
Volume 8, Issue 1 2012 Article 26

The International Journal of
Biostatistics

A General Implementation of TMLE for
Longitudinal Data Applied to Causal Inference

in Survival Analysis

Ori M. Stitelman, University of California - Berkeley
Victor De Gruttola, Harvard School of Public Health

Mark J. van der Laan, University of California - Berkeley

Recommended Citation:
Stitelman, Ori M.; De Gruttola, Victor; and van der Laan, Mark J. (2012) "A General
Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival
Analysis," The International Journal of Biostatistics: Vol. 8: Iss. 1, Article 26.

DOI: 10.1515/1557-4679.1334 

©2012 De Gruyter. All rights reserved.



A General Implementation of TMLE for
Longitudinal Data Applied to Causal Inference

in Survival Analysis
Ori M. Stitelman, Victor De Gruttola, and Mark J. van der Laan

Abstract
In many randomized controlled trials the outcome of interest is a time to event, and one

measures on each subject baseline covariates and time-dependent covariates until the subject either
drops-out, the time to event is observed, or the end of study is reached. The goal of such a
study is to assess the causal effect of the treatment on the survival curve. We present a targeted
maximum likelihood estimator of the causal effect of treatment on survival fully utilizing all the
available covariate information, resulting in a double robust locally efficient substitution estimator
that will be consistent and asymptotically linear if either the censoring mechanism is consistently
estimated, or if the maximum likelihood based estimator is already consistent. In particular, under
the independent censoring assumption assumed by current methods, this TMLE is always consistent
and asymptotically linear so that it provides valid confidence intervals and tests. Furthermore, we
show that when both the censoring mechanism and the initial maximum likelihood based estimator
are mis-specified, and thus inconsistent, the TMLE exhibits stability when inverse probability
weighted estimators and double robust estimating equation based methods break down The TMLE
is used to analyze the Tshepo study, a study designed to evaluate the efficacy, tolerability, and
development of drug resistance of six different first-line antiretroviral therapies. Most importantly
this paper presents a general algorithm that may be used to create targeted maximum likelihood
estimators of a large class of parameters of interest for general longitudinal data structures.

KEYWORDS: survival analysis, causal inference, double robust, targeted maximum likelihood
estimation, time-dependent covariates, informative censoring
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1 Introduction
Many clinical trials are designed to assess the causal effect of different treatments
on the time it takes for a particular outcome to occur, such as death or symptom
relief. Such trials collect on each subject a longitudinal data structure which in-
cludes baseline covariates, the randomized treatment assignment, and other time-
dependent covariates for as long as the subject is observed prior to experiencing the
outcome of interest. The typical approach for assessing the causal effect of the ran-
domized treatment in the literature and as mandated by the FDA for pharmaceutical
drug development, is to employ a Cox-proportional hazards model only including
treatment in the model. Once the parameters of the Cox-proportional hazards model
is estimated a test is conducted to determine if the coefficient on treatment is not
equal to zero. This approach ignores the available covariate information. It is well
known that this test is biased if censoring depends on baseline covariates or even
time-dependent covariates that are also predictive of survival.

Time dependent confounding, in the form of informative censoring, is a ma-
jor obstacle that stands in the way of getting an unbiased estimator of causal effects,
even in randomized controlled trials. If there are time dependent covariates that both
predict censoring and the time to event, then the causal effect on the time to event
outcome may not be unbiasedly estimated by only accounting for baseline covari-
ates. This is a common issue in many clinical trials where treatment is initially
randomized but subjects are differentially lost to follow up among the treatment
arms. Adjusting for time-dependent post-treatment covariates in a multiplicative
intensity model results in non-interpretable coefficients for treatment, even if the
multiplicative intensity model is correctly specified. That is, standard regression
methods cannot be employed.

Moreover, even if the Cox-proportional hazards model is correctly specified,
the estimated parameter does not typically represent the causal effect of treatment
of interest, such as the additive causal effect of treatment on survival, or the causal
relative risk. Ideally, the parameter being estimated should be easily interpreted by
both non-statisticians and statisticians alike. In other words, the parameter being
estimated should be a quantity that a subject matter expert and not a statistician
could make informed treatment decisions on.

The causal inference literature establishes ways to define the actual causal
quantities of interest. The literature also establishes identifiability results for these
causal quantities so that they can be identified as a target parameter of the data gen-
erating distribution of the data under clearly stated causal (non-testable) assump-
tions. Specifically, under a causal model such as the Neyman-Rubin model or the
nonparametric structural equation model (Pearl (2008)), one can identify the post
intervention distribution, under setting treatment and enforcing no censoring, from
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the so called G-computation formula (Robins (1987)). The statistical estimation
problem is now defined as the estimation(based on observing n i.i.d. copies of the
experimental unit) of the target parameter of the data generating distribution under
a semiparametric statistical model that represents realistic statistical assumptions.

Particular classes of estimators that may be used to estimate these target
parameters of interest are a MLE of the G-computation formula parameter based
on parametric models, the Inverse Probability of Censoring Weighted (IPCW) Es-
timator, the Augmented-IPCW (A-IPCW) estimator (Robins and Rotnitzky (1992),
van der Laan and Robins (2003)), and the Targeted Maximum Likelihood Estimator
(TMLE).

The MLE of the G-computation formula parameter is a substitution esti-
mator of the target parameter of the data generating distribution. This estimator
relies on a correctly specified parametric model for the relevant factor of the data
generating distribution, which can be factored in terms of an intensity of the time
to event process, and the conditional distributions of the time-dependent covariate
processes. If one utilizes likelihood based adaptive estimation to estimate the data
generating distribution, then there is no theory that supports the construction of
valid 95-percent confidence intervals based on this approach. In fact, it is easily
shown that such a data adaptive MLE of the target parameter will be overly biased
so that the bias will not converge to zero at a root-n rate and thus cannot be ignored
in statistical inference (see e.g., van der Laan and Rubin (2006)).

