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Abstract
A semi-parametric spatial model for spatial dependence is proposed in Poisson regressions to

study the effects of risk factors on incidence outcomes. The spatial model is constructed through
an application of reproducing kernels. A Bayesian framework is proposed to infer the unknown
parameters. Simulations are performed to compare the reproducing kernel-based method with
several commonly used approaches in spatial modeling, including independent Gaussian and CAR
models. Compared with these models, the reproducing kernel-based method is easy to implement
and more flexible in terms of the ability to model various spatial dependence patterns. To further
demonstrate the proposed method, two real data applications are discussed: Scottish lip cancer data
and Florida smoke-related cancer data.
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1 Introduction

The work presented in this article was motivated by a study evaluating the effects

of risk factors on incidence outcomes through a Poisson regression model, in which

spatial dependence needs to be explained. In spatial data analysis, non-specific

random spatial effects are usually modeled parametrically (Lawson, 2001, Yan and

Clayton, 2006). For this purpose, some studies consider identical and indepen-

dent Gaussian distributions (Lawson, 2001, 2008). This assumption is acceptable

if the spatial effect is unstructured and may be approximated by independent ran-

dom effects. However, in many situations, this assumption does not hold and spa-

tial dependence needs to be appropriately addressed. Conditional autoregressive

(CAR) models are a popular choice to characterize spatial dependence. CAR mod-

els are usually constructed in the Gaussian framework (Cressie and Chan, 1989,

Besag, Mollie, York, and Mollié, 1991), although double exponential (Laplace) dis-

tributions are utilized as well (Best, Arnold, Thomas, Waller, and Conlon, 1999).

Despite the popularity of CAR models, they have some critical limitations. First,

constructing a positive definite covariance matrix in a joint distribution of random

spatial effects is not a trivial task. This limits the flexibility of CAR models in

describing various patterns of spatial effects (Cressie and Chan, 1989, Stern and

Cressie, 1999, Banerjee, Carlin, and Gelfand, 2004). Second, the spatial structure

indicated by a CAR model may not fit well for geographical entities of different

sizes and arranged in an irregular pattern (Richardson, 1992, Kelsall and Eld, 2002).

Third, in the autoregressive process of fitting a CAR model of order one, informa-

tion from non-neighboring regions may not be fully incorporated. This is similar to

the phenomenon in a first order autoregressive process.

Inspired by these limitations, in this article, we present an alternative method

to model spatial dependence and incorporate the method into the Poisson regression

model. It is a Bayesian semi-parametric method built on reproducing kernels. This

method utilizes information from all event locations when evaluating conditional

spatial effects of each specific region. Due to the implementation of a reproduc-

ing kernel, the method is able to describe various forms of spatial dependence and

to provide informative evaluation on the strength of spatial effects (Liu, Lin, and

Ghosh, 2007, Liu, Ghosh, and Lin, 2008). To our knowledge, reproducing kernels

have not been considered in the area of spatial modeling.

Assuming the data are continuous, reproducing kernels are related to vari-

ogram models in geostatistics in that both methods involve an evaluation of distance-

based correlations between different regions (Cressie, 1985, Ecker and Gelfand,

1997, Gorsich and Genton, 2000). However, these two methods have fundamental

differences. Reproducing kernels evaluate spatial random effects of a specific re-

gion using a weighted average over all regions’ contributions; correlations between
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regions only partially control the region’s spatial effects. In contrast, a variogram

model focuses on the evaluation of distance-based correlations between regions and

utilizes correlations to assess the contribution of a region.

The remainder of the article is organized into four sections. In Section 2,

we introduce the reproducing kernel-based (RKB) method for spatial dependence

modeling. In this section, a fully Bayesian approach is presented for data analysis.

Markov Chain Monte Carlo (MCMC) related computing issues are also discussed.

Simulation studies based on various criteria are included in Section 3 to examine

the performance of the method. A comparison between different methods is also

discussed in this section. In Section 4, we apply the RKB method to two data

sets, the classical Scottish lip cancer data (Clayton and Kaldor, 1987, Breslow and

Clayton, 1993) and the Florida smoke-related cancer incidence data. We summarize

our findings and propose possible future work in Section 5.

2 The spatial model in Poisson regressions

In epidemiological studies, to examine risk factor effects on rare incidence

rates, Poisson regression models are usually chosen (Frome and Checkoway, 1985,

Zou, 2004, Feldens, Kramer, Ferreira, Spiguel, and Marquezan, 2010). In the fol-

lowing, we propose a spatial semi-parametric Poisson regression model taking ran-

dom spatial effects into account.

2.1 The Poisson regression model

Let Yi, i = 1, · · · ,N, be the event (incidence) counts in region Ri and Xi be a vector

of risk factors. We assume that:

P(Yi = yi|λi) =
exp(−λi)λi

yi

yi!

log(λi|α,βββ ,δi) = log(ni)+α +βββ ′
Xi +δi, (1)

where P(·) denotes the probability mass function of a discrete random variable and

βββ is a vector of parameters evaluating the effects of risk factors. The parameter

ni is an offset to adjust for background effect. The inclusion of offset enables us

to model rates of events. In our real data applications, ni is the population size in

region Ri. The term δi reflects the spatial effect of region i on the average number of

incidences in Ri. Under δi and parameters α and βββ , the counts Yi’s are independent.

