/n)"" | I(A;(K) = a(K))/go.x, is the empirical mean of the un-
stabilized weights, taken over subjects who are uncensored at the final time point.
Estimates are also obtained for the parametric G-formula maximum likelihood es-
timator (MLE,) obtained by plugging untargeted estimates of Q‘i(k) into the G-
computation formula (1). Influence curve (IC) based estimates of the variance of
the TMLE are compared with the empirical variance of the Monte Carlo estimates,
and coverage of the IC-based confidence intervals is reported.

5.1 Simulation 1: Additive effect of treatment in RCT with non-
compliance and informative drop-out

Treatment decisions made over time can make it difficult to assess the effect of a
particular drug regimen on a subsequent outcome. Consider a RCT to assess drug
effectiveness on a continuous-valued outcome. Our target parameter is the mean
outcome under the treatment regime (A(0) = 1, A(1) = 1) minus the mean out-
come under control, (A(0) = 0, A(1) = 0), and no censoring (C'(0) = 0,C(1) =
0): ¥o = Ep{Y (1,0,1,0) — Y(0,0,0,0)}.

The diagram in Figure 1 shows the time ordering of intervention nodes
(A, C') and covariate/event nodes (L, Y) for simulation 1. This time ordering cor-
responds to a study designed to estimate the effect of an asthma medication on
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@@

Figure 1: Simulation 1: Time ordering of intervention and non-intervention nodes, baseline
covariates Ly = (W7, Wa, W3), treatment nodes (Ao, A1), censoring nodes (Cy, C1), time-
dependent covariate L1, outcome Y = L.

airway constriction after one year of adherence to treatment. Suppose that in re-
sponse to results of an intermediate biomarker assay or clinical test (e.g. L; =
forced expiratory volume measured at six months) a subset of subjects in the treat-
ment group discontinue treatment midway through the trial. Thus 4y = 1, 4; =0
for these subjects, who are following neither the treatment protocol of interest, nor
the control protocol. MLE,, can consistently estimate 1), as long as the () factors
of the likelihood (regression models for the conditional expectation of Y given the
parents of Y, at all L and Y nodes), are correctly specified. IPTW also provides
consistent estimates of 1), providing the g factors of the likelihood (conditional dis-
tributions for all intervention nodes, conditional on the past), are correctly specified.
TMLE is consistent when either one of these requirements is met. These estimators
were applied to estimate the additive treatment effect in 500 samples (n; = 100,
ng = 1000), drawn from the following data generating distribution:

Wi,Wa ~ Bernouli(0.5)
Ws ~ N(4,1)
go1(1| Pa(Ag)) = Po(Ap=1]|Lo)=0.5
90,2(0 | Pa(Cy)) Py(Co =01 Ao, Lo)
expit(0.1 4+ 0.5W7 + Wy — 0.1Ws)
3+ Ag—0.5W1 W35 —0.5W3 4 ¢;
Py(A1=1]A40=1,Co =0, L(1))
expit(—1.2 — 0.2Ws + 0.1W3 + 0.4L1)
Po(Cy =0 Ag,Co =0, Ay, L(1))
= expit(2 — 0.06W5 — 0.4L1 — 1.5A;)
Y = expit(3— 0.34p+ 0.1Ws — 0.5L; — 0.5A1 + €2)

Ly
903(1 | Pa(Ay), Ag =1,Cy = 0)

90,4(0 | Pa(Cy),Co = 0)

with €1, €5 ~; ;4 N(0,1). Under this data generating distribution the true value of
the additive treatment effect is ¢y = —0.160, and the semi-parametric efficiency
bound on the variance of the estimator is o = 0.39/n.

Performance is illustrated under correct and misspecified models for the ()
and g factors of the likelihood. The label ‘Q).” denotes a set of logistic regression
models that includes all terms used to generate the data at each covariate and event
node. Using these models to estimate conditional means Q%(k) gives practically
unbiased estimation of 1y. ‘@),  is a set of logistic regression models that includes
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main term baseline covariates only. ‘@), is a set of more severely misspecified
intercept-only logistic regression models for the outcome.

Two approaches were used to estimate go 1, go,2, 90,3, Jo4, 1nitial treatment
assignment probabilities, censoring (loss to follow-up) at baseline, intermediate
switching from treatment to control, and subsequent loss to follow-up before the
outcome is ascertained. The first approach relied on correctly specified logistic re-
gression models to regress Ay on the parents of A;. The second used main terms
logistic regression models that included all baseline covariates. For convenience, in
Table 1 these are referred to as correct and misspecified models for g, respectively.
Estimated values for g,,, were not bounded away from (0, 1). For each estimator,
the additive causal effect estimate was defined as the difference in the estimated
treatment specific means.