The IPCW estimator re-weights the observed data by the inverse of the prod-
uct of the propensity score and censoring probability in order make the treatment
arms among the uncensored subjects comparable with respect to confounders, and
then applies standard estimation as if treatment was randomized and censoring was
non-informative. The consistency of these estimators rely on consistent estimation
of the treatment and censoring mechanism. These estimators are highly unstable
in situations when the parameter of interest is weakly identifiable 1, such as when
there is a level of covariates that is predictive of treatment or censoring. The in-

1The parameter of interest is weakly identifiable when there are levels of covariates that are
almost completely predictive of treatment or censoring. In situations where there are levels of co-
variates that are completely predictive of censoring certain parameters of interest are not identifi-
able. Experimental designs are created in order to make causal parameters as identifiable as possible
through either randomization or the ability to assign covariates and treatment. However, in certain
situations it is impossible to randomize treatment. Even in randomized trials it is impossible to ran-
domize censoring. As a result there may be levels of covariates that are almost completely predictive
of censoring. This informative censoring often makes parameters in the time-to-event setting weakly
identifiable
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stability of IPCW estimators becomes even more extreme as the dimensionality of
the observed data structure increases, as is the case when there are time dependent
covariates that must be accounted for.

Even though locally efficient double robust A-IPCW estimators of the causal
effect of treatment on survival incorporating time-dependent covariates have been
proposed (e.g., Robins and Rotnitzky (1992), Hubbard, van der Laan, and Robins
(1999), van der Laan and Robins (2003)), these estimators have not gained traction
in the literature due to their complexity as well as the above mentioned instabil-
ity with respect to the choice of estimator of the censoring and treatment mech-
anism. The IPCW and A-IPCW estimators are based on solving an estimating
equation and have shown to be unstable in situations where the parameter of in-
terest is weakly identifiable (see e.g. Kang and Schafer (2007), Bang and Robins
(2005), and Robins, Sued, Lei-Gomez, and Rotnitzky (2007)). This is due to the
fact that these estimators do not respect the global constraints implied by the sta-
tistical model and thus do not acknowledge that the target parameter is a particular
function of the true data generating distribution.

Targeted Maximum Likelihood Estimation (TMLE), proposed by (van der
Laan and Rubin (2006)), provides estimators that are double robust locally efficient
and also respect the global constraints on the target parameter by being a substi-
tution estimator. The advantages of applying TMLE for estimating causal effects,
in general, has been addressed in many articles (see e.g. the seminal paper on the
topic van der Laan and Rubin (2006), van der Laan (2010a), van der Laan (2010b),
and van der Laan and Rose (2011)). For articles that demonstrate the advantages
of TMLE compared to IPCW, A-IPCW and other estimators in estimation of the
additive causal effect of a point treatment on a completely observed outcome, es-
timation of the mean of an outcome under missingness, and estimation of a causal
effect in case-control studies, we refer to van der Laan and Rubin (2006), Gruber
and van der Laan (2010a), Gruber and van der Laan (2010b), Rose and van der
Laan (2010), Porter, Gruber, van der Laan, and Sekhon (2011) among others. In
a series of earlier papers we presented the TMLE for estimating causal effects of
treatment on time to event subject to right-censoring incorporating baseline covari-
ates (Moore and van der Laan (2009), Stitelman and van der Laan (2011), Stitelman
and van der Laan (2010)), where we presented the advantages of this TMLE relative
to the other classes of estimators through simulation study and data analysis. The
advantages of TMLE relative to MLE and estimating equation based estimators,
as observed for these relatively simple data structures, can be expected to be more
strongly expressed for more complex longitudinal data structures.

In this article we propose a TMLE for estimating the treatment specific sur-
vival curve, and other closely related parameters that are functions of treatment
specific survival, that accounts for informative censoring due to time-dependent co-
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variates. In addition, the TMLE presented here may also be used to gain efficiency
when censoring is independent. In a two part article entitled “Targeted Maximum
Likelihood Based Causal Inference” Mark van der Laan proposes a general template
for constructing targeted maximum likelihood estimators (TMLEs) of parameters
of the G-computation formula. In this article we use that template to construct a
TMLE for the treatment specific survival curve that adjusts for possible confound-
ing due to intermediate time-dependent variables. Moreover, the resulting estima-
tor, like all TMLEs, benefits from the advantages of being a substitution estimator
as opposed to being defined as a solution of an estimating equation. In addition,
we propose solutions that address the computational difficulties of constructing a
TMLE for this longitudinal data structure and illustrate how those solutions result
in an algorithm that performs extremely well in terms of computation time. A sim-
ulation study is presented that compares the characteristics of this TMLE, a double
robust estimating equation estimator, IPCW estimator, and versions of these three
estimators that only account for baseline confounders. The stability of the TMLE
that incorporates time dependent covariates is displayed. We even demonstrate the
stability of this TMLE compared to other methods when the initial censoring mech-
anism and outcome and intermediate variable processes are mis-specified. Finally,
we present an analysis assessing the causal effect modification of cART therapies
by gender using the Tshepo study, a study designed to evaluate the efficacy, tolera-
bility, and development of drug resistance of six different first-line cART regimens.
In analyzing the Tshepo study, we contrast how the TMLE presented here compares
to the other common methods for estimating time to event parameters.

The algorithm and approach that we develop here with minor adjustments
will be able to address even more complicated questions of interest for longitudinal
data structures such as the effect of time dependent treatments strategies or dynamic
treatment rules on time to event outcomes. The value of this algorithm is that it is
a general approach that may be used for estimating many different parameters of
interest for a wide range of longitudinal data structures. Current approaches for es-
timating parameters of interest in longitudinal data structures rely on either IPCW
based estimates or MLE based methods whose drawbacks we addressed above (see
e.g. Samore et al. (2005), Hernan et al. (2005, 2006, 2009), Lok (2009)). In fact,
simple parameters such as the effect of a point treatment on a single outcome with
no time component can be expressed as a specific instance of the proposed ap-
proach. Moreover, increasingly complex parameters of interest, such as estimating
the treatment specific survival curves accounting for baseline covariates (Moore and
van der Laan (2009)) can be evaluated using this approach. Finally, parameters of
interest, in longitudinal data structures, for which there has been no computation-
ally feasible and efficient approach may be estimated using the algorithm presented
here.
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1.1 Organization

In the next section we describe the targeted maximum likelihood estimator for the
treatment specific survival curve incorporating time dependent covariates. In Sec-
tion 3 we describe adjustments to this TMLE that make it computationally feasible.
Section 4 presents a simulation study, and Section 5 a data analysis of an HIV study,
the Tshepo study. We conclude with a discussion.

2 Targeted Maximum Likelihood Estimation Of
Treatment Specific Survival Incorporating Time
Dependent Covariates

In this section we will describe the process of constructing the TMLE of the treat-
ment specific survival curve that incorporates time dependent covariates. For the
purpose of clarity we will present the approach for a specific example with a clearly
defined data structure. In particular, we will focus on an analysis of the Tshepo
study, a study designed to evaluate the efficacy, tolerability, and development of
drug resistance of six different first-line cART regimens.