2
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2.2 The reproducing kernel-based method for spatial effects

With all surrounding regions considered, implicitly the random spatial effect δi is

a function of region locations. We assume that this function lies in a space of

functions generated by a positive definite reproducing kernel, which is, under some

regularity conditions, equivalent to a space of function defined by a particular set of

orthogonal basis functions (Cristianini and Shawe-Taylor, 2000). The reproducing

kernel-based (RKB) method has been popularized in the area of machine learning

(Vapnik, 1998, Scholkopf and Smola, 2002); the support vector machine is one

common example. In our application, the RKB method is used to describe distance-

based random spatial effects of any form. Kindermann and Snell (1980) and Cressie

and Chan (1989) also used the RKB method to evaluate non-distance based spatial

effects.

To define the random spatial effect δi using reproducing kernels, we apply

the representer theorem (Kimeldorf and Wahba, 1970, O’Sullivan, Yandell, and

Raynor, 1986). Based on this theorem, δi can be defined as a linear combination of

kernels,

δi = k′
iηηη =

N

∑
j=1

η jk(si,s j), (2)

where ηηη = (η1, · · · ,ηN)
′ is a vector of unknown parameters, (si,s j) 7→ k(si,s j) is

a kernel, and ki = (k(si,s1), · · · ,k(si,sN))
′. The kernel is a function of region loca-

tions, and si = (xi,yi) denotes the location of region Ri defined by the (x,y) coor-

dinates (latitude, longitude) of Ri’s centroid. Using centroids to represent regions

may cause information loss, but usually they are good representations of region

locations especially when the regions are relatively small and homogeneous. Intu-

itively, the parameter vector ηηη can be regarded as a vector of importance indices of

surrounding regions of Ri. As a consequence, the spatial effect δi is a combination

of the effect of Ri and the effects of R j’s ( j 6= i).

Kernel (si,s j) 7→ k(si,s j) determines the space of functions used to ap-

proximate a function of interest. For instance, (si,s j) 7→ k(si,s j) = (sis j + h)q =
(xix j + yiy j +h)q generates a space of functions spanned by all possible q-th order

monomials of region locations with h being a smoothing parameter. In our appli-

cation, a Gaussian radial basis function kernel will be applied. As discussed in Liu

et al. (2007), where reproducing kernels are utilized to estimate gene-gene interac-

tions, a Gaussian kernel is preferred compared to first and second order polynomial

kernels if the underlying function is complex. Since our study is in a different

framework compared to Liu et al. (2007), simulations are performed to assist the

choice of a Gaussian kernel, where we also consider other radial basis function

kernels besides the first and second order polynomial kernels.
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A Gaussian kernel for regions Ri and R j is defined as

(si,s j) 7→ k(si,s j) = exp

{

−[(xi − x j)
2 +(yi − y j)

2]

h

}

, (3)

where (si,s j) 7→ k(si,s j) = 1 if i = j and (si,s j) 7→ k(si,s j) approaches zero if two

regions are far apart. In the Gaussian kernel, equal weights are given to the latitude

and longitude as done in other types of spatial modeling such as in the CAR models

and the powered exponential family models (Cressie and Chan, 1989, Richardson,

1992). Clearly k(·, ·) takes its values in [0,1]. Applying the kernel to all regions, a

kernel matrix K is then defined with row vectors of k′
i. Built on Euclidean distances

between every two locations, the kernel matrix K is positive definite and essen-

tially measures the correlations among different locations. The parameter h in the

Gaussian kernel is an unknown smoothing parameter critical in function approxi-

mations. It controls the rate of decay of correlations. Given the locations of regions,

the smaller the value of h, the faster the correlations between regions decrease. In

the area of machine learning, the parameter h is usually pre-specified based on some

ad-hoc methods. Brewer (2000) discusses the estimation of h through frequentist

approaches. In this article, a Bayesian method will be used to infer h. Combining

(2) and (3), the spatial effect of region Ri on the outcome is a weighted sum of

correlations between region Ri and R j.

In addition to the RKB method, other approaches are also available to ap-

proximate unknown functions, for instance, the spline-based methods. The geoad-

ditive models proposed by Kammann and Wand (2003) was built upon P-splines

containing a certain number of knots that need to be pre-specified (Eilers and Marx,

1996). P-splines were also implemented in the additive regression model proposed

by Fahrmeir, Kneib, and Lang (2004). Ruppert, Wang, and Carroll (2003) has an in

depth discussion on splines. In terms of function approximation, the RKB method

and spline-based methods have a similar theoretical foundation, but the logic of

their model-fitting is different. Spline-based methods start with the smoothness

conditions of an unknown function in order to achieve quick convergence (Wahba,

1985), and a corresponding kernel function can usually be derived from these con-

ditions. Instead, the RKB method starts from a kernel function that potentially de-

termines the smoothness property of the unknown function. When comparing these

two approaches, the RKB method gives a direct start of function approximation and

substantially simplify the approximation process (Liu et al., 2007).
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2.3 Bayesian inferences

Following the probability mass function (1), under θθθ = {α,βββ ,ηηη ,h}, the joint den-

sity of Y satisfies,

P(Y = y|θθθ ) = ∏
i

P(Yi = yi|θθθ)

= ∏
i

exp{−ni exp(α +βββ ′
Xi +δi)}(ni exp(α +βββ ′

Xi +δi))
yi

yi!
,(4)

with δi defined in (2). We apply a fully Bayesian approach to infer the parameters.

2.3.1 Prior and hyper-prior distributions

To be fully Bayesian, we start from specifying the prior distributions of the param-

eters θθθ = (α,βββ ,ηηη ,h). Independence among these parameters is assumed.