Results: Table 1 lists the empirical bias, percent bias relative to the true pa-
rameter value, variance, and mean squared error (MSE) of the Monte Carlo esti-

Table 1: Simulation 1 results, 1y = —0.160.

n = 100 n = 1000
%Rel bias  Bias Var MSE %Rel bias Bias Var MSE

g correctly specified

IPTW,  13.40 —0.021 0.032 0.033 —0.40 0.001 0.0007 0.0007
IPTW,, —13.27 0.021 0.004 0.004 —15.45 0.025 0.0002 0.0008
Q. MLE, 0.01  0.000 0.006 0.006 —0.82  0.001 0.0003 0.0004
TMLE —0.72 0.001 0.006 0.006 —0.60 0.001 0.0003 0.0003
Qm, MLE, 8.93 —0.014 0.008 0.008 6.21 —0.010 0.0004 0.0005
TMLE 6.34 —0.010 0.008 0.008 1.81 —0.003 0.0004 0.0004
Qm, MLE, 11.23 —0.018 0.006 0.006 12.61 —0.020 0.0005 0.0009
TMLE 1.96 —0.003 0.006 0.006 3.13 —0.005 0.0004 0.0005
g misspecified
IPTW,  26.08 —0.042 0.049 0.051 6.73 —0.011 0.0005 0.0006
IPTW,, —8.28 0.013 0.004 0.004 —12.93 0.021 0.0002 0.0007
Q. MLE, 0.01  0.000 0.006 0.006 —0.82  0.001 0.0003 0.0004
TMLE 0.40 —0.001 0.006 0.006 —0.58 0.001 0.0004 0.0004
Qm, MLE, 8.93 —0.014 0.008 0.008 6.21 —0.010 0.0004 0.0005
TMLE 9.51 —0.015 0.008 0.008 6.15 —0.010 0.0004 0.0005
Qm, MLE, 11.23 —0.018 0.006 0.006 12.61 —0.020 0.0005 0.0009
TMLE 5.90 —0.009 0.007 0.007 7.26 —0.012 0.0005 0.0006
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mates. The results confirm that all estimators are unbiased under correct parametric
model specification, although sparsity in the data inflates IPTW variance at the
smaller sample size when unstabilized weights are used (IPTW,). Normalizing the
weights decreases variance significantly, however at the cost of increased bias when
n = 1000. As anticipated, MLE,, estimates are biased under misspecified models
Qm, and Q,,,,. When these misspecified models are targeted by TMLE using the
correctly specified models for g bias is greatly reduced.The large relative bias and
variance of IPTW,, at sample size n = 100 illustrates one problem inherent to lon-
gitudinal studies: sparsity in the data, i.e., a lack of information for learning the
target parameter. This sparsity impairs TMLE performance as well, but to a lesser
degree, since the submodel and quasi-log-likelihood loss function used in the es-
timation procedure respect the bounds on the statistical model M, and thus the
variance does not greatly suffer (Gruber and van der Laan, 2010a).

5.2 Simulation 2: Causal effect of treatment on survival with
right-censoring and time-dependent covariates

Consider an observational study in which we wish to estimate the treatment-specific
survival probability at time t, 109 = P(T; > t;), where treatment is assigned at
baseline, time-dependent covariates and mortality are assessed periodically during
follow-up and at the end of study. During the trial some subjects experience the
event, and others drop out due to reasons related to treatment or covariate infor-
mation, thereby confounding a naive effect estimate. The time-ordering of the in-
tervention nodes (A, C), and time-dependent covariate/event nodes (L, Y) for one
such study design is shown in Figure 2.

Figure 2: Simulation 2: Time ordering of intervention and non-intervention nodes,
baseline covariates (Lo = Wy, Wa, W3, Wy, W5), treatment node (A4p), censoring nodes
(Cop, C1, Cy), time-dependent covariates (L1 2, L 3, La.2, Lo 3), intermediate and final out-
comes (Ll.la L2_1, Y = L3.1).