The primary scientific question of interest for the presented analysis is ”what
is the causal effect of cART treatment on the time until death?” The observed data
consists of n i.i.d observations, Oi, from the data generating distribution, P0. Let
t be a discrete time index, (t=0,1,2,...), where t=0 indexes the baseline time before
treatment. Each observation Oi consists of Wi, the baseline covariates, Ai(t = 0),
a binary indicator of cART treatment, CD4i(t), a time dependent process of CD4
level, V Li(t), a time dependent viral load process, Ac

i (t), the censoring process, and
Yi(t) the death process. Specifically, these variables are as follows:

• Wi is a vector of random variables that capture the state of subject i at base-
line. These include gender, baseline CD4 count, baseline VL, age, body mass
index, past health history, etc.
• Ai(0) is binary random variable that indicates the cART treatment assigned

to subject i. When Ai(0) = 1 the subject was treated with efavirenz (EFV)
and when Ai(0) = 0 the subject was treated with nevirapine(NVP). For the
remainder of the paper A(0) will be referred to as A.
• CD4i(t) is a continuous random process that captures the CD4 count of each

subject i at time t. In the observed data this variable ranges from 3 to 1,105.
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• V Li(t) is a continuous random process that captures the viral load of each
subject i at time t. In the observed data this variable ranges from 400 to
750,000. All individuals with a viral load less than 400 were recorded as 400.
• Ac

i (t) is the censoring process and remains zero at each time point t at which
the subject i is observed and once the subject is no longer observed, or lost to
follow up it jumps to 1. After the subject is no longer observed the process
remains at 1.
• Yi(t) is the death process and remains zero at each time point t at which the

subject i is alive and once the subject is no longer alive it jumps to 1. After
death the process remains at 1.

The entire random process is assumed to be generated by the following
time ordering: W → A→ Y (1)→ CD4(1)→ V L(1)→ Ac(1) . . .→ Y (k− 1)→
CD4(k−1)→V L(k−1)→Ac(k−1)→Y (k). t = k is the time point at which one
is interested in understanding the effect of the cART therapy on death. The time
ordering corresponds with a causal graph with each node having an arrow coming
into it from all of it’s ancestors, that is all nodes preceding it in the time order-
ing.2 The random variables displayed in bold in the time ordering correspond with
those variables for which we would like to have the ability to intervene in the causal
graph.

In the time ordering above variables preceding a node we will refer to as the
node’s parents and will denote that set of nodes as Pa(·). For example Pa(CD4(1))
is equal to the set of nodes {W,A,Y (1)}. Also, let a bar over a variable denote the
history of a variable up until and including time t. So Āc(t) is the entire history of
censoring until t. We will use Āc(t) = 0 to express the fact that an individual was
not censored up until and including time t and similarly Ȳ (t) = 0 will express that
an individual did not experience the event through time t. The causal graph posits
a set of causal assumptions in the form of a non-parametric structural equation
model(NPSEM) in which our data structure corresponds with the displayed nodes
and the exogenous nodes are suppressed. This is common practice for displaying
that each displayed node has an error/exogenous node with an arrow going into it
and no arrows going into any other nodes.

Necessary conditions typically imposed to make causal parameters identi-
fiable may be made through the use of the causal graph, i.e. the assumptions of
consistency and coarsening at random (CAR). The former states that the observed
data consist of the counterfactual outcome corresponding with the intervention ac-
tually observed. This assumption is a direct consequence of defining the observed

2The full graph is not presented because the amount of arrows necessary to show all edges
between nodes is visually unappealing and does not add to the understanding of the graph.

6

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 26



data structure as particular nodes in the causal graph/NPSEM. The CAR assump-
tion is imposed by assuming the strong sequential randomization assumption on the
intervention nodes of the causal graph, i.e. for each intervention node, the condi-
tional density of an intervention node, given the collection of all counterfactuals
and the intervention nodes that are parents of the intervention node, is a function
only of the observed parents of the intervention node. This is directly implied by
the causal graph, as the only arrows into the treatment and censoring process vari-
ables are from their observed ancestors and no other nodes. That is there are no
exogenous error nodes(unobserved variables) that affect both the censoring and/or
treatment nodes and other nodes in the causal graph. For the treatment variable this
assumption is sometimes referred to as the randomization of treatment assumption
or no unmeasured confounders assumption.

The causal graph acts as a tool that allows us to consider potential outcomes
under some desired set of interventions on those variables. Namely, we are inter-
ested in observing the value Y (k) for each individual in the observed data had we
set treatment A to specified level, a, and all censoring Ac(t) to 0, or uncensored.

The ordering of all variables as proposed implies the following factorization
of the observed data likelihood:

P(O) = P(W )P(A|W) (1)
k−1

∏
t=1

[P(Y (t)|Pa(Y (t)))P(CD4(t)|Pa(CD4(t)))P(V L(t)|Pa(V L(t)))P(Ac(t)|Pa(Ac(t)))]

P(Y (k)|Pa(Y (k)))

Thus, P is factorized into two distinct components Q, corresponding to the non-
bolded conditional distributions, and g, the bolded conditional distributions. Q is
the factors of the likelihood associated with the full data process. These are the
factors separate from our intervention on the system. The g factors of P are the
contribution to the likelihood of the variables on which we wish to intervene. These
are the variables that act to coarsen, or hide future paths of the full data structure.
For example, if a particular subject Oi is observed to have taken treatment EFV,
or A = 1, the entire future process for that subject under NVP, or A = 0, is hidden.
Similarly, if a subject is censored at a particular time point their entire future process
is coarsened or hidden. For this reason treatment, A(0), and the censoring process,
{Ac(t) : 1, . . . ,k}, make up the coarsening factor of P0, g0.

Now we can consider the distribution of the data under interventions on the
coarsening variables, treatment and censoring. This distribution is known as the
g-computation formula and for our data structure is of the following form:
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PA=a,Ac(t)=0 = P(W ) (2)
k−1

∏
t=1

[P(Y (t)|Pa(Y (t)),A = a,Ac(t−1) = 0)

P(CD4(t)|Pa(CD4(t)),A = a,Ac(t−1) = 0)
P(V L(t)|Pa(V L(t)),A = a,Ac(t−1) = 0)]
P(Y (k)|Pa(Y (k)),A = a,Ac(k−1) = 0).