Prior distributions of α and βββ : Vague prior distributions are assigned to these

coefficient parameters. Specifically we choose normal distributions with mean zero

and large variances.

Prior distribution of ηηη: The prior distribution of ηηη is assumed to be N(0,τK−1),
where K is the kernel matrix. This prior distribution is selected based on a connec-

tion between linear mixed models and semi-parametric models with reproducing

kernels included. Liu et al. (2008) and Gonzalez-Recio, Gianola, Long, Weigel,

Rosa, and Avendano (2008) discuss in detail this choice. This prior distribution

assumes that the variations of ηηη are related to the distances between regions. The

farther apart two regions are, the more uncertainty over one region’s influence on

the other. Hyper parameter τ is a regularization parameter. Under K−1, small val-

ues of τ indicate small contributions of spatial dependence. In the extreme case,

the spatial effect disappears when τ approaches to zero. The prior distribution of ηηη
is chosen for computational convenience. Other less-informative prior distributions

can be constructed too – for instance, independent normal distributions a priori as-

suming unstructured spatial dependence between regions. This is discussed in detail

in the simulation studies in Section 3.

Prior distribution of h and hyper prior distribution of τ in ηηη: The prior distri-

butions of h and τ are selected as inverse gamma with both shape and scale param-

eters being 0.5. According to Gustafson (2003) and Kass and Wasserman (1995),
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this choice of prior distribution can be viewed as giving a “unit-information” prior

such that our prior guess for each parameter is one and the prior gets little weight

compared to the data. Note that with this choice of prior distribution for h, the

Gaussian kernel is scale dependent and h itself is consequently scale variant. How-

ever, the functionality of h on the control of smoothness remains the same. The

estimates of h will be comparable between different data sets as long as the same

unit in distance measures is used.

2.3.2 The posterior distribution:

With all prior and hyper-prior distributions specified, the joint posterior distribution

of the expanded θθθ , θθθ = (α,βββ ,ηηη,h,τ), satisfies (up to a normalizing constant),

p(θθθ |y) ∝ P(Y = y|θθθ)p(α)p(βββ )p(ηηη |h,τ)p(h)p(τ), (5)

where

P(Y = y|θ) = ∏
i

exp(−λi)λ
yi

i

yi!
,

log(λi|θθθ) = log(ni)+α +βββ ′
Xi +δi,

δi = k′
iηηη =

N

∑
j=1

η jk(si,s j),

ηηη |h,τ ∼ N(0,τK−1),

α ∼ N(0,σ 2
α), βββ ∼ N(0,σ 2

βββ I),

h ∼ Inv-Gam(0.5,0.5), τ ∼ Inv-Gam(0.5,0.5). (6)

In (5), we use p(·) to denote a probability density function of a continuous random

variable, and I in (6) denotes an identity matrix. Spatial dependence δi is evaluated

with updated information on ηηη obtained from its posterior inferences. Note that we

will conclude the same model (6) by assigning the following prior distribution to δδδ ,

δδδ |h,τ ∼ N(0,τK), (7)

which is linked to a Gaussian random field. A Gaussian random field in general

induces a multivariate normal distribution for spatial dependence (Siegmund and

Worsley, 1995, Emmerich, Giannakoglou, and Naujoks, 2006). Hyper-parameters

σ 2
α and σ 2

βββ are selected to be large in order to form diffused normal distributions.

Since all the prior distributions are proper, the joint posterior distribution is proper

as well.
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2.3.3 Computation of the posterior distribution:

The posterior distribution of parameter vector θθθ given by (5) is difficult to study

analytically. Instead we use a Markov chain Monte Carlo (MCMC) simulation

method, specifically, a Gibbs sampler coupled with Metropolis-Hastings (M-H)

steps to generate samples from the joint posterior distribution. Gibbs sampler uti-

lizes full conditional posterior distributions of each parameter. The full conditional

posterior distribution of τ is inverse gamma,

τ|ηηη,h ∼ Inv-Gam((N +1)/2,(ηηηT Kηηη +1)/2).

Given (7), it is straightforward to show

τ|δδδ ,h ∼ Inv-Gam((N +1)/2,(δδδT
K−1δδδ T +1)/2). (8)

Thus, we can sample τ without knowing ηηη . Equations (7) and (8) are derived based

on the prior distribution ηηη|h,τ ∼ N(0,τK−1). However, if we assign a prior distri-

bution to ηηη that is not normal, then the prior distribution of δδδ will be different from

those in a classical Gaussian random field, and the conditional posterior distribution

of τ will be different from (8).

The full conditional posterior distributions of the remaining parameters can

be easily derived from (5) and (6). They are not standard and will be sampled using

the M-H algorithm, in which proposal distribution functions are needed to gener-

ate proposal samples for each parameter. The proposal distributions for α,βββ ,ηηη and

log(h) are normal distributions centered at the previous posterior draw of the param-

eters. The variance components in the proposal distributions are selected to achieve

efficient convergence. Specifically, they are adaptively tuned by controlling accep-

tance rates during the sampling process (Gelman, Carlin, Stern, and Rubin, 2003,

Browne and Draper, 2006). Let v denote the variance and assume the initial value of

v is v = v0. Usually v0 takes a relatively small value in order to initiate the MCMC

simulation process with a relatively large acceptance rate. If after T iterations, the

acceptance rate ra is close to the target rate rt , that is, ra ∈ (rt − r0,rt + r0) with

r0 being a positive small number pre-determined, then we set v = v0; otherwise,

update v0 as

vm =

{

v0[2− (1− ra)/(1− rt)], if ra > rt + r0

v0/(2− ra/rt), if ra < rt − r0,
(9)

for m = 1, · · · , until ra ∈ (rt − r0,rt + r0).
Once the proposal variance components are selected, we continue to run a

certain number of iterations for burn-in and then draw posterior samples to infer

the parameters. The convergence of the sampled sequences is evaluated using the
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method developed by Gelman and Rubin (1992a,b) and discussed further in Gelman

et al. (2003). We programmed the sampling process in C++; for users unfamiliar

with C++, we also coded it in R2WinBUGS. Both codes are available upon request.