As a concrete example, consider a study to assess the effect of prostate
surgery on mortality at the end of follow-up, where covariates measured periodi-
cally include PSA level (prostate-specific antigen) and a summary health measure
(Lt2 and L;3). IPTW,, IPTW,,, MLE,, and TMLE were applied to 500 samples
of size n; = 100, ny = 1000, to estimate mean survival under treatment at time
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tr = 3. Data were generated as follows:

Wi ~ N(67,16)
log(W2) ~ N(-1,2)
log(W3) ~ N(-2,1)

9o (1] Pa(Ap)) = Po(Ag =1 Pa(A))

= expit(l — 0.3W7 + 0.1W5 4 0.2W3)

902(1 [ Pa(Co)) = Po(Co =0 | Pa(Co))

= expit(0.1 + 0.2} + 0.02W; + 0.01Ws + 0.440)
L1 = expit(—2.5 + 0.1W7 + 0.1W3 + 0.4A0)
Lios = Wy —WsAg+0.05log(W7) + 0.02WoW3 + €
Lis = 0.02W1Ws + €9
go3 = Po(Cy=0]Pa(Cy))

= expit(—0.6 + 0.3W5 + Ag +0.1L12 4+ 0.5L; 3)
Loy = expit(—1+0.01W; — Ay +0.1L12 — 0.2L4 3)
Loy = 0.01log(W7)+ L12+0.02L1 2013+ €3
Loy = 0.1log(Wi) +0.2Ly 3e4
goa = Po(Co=0]Pa(Cy))

= expit(1.3 —0.44p — 0.2L1 3+ 0.3La o — 0.2L23)

Po(Y =1| Pa(Y)) = expit(—2— Ag—0.1L13+ 0.7Ls5 + 0.8Lo.3)

with €1, €3 ~;;.q. N(0,0.5), €2, €4 ~;;q. N(0,1). The outcome at time ¢, is known
for a subject who is observed to experience the outcome at time t' < t;. This
knowledge is encoded in the dataset by deterministically setting the values of sub-
sequent censoring nodes to 0, and assigning the value 1 to all subsequent event
nodes. When a subject is censored before an event is observed, all subsequent event
nodes are set to 0 and subsequent censoring nodes are set to 1. The true parameter
value is ¥y = 0.348, with an efficiency bound 03 = 1.19/n.

Results were obtained for correct and misspecified regression models for
Qi(k) and go . The conditional means Q“L”(k) were estimated with logistic regres-
sion models including all terms used to generate the actual data (().), including
main term baseline covariates only (Q,,, ), and an intercept-only model ((),,,). The
g factors were estimated by using correctly specified logistic regression models to
regress Ay on the parents of A, and a second time, using main terms logistic re-
gression models that included baseline covariates measured prior to Ay in the time
ordering shown in Figure 2. Again, the censoring and treatment probabilities were
not truncated from below.
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Table 2: Simulation 2 results, )y = 0.348.

n =100 n = 1000
%Rel bias  Bias Var MSE %Rel bias Bias Var MSE
g correctly specified

IPTW,, 3.46  0.012 0.020 0.020 3.61 0.013 0.001 0.001
IPTW,, —85.95 —0.299 0.001 0.090 —84.13 —0.293 0.000 0.086

Q. MLE, 4.35 0.015 0.012 0.013 —1.86 —0.006 0.001 0.001
TMLE 1.72  0.006 0.013 0.013 0.10  0.000 0.001 0.001

Qm, MLE, 5.20 0.018 0.013 0.013 —1.67 —0.006 0.001 0.001
TMLE 3.48 0.012 0.014 0.014 2.21  0.008 0.001 0.001

Qm, MLE, —5.65 —0.020 0.009 0.010 —5.40 —0.019 0.001 0.001
TMLE 2.15 0.007 0.014 0.014 1.80 0.006 0.001 0.001

g misspecified

IPTW, —4.02 —0.014 0.013 0.014 0.78 0.003 0.001 0.001
IPTW,, —-95.89 —0.334 0.001 0.112 —94.33 —0.328 0.001 0.108

Q. MLE, 4.35 0.015 0.012 0.013 —1.86 —0.006 0.001 0.001
TMLE —0.67 —0.002 0.014 0.014 0.35 0.001 0.001 0.001

Qm, MLE, 5.20 0.018 0.013 0.013 —1.67 —0.006 0.001 0.001
TMLE 0.00 0.000 0.016 0.016 0.72 0.002 0.001 0.001

Qm, MLE, —5.65 —0.020 0.009 0.010 —5.40 —0.019 0.001 0.001
TMLE 8.69 0.030 0.022 0.023 0.90 0.003 0.001 0.001

Results: Table 2 lists the empirical bias, percent bias relative to the true param-
eter value, variance, and mean squared error (MSE) of the Monte Carlo estimates.
IPTW,, has larger MSE under correct specification of gy 4(x) than under misspeci-
fication when n = 100 due to sparsity in the data that inflates the variance. Nor-
malizing the weights decreases this variance, but the corresponding increase in bias
overshadows this gain (even at the larger sample size). TMLE remains stable, and
the targeting step reduces the bias observed in the MLE, estimator when Qo r,(x)
is misspecified and go (%) is correctly specified. When sparsity is not an issue
(n = 1000) even the misspecified g contains information that is helpful in reducing
the bias.