Notice that all of the g factors have been removed from the distribution since they
are now set to the intervened levels with probability 1. While all of the other distri-
butions are conditioned as though A was set to the desired level a and no censoring
Ac(t) = 0 for all t. This corresponds with Pearl’s do calculus for causal graphs
(Pearl (2008)).

Since the distribution of the data under the desired interventions is defined,
we can now propose interesting parameters of interest under that distribution. In
particular, these parameters should directly answer the scientific question of inter-
est. By contrasting the probability of survival past the chosen time, k, under dif-
ferent interventions we can define a parameter of interest that quantifies the causal
effect of the different cART therapies. An example of such a parameter is the prob-
ability of surviving past k when the cART therapy is EFV and there is no censoring
minus the probability of surviving past k had the cART therapy been EFV and there
is no censoring. This parameter of interest, which we will call ψRD

0 , can be written
as a function of the intervention distributions PA=a,Ac(t)=0, of which we have two
(one for EFV, when A = 1, and one for NVP, when A = 0). In particular ψRD

0 can
be written as a function of two treatment specific survival curves, one at each of
the levels of treatment. The fact that each treatment specific survival curve may be
written as a function of the intervention distributions PA=1,Ac(t)=0 and PA=0,Ac(t)=0,
that is the distributions when setting A = 1 and A = 0, will be expressed by writing
the treatment specific survival curves as as a function of the intervention distri-
butions in the following way: ΨA=1(PA=1,Ac(t)=0) and ΨA=0(PA=0,Ac(t)=0), where
ΨA=a(PA=a,Ac(t)=0) is the mean probability of survival past time k when treated at
level a.

Since the death process, Y (k) is binary, it equals one if an individual has
died and zero otherwise, the probability that Y (k) equals zero under a specified
intervention is the treatment specific survival curve. Thus, the treatment specific
survival curve at time k may be cast as a mapping from the intervention distribu-
tions, PA=a,Ac(t)=0, to the real line as PA=a,Ac(t)=0(Yk = 0). The causal effect of the
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cART treatment may than be expressed as a risk difference of these treatment spe-
cific survival curves3:

Ψ
RD(PA=1,Ac(t)=0,PA=0,Ac(t)=0) = P0,A=1,Ac(t)=0(Y (k) = 0)−P0,A=0,Ac(t)=0(Y (k) = 0).

Alternatively, the parameter of interest can be defined as an expected value under
the intervention distributions, PA=a,Ac(t)=0:

ψ0 = [1−EP0,A=1,Ac(t)=0[Y (k)]]− [1−EP0,A=0,Ac(t)=0[Y (k)]].

Up until this point we have not specified a model for the underlying data
generating distribution. Had the true conditional distributions P0,A=a,Ac(t)=0 been
known, ΨA=a(P0) could simply be evaluated. However since P0,A=1,Ac(t)=0 and
P0,A=0,Ac(t)=0 are not known, they must be estimated. One possible model for the
conditional distributions presented in the likelihood above ((1)) is a simple linear
regression model for the continuous distributions, VL and CD4, and logistic re-
gression model for the other distributions. Instead of using a simple regression
model, we advocate the use of a less restrictive non-parametric model. Estimates
of P0,A=a,Ac(t)=0 according to this non-parametric model, may be generated using
a nonparametric cross-validated learning algorithm. Smoothing over multiple time
points may be implemented in the same way as for simple regression. In practice we
like to use Super Learner for constructing Qn and gn.4 We will refer to the estimates
of Q0 as Qn, the estimates of g0 as gn and the estimates of the entire distribution P0
as Pn. Qn is composed of the following estimates:

Pn(W )

Pn(Y (t)|Pa(Y (t))
Pn(CD4(t)|Pa(CD4(t))
Pn(V L(t)|Pa(V L(t)),

3Other contrasts of the treatment specific survival curves may be used to quantify the causal
effect of the cART treatment such as the ratio of the two curves; however, for the purpose of clarity
in this paper we will focus on the risk difference. Additionally, parameters that average over a set of
t may be of interest.

4Super Learner is a system that constructs estimates in a non-parametric model by combining
many candidate learners in a way that creates a final estimate of the conditional distribution with
better properties than any of the single candidate learners(van der Laan, Polley, and Hubbard (2007)).
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and gn includes:

Pn(A|W )

Pn(Ac(t)|Pa(Ac(t)).

Whether one employs simple regression techniques or a non-parametric es-
timation procedure such as super learner, the estimates produced have been chosen
in order to optimize prediction and not to optimize the estimate of the parameter of
interest. This is because these procedures use a loss function to minimize the dis-
tance between the estimate and the true distribution globally. This is true whether
the loss function is mean squared error, log-likelihood, or any other sensible loss
function for estimating conditional distributions. Updating this distribution to a dis-
tribution targeted toward estimating the parameter of interest as well as possible is
the primary goal of TMLE.

The next step of the TMLE procedure is to update the estimates of
P0,A=a,Ac(t)=0 so they are optimized for estimating the parameter of interest. This
is the step for which TMLE got it’s name and is the reason TMLEs exhibit their
robustness and efficiency characteristics. This update step ensures that the TMLE
targets the parameter of interest. This is accomplished by enforcing that the es-
timates of P0,A=a,Ac(t)=0 solve the efficient influence curve equation for the target
parameter. The theory that establishes this result is presented in van der Laan and
Rubin (2006) and van der Laan and Rose (2011). The efficient influence curve
can be represented as a projection of an IPCW-estimating function DIPCW onto the
tangent space of the Q factor of the density:

D∗(Q,g) = Π(DIPCW |TQ);

where TQ is the tangent space of the Q-factor of the density P = Qg of O. The
DIPCW is given by

DIPCW (O) =
1(A = a)1(C > k)1(T > k)

gA(0)(a)∏
k
t=1 gAc(t)(0 | Pa(Ac(t)))

,

where C is the censoring time and T is the event time.
In general the update process relies on the use of a loss function for Q0,

L (Q), and a parametric submodel {Q(ε,g) : ε}. The fluctuation, ε , from the initial
estimate Qn is chosen in the direction that has the greatest benefit for estimating
the parameter of interest. This is done by choosing εn such that the linear span of
the loss-based score d

dε
L (Q(ε,g)) at ε = 0 includes the efficient influence curve
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D∗(Q,g). In many situations it also makes sense for the loss function to be indexed
by a particular nuisance parameter as will be done below since the loss function is
also dependent on the estimate of g. We will express the loss function as indexed
by gn as Lgn(Q). For more details concerning this updating process we refer the
reader to van der Laan and Rose (2011) as they are outside the immediate scope of
this paper.