3 Simulations

In this section, through simulated data generated from various simulation scenarios,

we demonstrate and evaluate the RKB method discussed in the previous sections.

We compare the method with three commonly used methods for spatial dependence

modeling: the independent Gaussian (IG) model and two CAR models including

the intrinsic CAR (ICAR) model (Besag et al., 1991) and a distance-based CAR

(DCAR) model (Cressie and Chan, 1989, Stern and Cressie, 1999). A brief de-

scription of these competing models is included in the Appendix.

3.1 Simulated data

In each of 800 Monte Carlo (MC) replicates, 30 regions are considered and are

arranged in a spatial structure of a rectangle formed by 5 columns and 6 rows in

a map view. The coordinate of each region is determined by the row and column

indices; the coordinate of a region in row r and column c is (r,c).
We assume the expected effect of region i on the number of incidences (in

log-scale) is log(λi|α,β ,δi) = log(ni)−5+ xi +δi, i = 1, · · · ,30, which gives α =
−5,β = 1. The covariate xi is generated from UNIF(0.01,0.8). The offset ni

is generated from N(5000,1002), which implies the average offset in log-scale is

around 8.51. The parameters of interest are α and β along with the component

parameters in the reproducing kernel, h and τ . To simulate spatial effects δi, we

consider the following two data-generating scenarios:

SC1. The 30 regions are simulated assuming an unstructured spatial dependence

such that δi
iid
∼ N(0,σ 2

δ ) with σδ = 0.5.

SC2. Data are simulated assuming the existence of two clusters of spatially depen-

dent regions; cluster 1 is formed by regions 1 to 3 and 6 to 8, and cluster

2 is formed by regions 19, 20, 24, 25, 29, and 30. The correlation is set at

ρ = 1 among the clustered regions, indicating a strong spatial dependence in

a cluster.

In the second scenario, we expect a stronger spatial effect. On the other hand, since

the dependence suddenly disappears outside the two small clusters, the value of h

can be small.
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3.2 Empirical evidence

The posterior inferences for each data set are based on 20,000 MCMC iterations

after 40,000 burn-in iterations. To assess the performance of the methods in esti-

mating Poisson regression coefficients, we record the average bias, coverage rate of

true β , and average length of credible intervals (Table 1). Summaries of Moran’s I,

the deviance information criterion (DIC) (Spiegelhalter, Best, Carlin, and van der

Linde, 2002), and mean squared prediction error (MSPE) (Lawson, 2008) are used

to assess the model fit and prediction quality, respectively (Table 2). Moran’s I

evaluates global spatial autocorrelation of the residuals and is estimated as eT Ae
eT e

,

with e being the vector of standardized residuals and A being an adjacency ma-

trix. Moran’s I being zero indicates no global autocorrelation. DIC is a Bayesian

measure of model fit which penalizes complex models while MSPE measures the

quality of prediction of the fitted model; small values of DIC and MSPE are pre-

ferred.

Overall, regardless of the pattern of spatial dependence, the RKB method

performs slightly better than the other three methods in terms of accuracy and pre-

cision, although it does not do the best on every individual criterion. Some notewor-

thy observations from the simulation results are highlighted below and may deserve

a further systematic study:

E1 With respect to prediction (MSPE) and model fitting (DIC), the RKB method

outperforms other methods in both examples (unstructured and correlated

spatial dependence) (Table 2).

E2 In terms of accuracy of parameter β estimates, when we examine average

bias and coverage rates together, the RKB method overall outperforms the

other three methods (Table 1). However, the RKB method tends to produce

wider credible intervals.

E3 Largest bias was observed in results from the IG model. Its model fitting and

prediction quality is better or comparable to DCAR.

E4 ICAR provides the overall worst performance with respect to model fitting,

prediction, and accuracy of parameter estimates. The relatively bigger bias

and small coverage rate might be due to the impropriety of the model, which

deserves further investigation.

A close inspection at the measures on all the criteria between different meth-

ods reveals that among the competing methods, DCAR performs most closely to

RKB. However, as noted in Appendix, there is a parameter γ in DCAR that evalu-

ates the strength of spatial dependence. The lower and upper bounds of γ in DCAR

are the same across all levels of spatial dependence. These constraints potentially
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limit DCAR to properly reflect the strength of spatial dependence. For the simulated

spatial structure, the upper bound of γ is γmax = 0.065. In all the MC replicates, the

upper limits of the 95% credible intervals are close to γmax (results not shown). Ta-

ble 3 lists the inferences of h, τ , and γ . The estimate of h in the second scenario is

smaller, which is likely due to the sharp diminishment of spatial dependence outside

the two clusters. The larger estimate of τ in the second scenario indicates stronger

spatial effects.