5.3 Inference

Table 3 allows us to compare the empirical variance of the Monte Carlo TMLE es-
timates obtained above, with IC-based variance estimates, var(¢,,) = 67, /n, and
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lists coverage of 95% IC-based confidence intervals. As an estimate of the influence
curve we use the estimated efficient influence curve, which is known to be asymp-
totically correct if both () and g are consistently estimated, and provides asymp-
totically conservative variance estimates if g is consistently estimated. When gy is
correctly specified sparsity in the data leads to anti-conservative confidence inter-
vals. However when sample size is increased to 1000, observed coverage is close
to the nominal rate. As predicted by theory, when both () and gy are misspecified,
(efficient-)influence curve-based inference is not reliable. However, at the larger
sample size coverage is close to the nominal rate, and the analytical variance esti-
mate closely approximates the empirical variance. The somewhat counter-intuitive
failure to achieve the desired coverage in simulation 2 with n = 100 and g mis-
specified, given that the mean estimated variance is enormous, is due to the fact
that sparsity caused a single outlying estimates of the variance to blow up, while
all others were better behaved. When this outlier is removed from the calculation,
the mean estimated variances are 0.0092 (Q).), 0.0087 (Q,,,), and 0.011 (@,,,)-
Failure to attain the nominal coverage rate now makes sense, since these estimated
variances are smaller under sparsity than the corresponding empirical variances.

6 Concluding remarks

TMLE is a general template for construction of semiparametric efficient substitu-
tion estimators that requires writing the target parameter as a function of an infi-
nite dimensional parameter (e.g., ¥(Q%)), a loss function for this parameter possi-
bly indexed by a nuisance parameter (e.g., £,(Q%)), a parametric submodel with
loss function-specific score spanning the efficient influence curve (and/or any other
desired estimating function), and a specification of a resulting iterative targeted
minimum loss-based estimation algorithm that minimizes the loss function-specific
empirical risk along the parametric submodel until no further update improves the
empirical risk. Since the nuisance parameters in the loss function are a function
of Q% itself. the estimator of the nuisance parameters in the loss function are also
updated at each step to reflect their last fitted value. The TMLE is a two-stage pro-
cedure, where the first stage involves loss-based learning of the infinite dimensional
parameter, and the subsequent stage is a targeted iterative update of this initial esti-
mator that is only concerned with fitting the target parameter, and which guarantees
that the TMLE of the infinite dimensional parameter solves the efficient influence
curve equation. The influence curve of the TMLE is defined by the fact that it solves
this estimating equation.

As apparent from a formal analysis of the TMLE, whether the conditions
for asymptotic linearity are met depends on how well (e.g., at what rate) the TMLE
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Table 3: Empirical variance of Monte Carlo estimates, mean IC-based variance
estimates, and coverage of nominal 95% confidence intervals.

n =100 n = 1000
Empvar 6%,/n Coverage ~ Empvar 67./n Coverage
g correctly specified

Simulation 1

Q. 0.0058  0.0030 0.82 0.0004 0.0004 0.96

Qm, 0.0078  0.0028 0.73 0.0004 0.0004 0.96

Qm, 0.0059  0.0051 0.88 0.0004 0.0006 0.98
Simulation 2

Q. 0.0130  0.0099 0.89 0.0011 0.0013 0.97

Qm, 0.0137 0.0100 0.87 0.0011 0.0014 0.97

Qm, 0.0143  0.0132 0.91 0.0011 0.0014 0.96

g misspecified
Simulation 1

Q. 0.0060  0.0031 0.81 0.0004 0.0004 0.96

®@m, 0.0081  0.0027 0.73 0.0004 0.0004 0.94

Qm, 0.0065  0.0048 0.88 0.0005 0.0006 0.95
Simulation 2

Q. 0.0138 4.2¢+5 0.87 0.0011 0.0012 0.95

Qm, 0.0164 4.2e+5 0.84 0.0011 0.0012 0.95

Qm, 0.0219 4.2e+5 0.80 0.0011 0.0012 0.95

estimates these nuisance parameters of the efficient influence curve. The latter also
affects the finite sample performance of the TMLE. Therefore, if the initial estima-
tor of the infinite dimensional parameter in the TMLE involves trading-off bias and
variance w.r.t. an infinite dimensional parameter that is much richer than needed
for evaluation of the target parameter, then finite sample performance is degraded
relative to a TMLE that uses an initial estimator that involves trading-off bias and
variance for a smaller infinite dimensional parameter that is more relevant for the
target parameter. From this perspective, the TMLE proposed in this article, inspired
by the double robust estimator of Bang and Robins (2005), appears to be based on
an excellent choice of loss function and parametric submodel.