In van der Laan (2010a) an approach for constructing targeted maximum
likelihood estimates of parameters in general longitudinal data structures is pre-
sented. The proposed approach is based on a binary factorization of the Q0 compo-
nents of the likelihood. It then proposes a backward passing algorithm that updates
the initial estimate Qn at each binary factor through the use of a logistic parametric
submodel.

There are three distinct advantages of this binary factorization: (1) it allows
for a closed form TMLE of the parameter of interest and clever covariates (2) it
allows for the use of the multitude of data adaptive machine learning algorithms
that are available for estimation of binary conditional distributions in order to get a
flexible estimate of the initial distributions and (3) it allows for a single formulation
of the clever covariate across nodes.

We will now recast this general algorithm in terms of the HIV example pre-
sented here. The first step in creating a binary factorization of the Q0 components
of the likelihood is to decide on cut points for the intermediate continuous random
variables. The continuous random variables in Wi may remain continuous. In the
case of the HIV study we are using as an example, this involves breaking the vari-
ables CD4(t) and V L(t) into ordered levels. For the purpose of our analysis, each
continuous variable was divided into three ordered categorical levels. The number
of levels chosen and their cut points should be based on subject matter knowledge
of the observed process, or one could adaptively select the number of levels using
cross-validation.

Let us consider the CD4 process. We could assumed ordered categorical
levels. The levels are: CD4(t) < 200, 200 <CD4(t) < 400, 400 <CD4(t). These
levels correspond with the following indicator functions of CD4(t) at each time
point: CD4(t,1) = 1(CD4(t) ≤ 200), CD4(t,2) = 1(200 < CD4(t) < 400), and
CD4(t,3) = 1(400 ≤ CD4(t)). However, as always, when coding a categorical
variable, the categorical variable may be expressed by the first two binary vari-
ables because when CD4(t,1) and CD4(t,2) equal zero the third indicator function,
CD4(t,3), will equal 1. The binary indicators, V L(t,1), V L(t,2) and V L(t,3), for
the viral load process are constructed in the same way with break points for the
levels of 400, and 2,000.

Incorporating these ordered categorical variables into the likelihood involves
constructing a hazard formulation of the ordered variables within each time point
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for each intermediate continuous variable. In the statistical literature a hazard refers
to the probability an event will happen at a given time given that it has not happened
yet. It has a similar meaning as used here for the ordered categorical variables. It is
the probability that a subject will belong to a particular level given that the subject
did not belong to any of the previous levels, as defined by the ordering. So the haz-
ard for CD4(t,2) is the probability that CD4(t,2) equals 1 given CD4(t,1) equals
zero.

After casting the intermediate variables in the hazard formulation discussed
above, the temporal ordering may be re-expressed as: W →A→Y (1)→CD4(1,1)
→ CD4(1,2)→ V L(1,1)→ V L(1,2)→ A(1) . . .→ Y (k− 1)→ CD4(k− 1,1)→
CD4(k− 1,2) → V L(k− 1,1) → V L(k− 1,2) → A(k−1) → Y (k). Notice that
CD4(t,3) and V L(t,3) are not in the time ordering because they may be written
in terms of the other two variables at the particular time point. Also, recall that the
bolded variables are those on which we wish to intervene.

Now each subject’s contribution of P(CD4(t)|Pa(CD4(t)) to the likelihood
expressed in equation (1) may be written in terms of the hazard distributions of
CD4(t,1) and CD4(t,2) in the following way:

P(CD4(t,1)|Pa(CD4(t))CD4(t,1)

{1−P(CD4(t,1)|Pa(CD4(t)))}CD4(t,2){P(CD4(t,2)|Pa(CD4(t)),CD4(t,1) = 0)}CD4(t,2)

{1−P(CD4(t,1)|Pa(CD4(t)))}CD4(t,3){1−P(CD4(t,2)|Pa(CD4(t)),CD4(t,1) = 0)}CD4(t,3),

where CD4(t,3) = 1−CD4(t,1)−CD4(t,2). The same is true for the
P(V L(t)|Pa(V L(t)) contribution to the likelihood. Furthermore, the Pa(·) of all
the other conditional distributions now includes CD4(t,1) and CD4(t,2) rather than
CD4(t) and V L(t,1) and V L(t,2) rather than V L(t). This same approach may be
expanded to more levels of each intermediate variable.

An alternative notation for the same parameterization of the random vari-
ables is more convenient for expressing the binary likelihood and the TMLE algo-
rithm we will propose. However, this notation is not as intuitive in terms of what
each variable represents. For this reason we have chosen to introduce the variables
as we have done and now explain how those variables correspond with this alter-
native binary notation. We will now define a new set of random variables L(t, j, l).
L(t, j, l) are binary random variables that include all of the binary processes that Q0
is composed of. Let t be a discrete time index as before, j an index for the process
(e.g. Death, VL, or CD4 process), and l an index for the level of the process. These
random binary variables may be rolled up into L(t, j), a set of variables defining a
particular process at a particular time, and L(t) the set of all processes at a particular
time. Also, let L(0) equal W .

Specifically, L(t) is decomposed as follows:

L(t) = (L(t, j) : j = 1, ...,n(t)), (3)

12

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 26



where at each time point, t, there are n(t) different components indexed by j. In
the Tshepo analysis L(t,1) corresponds with the event process, L(t,2) corresponds
with the CD4+ process, and L(t,3) corresponds with the viral load process. Thus,
in the Tshepo analysis n(t) is equal to 3, the number of processes in Q0. L(t, j) are
further decomposed into binary variables L(t, j, l) in the following way:

L(t, j) = (L(t, j, l) : l = 1, ...,n(t, j)), (4)

where at each time point, t, and for each component, j, there are n(t, j) different
ordered categorical levels of the process L(t, j) indexed by l. So in the case of a
survival process, like L(t,1), n(t, j) is equal to 2 since there are two levels of this
process at each time point. L(t,2) and L(t,3) can have multiple levels and in the
implementation as described above n(t,2) is equal to 3, the number of levels the
CD4 process was divided into. Notice that CD4(t,1) is equal to L(t,1,1) in our new
notation and CD4(t,1) is equal to L(t,1,2).