To examine the consistency of the pattern described above, two additional

data-generating scenarios were considered with each representing a specific level

of spatial dependence. One scenario assumes δδδ ∼ N(0,Σ) with δδδ = (δ1, · · · ,δN)
and

Σ =









0.52 ρ0.52 · · · ρ/[(1− r)2+(1− c)2]0.52 · · · ρ
41

0.52

ρ0.52 0.52 · · · ρ/[(1− r)2+(2− c)2]0.52 · · · ρ
34

0.52

· · · · · · · · · · · · · · ·
ρ
41

0.52 ρ
34

0.52 · · · ρ/[(6− r)2+(5− c)2]0.52 · · · 0.52









30×30,

(10)

where ρ = 0.48. This definition of Σ yields a moderate spatial dependence among

three contiguous regions and the dependence then decreases with the increase of

Euclidean distances between regions. The other scenario considers one cluster of

spatially dependent regions composed of 6 contiguous regions with spatial correla-

tion being 1 in the cluster. The findings in general were consistent with those given

in Tables 1 to 3 (results not shown).

3.3 Further simulation studies

Further simulation studies are carried out with focus on sensitivity analysis: the

impact of a different prior distribution for ηηη , the choice of reproducing kernel, and

the number of regions.

3.3.1 Prior distribution of ηηη

As noted earlier, we assumed ηηη ∼ N(0,τK−1). To examine if the RKB method

is limited to this prior, we simplify the covariance matrix of ηηη and assume ηηη ∼
N(0,τI). This distribution does not enforce any prior structured spatial dependence

on the variation of ηi. We simulated 100 MC replicates following the second sce-

nario: the population has two clusters of regions with strong spatial dependence.

10
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Table 1: Average bias, coverage rate, and average length of credible intervals (CI)

of β across 800 MC replicates. Empirical 95% intervals are in parentheses.

Average Bias Coverage Rate (%) Average CI Length

Unstructured δδδ
IG -0.0067 (-0.89, 0.91) 92.63 1.71 (1.22, 2.37)

ICAR -0.0069 (-0.95, 0.94) 91.75 1.70 (1.16, 2.49)

DCAR -0.0064 (-1.00, 0.73) 92.74 1.69 (1.17, 2.33)

RKB -0.0062 (-0.65, 1.14) 93.55 1.86 (1.40, 2.54)

Correlated δδδ
IG 0.0042 (-0.80, 0.83) 95.42 1.75 (1.43, 2.24)

ICAR 0.016 (-0.58, 0.64) 96.78 1.35 (1.09, 1.73)

DCAR 0.0016 (-0.73, 0.76) 96.16 1.66 (1.37, 2.12)

RKB 0.0019 (-1.00, 0.78) 95.97 1.84 (1.50, 2.34)

Table 2: Averaged MSPE, DIC, and Moran’s I across 800 MC replicates. Empirical

95% intervals are in parentheses. All 95% credible intervals of Moran’s I cover zero

indicating overall spatial independence.

MSPE DIC Moran’s I

Unstructured δδδ
IG 113.00 (95.09, 133.74) 230.49 (223.98, 236.61) 0.010

ICAR 116.02 (97.52, 136.66) 231.90 (225.52, 237.48) -0.045

DCAR 113.18 (95.66, 134.04) 230.34 (223.95, 236.07) -0.058

RKB 112.38 (95.01, 133.28) 228.33 (222.54, 234.18) -0.056

Correlated δδδ
IG 170.09 (153.37, 185.28) 243.03 (240.09, 245.86) 0.018

ICAR 173.19 (155.90, 189.25) 243.04 (239.84, 245.99) -0.045

DCAR 170.03 (153.27, 185.03) 242.85 (239.86, 245.67) -0.034

RKB 169.68 (153.12, 184.75) 242.43 (239.49, 245.23) -0.039

The results from the new prior are comparable to those based on the prior

discussed earlier, ηηη ∼ N(0,τK−1). In terms of the estimate of coefficient β , the
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Table 3: Statistics summary of parameters measuring spatial dependence based on

800 MC replicates. Empirical 95% intervals are in parentheses.

Unstructured δδδ Correlated δδδ
γ 0.031 (0.025, 0.043) 0.042 (0.038, 0.047)

τ 0.24 (0.14, 0.42) 0.28 (0.25, 0.33)

h 0.087 (0.067, 0.14) 0.062 (0.059, 0.065)

average bias is -0.001 with 95% empirical interval (-0.84, 0.81), coverage rate of

true β is 95.97%, and the average length of 95% credible intervals is 1.85 with 95%

credible interval (1.50, 2.34). Turning our attention to model assessment, the value

of MSPE is 169.56 with 95% empirical interval (154.24, 187.65) and DIC is 240.82

with (238.20, 243.87) being a 95% empirical interval. The averaged Moran’s I is

-0.039 and all 95% credible intervals cover zero. The results presented here and in

the previous section demonstrate that the posterior inference from the RKB method

is not sensitive to these two prior distributions. However, as typical in Bayesian

inference, the posterior inference can be dominated by strong prior beliefs.