By the same token, a substitution estimator obtained by plugging in a log-
likelihood based super learner will be less targeted than a substitution estimator
obtained by plugging in a loss-based super learner based on a more targeted loss
function. Therefore, loss-based learning provides fundamental improvements on
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log-likelihood based learning by allowing the selection of a targeted loss function,
and TMLE provides the additional bias reduction so that the resulting estimators
allow for statistical inference in terms of a central limit theorem, under appropriate
regularity conditions.

The TMLE we presented in this article can be generalized to any pathwise
differentiable parameter of the distribution of Y, possibly conditional on L(0) or
L*(k) at a particular % (as in history adjusted marginal structural models), by ap-
plying the conditional iterative expectation rule to (P(Y* = y) : a,y) as in this
article for £'Y“, and applying the above TMLE framework with the decomposition
of the efficient influence curve, the loss functions and submodels. Precise demon-
strations for causal parameter defined by marginal structural models are presented
in the Appendices below.

For future research it will also be of interest to develop a collaborative
TMLE based on the TMLE presented here, thereby also allowing the targeted esti-
mation of the intervention mechanism based on the collaborative double robustness
of the efficient influence curve as presented in van der Laan and Gruber (2010) and
van der Laan and Rose (2011).

Appendix

Introduction to Appendix

This appendix begins by presenting the proof of the representation of the efficient
influence curve of Theorem 1 in Appendix A. In Appendix B we make some general
remarks about sequential loss-based (machine) learning, which allows the incorpo-
ration of data adaptive estimators to obtain the initial estimator of the sequence of
iteratively defined conditional means. In Appendix C we show that the TMLE of the
sequence of iteratively defined conditional means is compatible with a probability
distribution in the statistical model, showing that the proposed TMLE fully respects
the global constraints of the statistical model. In Appendix D we provide the actual
R code that was used to implement this TMLE in the presented simulations.
Additional appendices are available in a longer technical report version of
this paper (van der Laan and Gruber, 2011). Appendix E of that paper demonstrates
how the TMLE is quickly generalized for target parameters defined as a multivari-
ate real valued function of a collection of intervention specific means £Y “ indexed
by interventions a € A. In particular, this demonstrates the TMLE of the unknown
coefficients of a working marginal structural model. In Appendix F of the tech-
nical report we further generalize this TMLE to also apply to working marginal
structural models for the causal curve E(Y® | V) in a, conditional on some user

28



van der Laan and Gruber: TMLE of Causal Effects of Multiple Time Point Interventions

supplied baseline covariate V. The general roadmap of TMLE is apparent from
these applications, which also demonstrates how this TMLE can be developed for
all other causal parameters of interest, such as history adjusted marginal structural
working models, dynamic treatments, and so on.

A Proof of Theorem 1

The formula for D7, is obvious. Note,

Dj = E(D | L(K),A(K — 1), L(K — 1)) — E(D | A(K — 1), L(K — 1))
_ I(A(K=1)=a(K-1) {E<YI(A(K) =a(K)) |L(K _

90:K—1 9K

),
- (VA=) | A(K 1) = a(K ~ 1), L(K ~ 1)) }

9K

Note also that

BVI(A(K) = a(K))/ax | LK), AGK 1) = alK = 1) L(K - 1)
| LK), A(K), A(K — 1) MA0=000 | 1) A(K —1) = a(K 1)

= B(B(Y = a
E(QY (LK) I(A(K) = a(K))/gx | L(K), A(K — 1) = a(K—1), L(K-1))
E(Qy(L(K)) | L(K), A(K — 1) = a(K — 1), L(K — 1))
= QY(L(K))
Thus,
E(YI(A(K) = a(K))/gi | ACK —1) = a(K — 1), L(K — 1)) = Eqy , Q%
Thus, we found the following representation of D:
Dy - A== B =D g by, 3}
Consider now
Dg = E(D | L(K ,fl( ) L(K-2)) — E(D | A(K-2),L(K-2))
= JAG)—a(k2) {E (v HAE=e () ARD=al k) | ()¢ 1), A(K ~2), L(K ~2))
~E(YI(A(K) = a(K), A(K 1) = a(K ~1))/gx1.x | A(K ~2), L(K ~2))}.
Note that
E(YI(A(K)Z“(K)’A(K’l):“(K’l)) L(K —1),A(K —2) =a(K —2), L(K — 2))