The g-comp formula may be expressed in our new notation in the following
way:

Pa,0(L) =

QL0︷ ︸︸ ︷
P(L(0))

k

∏
t=1

n(t)

∏
j=1

n(t, j)−1

∏
l=1

QL(t, j,l),a,0︷ ︸︸ ︷
P(L(t, j, l) | Pa(L(t, j, l)),A = a, Ā(t−1) = 0)

Now that the g-comp formula is expressed in terms of binary variables, the
components of the parameter of interest, P0,A=1,Ac(t)=0(Y (k) = 0), may be written in
closed form. In our new notation this closed form solution of the treatment specific
survival curve at time k is:

Ψ(Q0) = (5)

EL(0) ∑
L(k,1,1)=0

k

∏
t=1

n(t)

∏
j=1

n(t, j)−1

∏
l=1

QL(t, j,l),a,0︷ ︸︸ ︷
P(L(t, j, l) | Pa(L(t, j, l)),A = a,A(t−1) = 0),

where the sum is taken over all possible combinations of variables ending in
L(k,1,1) = 0.

Furthermore, this binary factorization allows us to estimate all of the condi-
tional distributions, including the hazard distributions, using the multitude of data
adaptive machine learning algorithms available for binary outcomes. Each factor of
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the binary factorization has a corresponding contribution to the likelihood QL(t, j,l)
which is the conditional distribution of that binary variable given its parents and
may be estimated using standard tools for estimating binary conditional distribu-
tions.

Once the binary factorization is established and the initial estimates of Q0
are constructed, the next step in the algorithm is to update each component of Qn to
the targeted maximum likelihood estimate, Q∗n, of Q0. Thus, each estimate QL(t, j,l),n
needs to be updated to Q∗L(t, j,l),n, the targeted estimate for that binary factor. In
van der Laan (2010a) the proposed approach is through a backward passing algo-
rithm that starts with the last factor in the likelihood and works toward the first
point in time. At each step the estimate QL(t, j,l),n is updated through the use of a
logistic fluctuation of the initial estimate. The parametric fluctuation used is of the
following form:

logitQ∗(t, j,l),n(ε) = logitQ(t, j,l),n + εt, j,lCt, j,l(Qn,gn),

where Ct, j,l(Qn,gn) is referred to as the clever covariate for QL(t, j,l) and is cho-
sen such that the update solves the associated component of the efficient influence
curve equation. Is is established in van der Laan (2010a) that the clever covariates,
Ct, j,l(Qn,gn), necessary for the targeting step may be expressed in the same way for
each node in Q, indexed by t, j and l as: Ct jl(Q,g) =Ct jl(Q)Ct jl(g), where

Ct jl(Q) = {P[La,0(K +1,1,1) = 0 | L(t, j, l) = 1,Pa(L(t, j, l))]− (6)
P[La,0(K +1,1,1) = 0 | L(t, j, l) = 0,Pa(L(t, j, l))]},

and

Ct jl(g) =
I(A = a)I(C > t−)

gA(0)(1 | L(0))∏
t−1
s=1 gAc(s)(0 | Pa(Ac(s))

. (7)

Once the final factor is updated, the clever covariate for the subsequent factor, mov-
ing backwards, is calculated using the updated terminal node and then that node
is updated. This process is continued until the first factor, QL(1,1,1),n, is reached.
Once all QL(t, j,l),n are updated to Q∗L(t, j,l),n the the set of estimates is the targeted
estimate of Q0. Now Ψ(Q0) may be estimated by substituting Q∗L(t, j,l),n into equa-
tion (5) and evaluating the right side of the equation. Note that the factorization
of Ct jl(Q,g) into Ct jl(Q) and Ct jl(g) is not stressed in van der Laan (2010a) but is
presented here stressing the factorization because it plays an important role in an
adjusted algorithm we propose below.
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It turns out that as the number of intermediate variables and the number
of binary factors for each variable increases, the computational complexity of this
algorithm also increases exponentially and makes it impossible to implement with
even a reasonable amount of these factors. In the next section we propose ad-
justments to this algorithm that allows the complexity of the algorithm to grow
linearly with the number of binary factors while retaining the robustness and effi-
ciency properties of a TMLE.

3 Computationally Feasible TMLE
The method described in the preceding section, though theoretically correct, is im-
practical and in most cases computationally impossible to implement. In this sec-
tion we explore why the presented approach is infeasible and provide adjustments
to the algorithm that make implementation of TMLE in this setting possible. In
fact, the adjustments proposed make creating an augmented IPCW estimator in the
flavor of those presented in van der Laan and Robins (2003) also possible. Our so-
lution involves multiple mathematical tricks and simplifications that are designed to
increase feasibility without sacrificing efficiency and unbiasedness and ultimately
result in an algorithm that is extremely fast even relative to our initial algorithms
that only incorporated baseline variables(Stitelman and van der Laan (2011),Stitel-
man and van der Laan (2010)).

The TMLE algorithm presented in the previous section requires evaluating
an integral over a very large number of possible combinations of the binary factors
in both the evaluation of Ψa(Q∗n) and the clever covariates. Moreover, since each
QL(t, j,l),n and gAc(t),n(0 | Pa(Ac(s)) are a function of the entire past history of par-
ents, each possible combination of history must be evaluated for every clever covari-
ate and the overall evaluation of Ψ(Q∗n). Various numerical integration procedures
may be employed, including Monte Carlo simulation. However, these methods
are computationally expensive and as k and the number of intermediate variables
increases, the number of computations needed increases exponentially. This expo-
nential increase in computational complexity makes the algorithm computationally
expensive and not possible to implement in many situations.

In order to make the evaluation procedure more feasible, we make some
simplifying assumptions. These assumptions were specifically chosen to retain the
efficiency and consistency characteristics of TMLE while creating an algorithm that
is possible to implement given reasonable computational computing restraints. This
feasable algorithm is based on three major adjustments to the algorithm presented
in the preceding section:
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1. Data adaptive simplifying Markov assumptions.
2. Backward passing algorithm using Iterative conditional expectations.
3. Weighted logistic regression updates.

We will now explain in detail how each of these adjustments are imple-
mented and how they contribute toward making the algorithm computationally
practical.