3.3.2 Kernel selection

To assess the performance of the selected Gaussian kernel, we consider several

other reproducing kernels and compare their performances. Besides the first or-

der ((si,s j) 7→ k(si,s j) = sis j) and second order ((si,s j) 7→ k(si,s j) = (sis j + h)2)

polynomial kernels discussed earlier, we also considered an analysis of variance

(ANOVA) kernel and an Laplacian kernel. The ANOVA kernel is a radial basis

function kernel, (si,s j) 7→ kd(si,s j) =
{

exp(−
(xi−x j)

2

h
)+ exp(−

(yi−y j)
2

h
)
}d

(Karat-

zoglou, Smola, and Hornik, 2012). The parameter d is the order of the kernel and

represents the degree of interactions (Shawe-Taylor and Cristianini, 2004). This

kernel has been used in multivariate regressions to model the dependencies between

response variables in addition to the dependence on covariates (Stitson, Gammer-

man, Vapnik, Vovk, Watkins, and Weston, 1999, Hofmann, Scholköpf, and Smola,

2008). Laplacian kernel and exponential kernel belong to the family of radial ba-

sis function kernels as well. They are closely related to the Gaussian kernel (with

squared norm in the Gaussian kernel left out). These two kernels are almost equiv-

alent to each other, and thus only the Laplacian kernel is implemented. We expect

this kernel will perform similarly to that of the Gaussian kernel. Comparing the
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selection of a reproducing kernel is equivalent to comparing models. Thus DIC

is used for this purpose. We record DIC values from each of the above 100 MC

replicates for each reproducing kernel and plot them in Figure 1.

Because of a large DIC value from the second polynomial kernel, the differ-

ences between the Gaussian, Laplacian, and ANOVA kernels are hard to see from

the figure. We here present the summary statistics of DIC. The sample mean of

DIC values when using the Gaussian kernel is 226.55 with a 95% empirical interval

of (159.43,244.38), and for the Laplacian kernel the mean is 232.00 and a 95%

empirical interval is (225.25,243.54). These two kernels give similar estimates.

The RKB method based on the ANOVA kernel gives the mean of DIC 242.89 and

a 95% empirical interval is (238.84,246.48). The result is slightly inferior to those

from the Gaussian and Laplacian kernels. The ANOVA kernel has been shown to

work well in multi-dimensional support vector regression models (Stitson et al.,

1999, Hofmann et al., 2008). However, in our application, this kernel evaluates

spatial dependence based on a separate assessment on longitudinal and latitudinal

distances, which can possibly bring in noise and reduce the quality of model fit-

ting. For the first order polynomial kernel the mean is 814.83 and a 95% empirical

interval is (679.42,926.55), and for the second order polynomial kernel the mean

is 1787.91 with a 95% empirical interval of (950.19,3585.78). The poor perfor-

mances of the first and second order polynomials are not surprising. To model

spatial dependence, we prefer kernels with the ability of detecting stronger depen-

dence for two geographically closer regions and weaker dependence if they are far

apart. However, the first and second order polynomial kernels do not satisfy this

property, which is the possible cause for large DIC values. Overall, the DIC values

based on the Gaussian and those on Laplacian kernels agree with each other and are

the smallest compared to the DICs from the others.

Through simulations, we also examined the effect of the number of regions

to see if the proposed method is in favor of small numbers of study regions. We ex-

pand the number of simulated regions from 30 to 64. The 64 regions are arranged in

8 rows and 8 columns. Other than the number of regions, the remaining settings are

the same as in the scenario with 30 regions. Overall, the RKB method can reason-

ably handle a large number of regions and its performances are at least comparable

to those of the CAR models. The performance of CAR models, on the other hand,

seems to vary depending on the choice of covariance matrix Σ and the feature of

spatial dependence (results not shown).
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Figure 1: DICs from 100 samples with different kernels applied in the RKB method.

4 Applications

We apply the RKB method to analyze two data sets. One is the classic Scottish lip

cancer data examined in previous studies (Clayton and Kaldor, 1987, Breslow and

Clayton, 1993) and further discussed in Waller and Gotway (2004). The other data

set includes incidence rates and measures of possible risk factors for smoke related

cancers in the respiratory system, oral cavity, and pharynx (hereafter, ROP cancers)

in Florida.

The Scottish lip cancer: Data include the number of lip cancer cases, expected

number of cases, and percent of population engaged in agriculture, fishery, or

forestry (AFF) in 56 counties in Scotland. In the model of DCAR, we combine

the ideas given by Cressie and Chan (1989) and Besag et al. (1991) to define neigh-

boring regions such that two regions are treated as neighbors if they are adjacent or

if their centroid distance is within a pre-specified value. For other parameter set-

tings in DCAR, we follow the parameterization discussed in the simulation studies.

Table 4 and 5 list the parameter estimates together with DIC, MSPE, and Moran’s

I. They are based on 20,000 iterations after 20,000 burn-in iterations. As before, α
is the overall intercept, and β is the slope measuring the effect of AFF on lip cancer

incidence rates.

As indicated in Table 4, although the estimates of β from different methods

consistently imply a significant effect of AFF on lip cancer (indicated by credible
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intervals), the estimate of β from the ICAR model tends to be lower than that from

other methods. As seen in Table 5, the estimate of h is very small indicating the pos-

sibility of unstructured spatial effects. Thus the inconsistent estimate of β is likely

due to the relatively larger bias and lower coverage rate of ICAR for unstructured

spatial dependence as seen in simulations (Table 1). In addition, comparing DICs

and MSPEs, the RKB method gives the smallest DIC and MSPE while the largest

DIC and MSPE are observed in both CAR models. This result is also consistent

with that listed in Table 2. In summary, the RKB method performs slightly better

than the other methods in model fitting and prediction, especially better than ICAR

and DCAR.

Table 4: Posterior estimates of the parameters from the Scottish lip cancer data.

Included in parentheses are the 95% credible intervals.