IJK—1:K _ | )’ B -
=E(Y*|L(K -1),A(K —1) = a(K - 1), L(K - 2))
=E(Y*| LYK - 1))

= QaL(K)
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This shows

I(A(K —2) = a(K — 2))

Dy 1= o {QL(K) - EQ‘QK,DQL(K)} :

In general, for k =1,..., K + 1, we have

Dy, = E(D | L(k), A(k — 1), L(k — 1)) — E(D | A(k — 1), L(k — 1))
= [Ak-V=a®-D) fpye | L(k), A(k — 1), L(k — 1))
)

90:k—1

I(A(k—1)=a(k—1))
90:k—1

_ I(A(k—D=a(k—1)) | Aa Na
o 9o:k—1 EQL(’C+1) o EQ(Z/(IC)QL(IC+]‘)}
)

Finally,

Dy = E(D | L(0)) = E(Y* | L(0)) = ¥(Q") = Q% 1) — Fau @iy
= QaLu) - Q%(O)'

X

B Sequential Super Learning

For each of these sequential regressions we could employ a super learning algo-
rithm (van der Laan et al. (2007) and Chapter 3 in van der Laan and Rose (2011)
based on Polley and van der Laan (2010)), which is defined in terms of a library
of candidate estimators and it uses cross-validation to select among these candidate
estimators. For that purpose it is appropriate to review the cross-validation selector
among candidate estimators based on a loss function with a nuisance parameter, as
originally presented and studied in van der Laan and Dudoit (2003). Consider the
loss function EQ%+1(Q%) for Q%O with nuisance parameter Q7. Given an esti-

mator Q¢ of the nuisance parameter, given a candidate estimator Q¢ of Qg,o (or,
more precisely, Eq, ., ,Qf1,,), the cross-validated risk of this candidate estimator
is evaluated as
1
EBnPTL,Bn'Ck éa

, k+1( )(QZ(PS,BTL))'

Here B,, € {0,1}" is a cross-validation scheme splitting the sample of n observa-
tions in a training sample {7 : B, (i) = 0} and validation sample {i : B, (i) = 1},
and P,i B, PS, B, are the corresponding empirical distributions. Typically, we select
B,, to correspond with V'-fold cross-validation by giving it a uniform distribution

PO

n,Bpn,
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on V vectors with np 1’s and n(1 — p) 0’s. Thus, in this cross-validated risk the
nuisance parameter is estimated with the previously selected estimator, but applied
to the training sample within each sample split. In particular, given a set of candi-

date estimators Q% ;of ng indexed by j = 1, ..., J, the cross-validation selector
is given by

J, = argjr'nin EBnPé’BnEk@ZH(Pg’Bn)(Qz,j(P,g,Bn)).

Given the cross-validation selector .J,,, one would estimate Qz?o with Qz’ 7. (Pn).

(Note that the latter represents now an estimator Q¢ of the nuisance parameter (¢
in the loss function of the next parameter Q¢_,, and the same cross-validation selec-
tor can now be employed.) The oracle inequality for the cross-validation selector in
van der Laan and Dudoit (2003) applies to this cross-validation selector .J,,. How-
ever, specific theoretical study of the resulting estimator of (e.g.) Q“L(O) based on
the sequential cross-validation procedure (given collections of candidate estimators
_,aw.,j =1,...,Jy, k=K +1,...,1)described above is warranted and is an area
for future research.

To save computer time, one could decide to estimate the nuisance parame-
ters in these loss functions with the selected estimator based on the whole sample.
We suggest that this may not harm the practical performance of the cross-validation
selector, but this remains to be investigated.

C The TMLE is a substitution estimator

In this section we demonstrate that the TMLE (@} : k = 0,..., K + 1) is com-
patible with a probability distribution P,, € M of F,, which then shows that the
TMLE presented in this article is indeed a substitution estimator, and thereby re-
spects all global constraints of the statistical model M. This is shown under a
“range” condition specified below.