3.1 Markov property for initial estimate to speed up algorithm

Even though the binary factorization of the likelihood allows us to write the clever
covariates and the parameter of interest as a closed form solution of the expected
value of the terminal node over all paths through the binary variables, the com-
putational complexity of such an evaluation is immense. As a result, without any
further adjustments to our methodology, our evaluation is still limited to either a
Monte Carlo approach or by integration over all paths in the G-computation for-
mula. Both of these approaches are computationally costly since the number of
paths up until time K + 1 is exponential in the number nodes (in particular, in the
number of time-points). This computational cost is further exaggerated by the fact
that each clever covariate has to be evaluated for each subject in the data set for each
binary variable in Q. At first glance it appears as though the binary factorization of
the variables has not bought much in terms of feasibility. However, by combining
the binary factorization with several other simplification assumptions, we will be
able to produce an algorithm that is computationally feasible. One way to simplify
the amount of necessary computations is to enforce that the conditional distribu-
tion of each L(t, j, l) is not a function of the entire history, but rather, a function of
the most recent history or some subset of the subject’s history. By enforcing this
Markov type property on the estimate Qn, each conditional probability has only few
possible realizations as a function of Pa(L(t, j, l)), so that the number of values of
Qn over which to integrate in the expression for Ct, j,l(Qn) is linear in the number of
binary variables.

For the purpose of our HIV analysis, we enforce a Markov property on
all the conditional distributions expressed in the likelihood. In each case we as-
sume that each L(t, j, l) is a function of the time dependent covariates through the
most recently observed levels. Thus, each conditional distribution is a function of
not being censored yet (Ā(t) = 0), not having the event yet (Ȳ = 0, equivalently,

¯L(t,1,1) = 0), the baseline variables (W ), and the most recent observed values of
the time dependent covariates. So the conditional distributions in the likelihood,
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rather than being a function of the full past, will be defined as a function of the
reduced past in the following way:

P(Y (t)|Pa(Y (t)) = P(Y (t)|Ā(t−1) = 0,Ȳ (t) = 0,W,CD4(t−1),V L(t−1))

P(CD4(t)|Pa(CD4(t))) = P(CD4(t)|Ā(t−1) = 0,Ȳ (t) = 0,W,CD4(t−1),V L(t−1))

P(V L(t)|Pa(V L(t))) = P(V L(t)|Ā(t−1) = 0,Ȳ (t) = 0,W,CD4(t),V L(t−1))

The distributions of W , A(0)|W , and Ac(t)|Pa(Ac(t)) are unaffected by the Markov
assumption. We deal with the large dimension of pasts for Ac(t)|Pa(Ac(t)) with
another modification to the TMLE algorithm using regression weights, that is ex-
plained below. In other analyses the Markov assumptions may be relaxed to include
multiple time points, summary metrics such as functions of the most recent history
of the time dependent covariates (e.g., a slope of past CD4-count process). In ad-
dition, cross-validation can be used to adaptively select the degree of dimension re-
duction applied to the histories, such as the degree of the Markov property, so that,
if it is necessary to incorporate more time points of the past, then the algorithm will
select accordingly. In this way, the number of calculations are controlled, but still
adaptive to what is needed to fit Q0 well.

3.2 Backward passing algorithm using Iterative conditional ex-
pectations

The algorithm described in the previous section uses a backward updating scheme
to make sure that the updated distribution P∗n solves the efficient influence curve
equation. We also employ a TMLE using a backwards updating algorithm that first
updates the last factor, and then proceeds backwards which converges to P∗n in one
set of updates through the M nodes in the Q factors of the causal graph. The reason
such a method is viable is that the clever covariate at each node is only a function of
Pn through the nodes that follow it in the time ordering. As a result of the backward
passing algorithm, those nodes are already updated when the algorithm arrives at
any particular node. Our modification to the backward passing algorithm takes
advantage of the the fact that the clever covariate at each subsequent step may be
written as an iterative conditional expectation of the preceding step.

Recall that Lgn is a loss function indexed by the estimate gn. The loss
function we used for our analysis was the negative log-likelihood loss function.
However, any appropriate loss function may be used. Let

ε
M
n = argmin

εM
PnLgn(Q

0
n,M(εM)).
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This yields an update Q1
n obtained by updating the (last) M-th factor Q0

n,M with
Q0

n,M(εM
n ). We now proceed with updating the M−1-th (next to last) factor:

ε
M−1
n = arg min

εM−1
PnLgn(Q

1
n,M−1(ε

M−1)).

This yields a second update Q2
n obtained by updating the M− 1-th factor Q1

n,M−1
with Q1

n,M−1(ε
M−1
n ). This updating process is continued through all the nodes re-

sulting in a sequence Q1
n,Q

2
n, . . . ,Q

M
n of M subsequent updates of the initial esti-

mator Q0
n. Note that the first J− 1 factors in the update QJ

n are still equal to the
corresponding J−1 factors in Q0

n, J = 1, . . . ,M. The last M-th update involves the
update of the first factor and all the updated other factors. This set of all updated
Qn is Q∗n the fully targeted estimate of Q0. The TMLE of ψ0 = Ψ(Q0) is the corre-
sponding substitution estimator ψ∗n = Ψ(Q∗n). The way we simplify the algorithm
is to take advantage of iterative conditional expectations so that when one works
back through factors of the likelihood all necessary evaluations of Q∗(t, j,l),n that are
needed for subsequent steps are evaluated directly after the update. In this way each
P[La,0(K+1,1,1) = 0 | L(t, j, l) = δ ,Pa(L(t, j, l))] may be written as a simple iter-
ative conditional expectation of the already evaluated conditional expectations and
the newly updated Q∗(t, j,l),n for the binary variable L(t, j, l). To understand this, rep-
resent the longitudinal data structure O as the ordered sequence O(l), l = 0, . . . ,L,
where O(0) =W , O(1) = A, and several of subsequent O(l) correspond with Ac(t),
and all other O(l) are indicators coding the death-process, viral load process and
CD4-count process. Suppose that O(k) is an L-indicator and we already evalu-
ated the clever covariate for this L-indicator and also computed the TMLE update
for the conditional distribution of this L-indicator. We now wish to determine the
clever covariate and TMLE-update for the next L-indicator in the sequence, going
backwards. Now, we note that

P(La,0(K +1,1,1) = 0 | O(k−1),Pa(O(k−1))) =
∑o(k)P(La,0(K +1,1,1) = 0 | O(k) = o(k),Pa(O(k)))P(O(k) = o(k) | Pa(O(k))).