Posterior estimates

α β DIC MSPE Moran’s I

RKB -0.50 0.069 309.32 19.13 0.041

(-0.83, -0.18) (0.040, 0.097) (-0.16, 0.17)

IG -0.49 0.068 310.33 19.29 0.046

(-0.82, -0.16) (0.038, 0.097) (-0.15, 0.18)

ICAR -0.29 0.044 312.57 20.91 -0.036

(-0.53, -0.056) (0.018, 0.068) (-0.24, 0.14)

DCAR -0.54 0.065 328.37 20.73 0.0087

(-0.87, -0.20) (0.038, 0.093) (-0.17, 0.14)

Florida ROP cancer: The Florida ROP cancer data include age adjusted ROP

cancer incidence rates in 2006, information of behavioral risk factors collected in

2002, and gender information for each of the 67 counties in Florida. The data are

from the Florida Cancer Data System and the Behavioral Risk Factor Surveillance

System (BRFSS). Due to the latency period of cancer, information of behavioral

risk factors collected in 2002 were used (which were the only data prior to 2006

available to the public upon data collection). The following three behavioral risk

factors are considered and measured as random-sample-based sample proportions

for each county: no regular moderate physical activity, current smokers, and heavy

or binge drinkers. Gender is included as a risk factor due to the significant differ-

ences of mortality rates between gender in Florida (CDC, 2007).
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Table 5: Statistics summary of parameters unique to each method (Scottish lip can-

cer). Included in parentheses are the 95% credible intervals.

h τ V γ
RKB 0.0032 0.37 — —

(8.18×10−6, 0.012) (0.23, 0.68) — —

ICAR — — 0.52 —

— — (0.26, 0.95) —

DCAR — — 1.60 0.15

— — (1.07, 3.68) (0.028, 0.18)

To set up the Poisson regression model, we consider gender specific risk

factor effects and an overall gender effect. Thus, log(λi|θθθ ) in model (1) becomes

log(λig|θθθ ) = log(nig)+α0 +αg +βββ ′
gXig +δi, (11)

where g = 1,2 indexes gender (g = 1 for female) and nig is the population size of

county i gender g. Additionally, the constraint α1 +α2 = 0 is applied.

Table 6 lists the posterior estimates of the parameters. Due to the rela-

tively large number of parameters, the estimates are based on 100,000 iterations

after 200,000 burn-in iterations. Posterior means and 95% credible intervals of

each parameter are given in the table. Positive estimates of the parameters imply

that the incidence rate in a county increases with the increased level of risk factors.

As expected, smoking is associated with increased incidence, which supports find-

ings from other studies (Blot and Fraumeni, 1982, CDC, 1998). The effects of the

other two factors are less susceptible, which might be due to ecological influences

(Blakely and Woodward, 2000). This is not our focus but an interesting direction to

explore. The relative risks of males and females across the state are given in Figure

2, which indicates that statewide males have higher risk of cancer. This is consis-

tent with the pattern described elsewhere (CDC, 2007). Additionally, the posterior

mean of h is 0.036 with a 95% credible interval of (0.0013,0.064) and for τ the

corresponding inferences are 0.066 (0.041,0.10). Compared to the estimates of h

and τ from the Scottish lip cancer data, the estimate of h in this example is higher

suggesting a stronger spatial dependence. The smaller value of τ , on the other hand,

implies a weaker effect of spatial dependence on cancer incidence.

We also inferred parameters using the other three methods, IG, ICAR, and

DCAR (results not shown). Overall the posterior estimates of parameters agree with

those from the RKB method in terms of the direction of factor effects, except that

16

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 28



(0 ) <5.00E-4

(33) 5.00E-4  -   0.001

(33)   0.001 -  0.0015

(0 )  0.0015 -   0.002

(1 ) >=  0.002

  0.002km

N

(10) <5.00E-4

(55) 5 .00E-4  -   0.001

(1)   0 .001 -  0.0015

(0)  0 .0015 -   0 .002

(1) >=  0 .002

  0.002km

N

a) b)

Figure 2: Estimated relative risks of ROP cancer incidence for (a) males and (b)

females using the RKB method (the darker the color, the higher the relative risk).

the DCAR model did not detect significant physical activity effect. This might be

due to the limitation of γmax. The posterior mean of γ in DCAR is 0.11 with a 95%

credible interval of (0.043,0.14). The upper bound is about its maximum value,

γmax = 0.14, which implies a possible strong spatial dependence, but the estimate

of its strength is limited by γmax, as seen in our simulations. For model fit and

prediction errors, we summarized DIC and MSPE values together with Moran’s I

in Table 7. The ICAR model gives the largest DIC and MSPE. The DCAR model

and the RKB method are comparable in that DCAR gives the smallest MSPE while

the RKB method produces the smallest DIC.

Table 6: Posterior estimates of the parameters from the ROP cancer data using the

RKB method. Included in parentheses are the 95% credible intervals.

Gender (α1) Factor (βββ ) Physical activity Smoke Drinking

effect effects

0.17 Male -0.013 0.018 -0.021

(-0.19, 0.49) (-0.017, -0.0088) (0.013, 0.023) (-0.028, -0.013)

Female -0.0080 0.011 -0.0051

(-0.013, -0.0039) (0.0072, 0.016) (-0.010, -0.000067)
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Table 7: Evaluation of model fit and prediction for the ROP cancer data. Included

in parentheses are the 95% credible intervals.