Specifically, we will show that there exists a sequence (@, : k =0,..., K+
1), where Qf , is a conditional distribution of L(k), given L(k — 1), A(k — 1) =
a(k—1), so that the corresponding iteratively defined sequence of conditional means
equals ( _Z; :k=0,..., K+ 1). This then shows that all sequential regressions
are compatible with any probability distribution whose conditional distributions
of L(k), given A(k — 1) = a(k — 1), L(k — 1) coincide with these conditional
distributions (Qf, : k). A condition is that, for each k, given L(k — 1), (the
next regression) Q" (L(k — 1)) is in the range of (previous regression) L(k) —
Jii1n(L(K), L(k — 1)) over a support of L(k).
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Our fit Q(;(:—ln of the conditional mean of Y, given A(K) = a(K), L(K), is
obviously compatible with a conditional distribution Q% , ,, of Y, given AK) =
a(K), L(K), where we use that our TMLE fit of the conditional mean is a bounded
function with valuesin (0, 1). Let h(L4(K) | L4(K—-1)) = E(Y* | L%(K), L*(K —
1)) be this first conditional regression function, where the expectation is under
Q%410 Let p(L*(K — 1)) = QF,, be the next regression of our TMLE.

Given L?(K —1), the function h of L%(K) maps into (0, 1), and j is a scalar
in (0, 1). Suppose that we have shown that for any given function h of L*(K') map-
ping into (0, 1), and any scalar ;1 € (0, 1), there exists a distribution of L*(K) so
that the expectation of h(L*(K)) equals p: this result can then be applied, condi-
tional on each value L*(K — 1). Here it will be assumed that ; is in the range of
h.

We have then shown that, given the previous regression h(L(K) | L4(K —
1)) and the current regression (LK — 1)), there exists a conditional distribution
Q% of L*(K), given L*(K — 1) (i.e., a conditional distribution of L(K), given
L(K — 1), A(K — 1) = a(K — 1)) for which the mean of h(L%(K) | L*(K — 1))
w.r.t. this Qf , equals p(L*(K — 1)). This now proves that the first two conditional
means Q‘}{;M and Q‘}(*n are compatible with two conditional distributions Q% ; ,,
and Q% ,, of L*(K + 1), given L*(K), and L*(K), given L*(K — 1), respectively.
By induction (i.e, we apply this same proof to the next pair of conditional means,
and so forth), we have now shown the desired result that there exists conditional
distributions (@7, , : k) compatible with ( 722 : k), which completes the proof.

It remains to show the desired result. We show the result for the case that
all random variables are discrete. That is, we need to show that for a h(x) mapping
in (0,1) and o € (0,1), we can define a distribution of X such that the mean of
h(X) equals p. First define a distribution of Z = h(X) that has mean p. Now,
we note that P(Z = z) = P(X € h™!(z)). Thus this specified probability mass
on Z = z implies that X puts the same probability mass on the set h~1(2), across
2 (note all the sets h~!(z) across z are disjoint). This defines a non-empty set of
possible distributions of X that are compatible with this distribution of Z.

As is apparent from this proof, there are in fact plenty of conditional distri-
butions compatible with our sequential regressions, which fits our intuition since a
mean is far from sufficient for identifying a whole distribution. The only condition
in this proof was that the next regression fit of the previous conditional regres-
sion has to be in the range of the previous conditional regression, which would be
achieved by any reasonable estimation procedure: i.e., one likes the estimate of
the mean of a random variable to be in the set of possible values of that random
variable. This condition is obviously satisfied by estimating the conditional mean
under L(k), given L(k—1), A(k—1) = a(k—1), by plugging in an estimator of the
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conditional density. In Gruber and van der Laan (2010a) it is shown how one can
construct a regression that is fully respecting the range of the outcome, by using the
logistic link function. In particular, this method can be used to enforce conditional
bounds on the outcome, given the conditioning variables. In this manner, we can
enforce each of the sequential regressions to satisfy any known bounds on the rel-
evant outcome as implied by the statistical model for the conditional distributions
that make up the likelihood. We plan to present these methods in more detail in a
future article.

D R code

The functions below implement TMLE, IPTW, and MLE,, estimators of the treatment-
specific mean outcome for the R statistical programming environment (R Develop-
ment Core Team, 2010). Modifications to the functions estg and estQ would allow
for pooling data across time points to estimate conditional means, data adaptive
estimation, and other customizations.

# function: getEstimates

# IPTW, MLE, TMLE for intervention-specific mean outcome

# arguments:

# d: dataset, wide format, using time-ordering of the nodes

# Inodes: treatment and censoring node columns in d

# Lnodes: time-dependent covariate and outcome columns in d

# Ynodes: intermediate and final event node columns

# (a subset of Lnodes)

# Qform: regression formulas for Q_1 through Q_K+1

# gform: regression formulas for each tmt and censoring event
# gbd: lower bound on estimated probabilities for g-factors
# family: regression family for initial estimates of Q nodes
# encoding binary intervention nodes:

#
#

treatment: A(t) = 1, subject following tmt regime at time t
censoring: A.C(t) = 1, subject observed at time t
# _________________________________________________________________
getEstimates <- function(d, Inodes, Lnodes, Ynodes, Qform,

gform, gbd = 0, family = "quasibinomial")

n <- nrow(d)

n.Q <- length(Lnodes)

n.g <— length(Inodes)

glWw <- estg(d, gform, Inodes, Ynodes)

cum.glW <- bound(t (apply(glW, 1, cumprod)), c(gbd,1))
empirical.meanwt <- mean(l/cum.glW[,n.g], na.rm=TRUE)
cum.glW[is.na(cum.glW)] <- Inf
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iptw <- mean(d[,Lnodes[n.Q]] * d[,Inodes[n.g]]/cum.glW[,n.gl)

wt.n <- 1 / cum.glW[,n.g] / empirical.meanwt

iptw.wt.n <- mean(d[,Lnodes[n.Q]] * d[,Inodes[n.g]] * wt.n)

# Gcomp and TMLE

Ostar <- Qinit <- d[, Lnodes[n.Q]]

IC <- rep(0, n)

for (i in n.Q:1){
Inode.cur <- which.max (Inodes[Inodes < Lnodes[i]])
uncensored <- d[,Inodes[Inode.cur]] == 1

if (any (Ynodes < Lnodes[i])) {
Ynode.prev <- max(Ynodes[Ynodes < Lnodes[i]])
deterministic <- d[,Ynode.prev]==1
} else {
deterministic <- rep (FALSE, n)
}
Qinit <- estQ(Qinit, d, Qform[i], uncensored,
deterministic, family = family)
Qstar.kplusl <- Qstar
Qstar <- estQ(Qstar.kplusl, d, Qform[i], uncensored,
deterministic, h = 1/cum.glW[, Inode.cur],
family = family)
IC[uncensored] <- (IC + (Qstar.kplusl - Qstar)/
cum.glW[, Inode.cur]) [uncensored]
}
IC <— IC + Qstar — mean(Qstar)
return (c (iptw = iptw, iptw.wt.n=iptw.wt.n, Gcomp=mean (Qinit),
tmle = mean (Qstar), var.tmle = var (IC)/n))

# Utility functions

# function: estQ
# purpose: parametric estimation of Q_k, targeted if h is supplied

estQ <- function(Q.kplusl, d, Qform, uncensored, deterministic,
h=NULL, family) {
Qform <- update.formula(Q.kplusl = .)
m <- glm(as.formula (Qform),
data=data.frame (Q.kplusl,d) [uncensored & !deterministic,],
family = family)
Q1w <- predict (m, newdata = d, type = "response")
if(!'is.null (h)) {
off <- glogis(bound(QlW, c(.0001, .9999)))

m <- glm(Q.kplusl = -1 + h + offset (off),
data = data.frame(Q.kplusl, h, off),
subset = uncensoredé&!deterministic,

family ="quasibinomial™")
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}

QlW <- plogis(off + coef (m) xh)

QlW[deterministic] <- 1
return (Q1wW)

# function: estg
# purpose: parametric estimation of each g-factor

estg <- function(d, form, Inodes, Ynodes) {
n <- nrow(d)
n.g <- length (form)
gmat <- matrix(NA, nrow = n, ncol = n.qg)
uncensored <- rep(TRUE, n)
deterministic <- rep (FALSE, n)

for

}

(1 in 1:n.9) {
if (any (Ynodes < Inodes[i])) {

Ynode.prev <- max(Ynodes[Ynodes < Inodes([i]])

deterministic <- d[,Ynode.prev] ==

}

m <- glm(as.formula(form[i]), data = d,

subset = uncensored & !deterministic,
family = "binomial")
gmat [uncensored, 1] <- predict (m, newdata=d[uncensored, ],
type = "response")
gmat [deterministic,i] <- 1
uncensored <- d[,Inodes[i]] == 1

return (gmat)

# function: bound
# purpose: truncate values within supplied bounds

# _________________________________________________________________
bound <- function (x, bounds) {
X [x < min (bounds)] <- min (bounds)
x[xXx > max (bounds)] <- max (bounds)
return (x)
}
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