Moran’s IF Moran’s IM DIC MSPE

RKB 0.038 0.039 1425.80 2608.00

(-0.020, 0.085) (-0.049, 0.10) — —

IG 0.0038 0.014 1428.46 2628.00

(-0.064, 0.058) (-0.079, 0.081) — —

ICAR 0.016 -0.012 1445.51 2707.00

(-0.060, 0.073) (-0.11, 0.077) — —

DCAR 0.013 -0.0015 1430.43 2563.00

(-0.052, 0.065) (-0.091, 0.088) — —

5 Summary

A semi-parametric model built upon a reproducing kernel to describe spatial depen-

dence is proposed to study risk factor effects through Poisson regressions. Simula-

tion studies are performed to demonstrate and evaluate the method, and to compare

the method with several other methods including an independent Gaussian (IG)

model for unstructured spatial dependence, a CAR model based on the number of

contiguous neighbors (ICAR), and a CAR model based on distances between re-

gions (DCAR). Results from two real data applications, Scottish lip cancer data

and Florida ROP cancer data, agree with previous findings.

Based on our simulations, the RKB method performs better than the other

three methods do on model fitting and prediction. In terms of bias and coverage

rates, the RKB method overall does better as well, although this method has the

tendency to give wider credible intervals. These findings indicate that the proposed

method has the potential to serve as a reasonable alternative to the commonly used

CAR models. Compared to the other three methods, the RKB method has three

promising features that make it attractive. First, it is flexible and has the ability

to appropriately account for different formulations of spatial dependence. Second,

unlike the CAR models, the RKB method is easy to implement and program. The

kernel matrix K in the prior distributions in general is positive definite and we only

require parameters h and τ be positive. Thus the RKB method does not have the

18

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 28



theoretical (e.g., the identifiability issue of spatial effects induced by impropriety

of the prior in ICAR) and computational (e.g., the limit on the range of precision

parameters to ensure identifiable spatial effects using ICAR or DCAR) problems

inherent in CAR models as noted in Banerjee et al. (2004). Lastly, among the

three methods, DCAR performed most closely to the RKB method, which is not

surprising because both methods are distance-based and both include parameters

evaluating spatial dependence. However, the upper and lower bounds of parame-

ter γ in the DCAR model are controlled by the spatial structure but not the level

of spatial dependence. This can limit its potential to properly infer the strength of

spatial dependence. Such limitation does not exist in the RKB method. In terms of

computing performance, the speed of the RKB method written in C++ is similar to

DCAR but a little slower than the speed of the other two methods. When written

in R2WinBUGS, due to the limitation in flexibility of the package, the kernel has

to be calculated in every iteration of MCMC and the RKB method is the least effi-

cient. It will be beneficial to develop a distribution function for the RKB method in

WinBUGS.

Other possible future work can be pursued in different directions. The RKB

method is designed to utilize information from all surrounding regions. It may be

interesting to incorporate variable selection techniques into this reproducing kernel

framework to select regions. Additionally, although it is not the focus of this article,

ecological effects on health outcomes have been studied intensively (Blakely and

Woodward, 2000, Jones, Patel, Levy, Storeygard, Balk, Gittleman, and Daszak,

2008, Hu and Rao, 2009). To this end, joint modeling that links ecological and

spatial models together may be an informative way for a thorough evaluation of the

risk factors.
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Appendix

5.1 Competing methods

An independent Gaussian model assumes δi
iid
∼ N(0,σ 2

δ ). The formulation of δi in a

CAR model under a Gaussian framework is given as (Besag, 1974),

δi|{δk : k ∈ Ai} ∼ N(Ei,Vi)

Ei = µi + ∑
k∈Ai

γwik(δk −µk)

Vi = V ξ 2
i , ξ 2

i > 0

wikξ 2
k = wkiξ

2
i , (12)

where Ai defines a collection of neighbors (contiguous or non-contiguous) of region

i, and V is the overall variance parameter. The last equation in (12) is a constraint

to ensure a symmetric covariance matrix, denoted by Σ, in the joint distribution of

δi’s. Parameter γ measures the strength of spatial dependence ranging from γmin to

γmax. The lower and upper bounds of γ , respectively, are the inverse of the smallest

and largest eigenvalues of the matrix diag(ξi)
−1/2Wdiag(ξi)

1/2, where diag(ξi) is

a diagonal matrix composed of ξ ′
i s and W is an N ×N matrix composed of wik’s.

The pre-determined bounds of γ ensure a positive definite covariance matrix Σ.

In the article, we consider two CAR models, the intrinsic CAR model (Be-

sag et al., 1991), ICAR, and a distance-based CAR model (Cressie and Chan, 1989,

Stern and Cressie, 1999), DCAR. The ICAR model assumes µi = 0,γ = 1, and

wik = 1/bi if regions i and k are adjacent and wik = 0 otherwise. The quantity bi

is the number of neighboring regions of region i. The DCAR model defines neigh-

bors based on distances. If two regions are within a pre-specified distance, then

they are treated as “neighbors”. In our simulations, we set the cut-off distance large

enough so that the effects of all surrounding regions are counted. Following Stern

and Cressie (1999), wik and ξi are defined as,

wik =

{

(Ek/Ei)
0.5, if k ∈ Ai

0, elsewhere,

ξi = E−1
i ,

where the value of Ei is taken as the population size in region i. Clearly, γmin
and γmax noted above are constant across all levels of spatial dependence. This

potentially imposes a limitation on the ability of γ to evaluate the strength of spatial

dependence.
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Prior distributions for the parameters, including σ 2
δ in the independent Gaus-

sian model and the overall variance parameter V in the CAR models, are selected

to be inverse gamma distributions with shape parameter 0.05 and scale parameter

0.0005, as suggested by Kelsall and Wakefield (1999). Prior distribution of γ in the

distance-based CAR is chosen to be non-informative and assumed to be a uniform

distribution ranged from γmin to γmax.
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