If O(k− 1) is also an L-indicator, then the above relation allows us to map the
previous clever covariate and the last updated conditional probability of O(k) into
the clever covariate for the conditional distribution of O(k− 1). If O(k− 1) is a
censoring Ac(t)-node, then it follows that, at the only relevant value zero for this
censoring node (thus equal to the intervention used in the G-computation formula),
the left-hand side equals P(La,0(K + 1,1,1) = 0 | O(k− 2),Pa(O(k− 2))), so that
we have

P(La,0(K +1,1,1) = 0 | O(k−2),Pa(O(k−2))) =
∑o(k)P(La,0(K +1,1,1) = 0 | O(k) = o(k),Pa(O(k)))P(O(k) = o(k) | Pa(O(k))).
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So, again, this allows us to map the previous clever covariate and the last updated
conditional probability of O(k) into the clever covariate for the next Q-conditional
distribution of O(k−2).

Note also that at the final step of the iterative backwards one-step TMLE
algorithm, we have to evaluate the clever covariate expression P(La,0(K+1,1,1) =
0 |W,A = a) for all n observed values of W . The empirical mean of the latter is
now the TMLE Ψ(Q∗n). Thus the final evaluation of the target parameter of interest
is a natural by-product of completing the iterative backwards single step TMLE
algorithm. It should also be stated that the estimate of P(W ), Pn(W ), does not
need to be updated because we use the empirical distribution as the estimate. The
empirical distribution is the non-parametric efficient estimate of P(W ), and as a
result, fluctuating the estimate would result in the same estimate (see section 5.2.4
of van der Laan and Rose (2011) for more details about this).

3.3 TMLE with weighted-log-likelihood loss function

Even if we enforce this Markov assumption on the initial estimate Qn, note that
Ct, j,l(gn) is still a function of the full history Pa(Ac(t)) through gAc(t), so that the
updates of Qn during the single step TMLE algorithm would still map into k-step
updates Qk

n that will not satisfy the Markov property. This issue will be addressed by
moving Ct, j,l(gn) from being a factor of the clever covariate to being a weight in the
log-likelihood loss function. This is why we stressed the fact that Ct jl(Q,g) may
be factorized into Ct jl(Q) and Ct jl(g). We use a weighted logistic regression for
each update with weights equal to Ct, j,l(gn), and a new clever covariate Ct, j,l(Qn)
instead of Ct, j,l(Qn,gn). This corresponds with using a weighted-log-likelihood
loss Lg(Q) =− logQL(0)−∑t jl{logQt jl}Ct jl(g) and fluctuating the initial estimator
of the conditional distribution QL(t, j,l),n by adding the clever covariate extension
εCt jl(Qn) on the logit scale. Thus, we now use the following parametric fluctuations
of the initial estimator Qn:

logitQ(t,1,1),n(ε) = logitQ(t,1,1),n + εt,1,1Ct11(Qn)

logitQ(t,2,l),n(ε) = logitQ(t,2,l),n + εt,2,lCt2l(Qn)

logitQ(t,3,l),n(ε) = logitQ(t,3,l),n + εt,3,lCt3l(Qn).

We still fluctuate QL(0),n with a parametric submodel QL(0),n(ε0) that has score
D∗L(0)(Qn) at ε0 = 0, but this submodel will play no role in the TMLE since the
MLE of ε0 will be equal to zero. This defines now a submodel {Qn(ε) : ε}, and this
submodel is combined with the weighted-log-likelihood loss Lg(Q).
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This weighted log-likelihood, Lg(Q), loss and parametric submodel, Q(ε),
map into the same desired score d

dε
Lg(Q(ε)) at zero fluctuation ε = 0 as the un-

weighted log-likelihood and the parametric submodel using the Ct jl(Qn,gn) as clever
covariates. Thus, this weighted-log-likelihood and submodel also satisfies the con-
dition that its generalized score at zero fluctuation spans the components of the
efficient influence curve at (Q,g). The major advantage of moving Ct jl(gn) into the
weight of the loss-function is that it only requires that Ct jl(gn) be evaluated for each
observed history and not at all possible histories as required for evaluation of the
clever covariates. Thus, with the Markov property on Qn, and changing the clever
covariate to Ct jl(Qn), the dependence of the clever covariate in the logistic regres-
sion fluctuations on the entire past has been removed. Furthermore it is not required
that the censoring process be estimated using the factorized intermediate variables
and thus it may be estimated using the continuous intermediate variables, CD4(t)
and V L(t) in the case presented here.

The TMLE algorithm now increases in time linearly with each additional
L(t, j, l) added to the graph as opposed to exponentially. As a result, the algorithm
is now computationally feasible without making major restrictive assumptions. In
fact, the resulting algorithm is faster than the iterative TMLE algorithm used in
Stitelman and van der Laan (2011) and Stitelman and van der Laan (2010) which
only adjusted for baseline covariates.

In this section we provided a computationally feasible method for construct-
ing the TMLE estimate of the treatment specific survival curve that incorporates
time dependent covariates. This method relied on several adjustments to previously
used approach to constructing such estimators. These adjustments were specifically
implemented to make the approach computationally feasible while preserving the
double robust and locally efficient properties of a TMLE. In the following sections
we will present a simulation study that compares the TMLE presented here to other
alternative methods for estimating the treatment specific survival curve and will
also include an analysis of an HIV data set.

4 Simulation Study
In this section we present the results of simulation studies that compare the bias and
efficiency of six different estimators of the treatment specific survival curve: Base-
line TMLE, Baseline IPCW, Baseline A-IPCW, Time-Dependent TMLE, Time-
Dependent IPCW, Time-Dependent EE. Baseline refers to the data structure that
excludes the time-dependent covariates, and EE is an an abbreviation for an estimat-
ing equation based estimator that we developed for the complete longitudinal data
structure (it can be viewed as an A-IPCW of the type presented in van der Laan and
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Robins (2003), but it is based on the representation of the efficient influence curve as
used in the TMLE here). The EE involves representing the efficient influence curve
for the longitudinal data structure as an estimating function in the target parameter
ψ0. Then defining the EE estimator as the solution to the corresponding estimating
equation, estimating the nuisance parameters with the initial estimators as used in
the TMLE. No similar estimating equation based estimators have gained traction in
the literature due to the computational difficulties of constructing such an estimate
when there are many time points and intermediate variables. The representation of
the efficient influence curve (8) and the corresponding estimating equation based
estimator of ψ0, as we implemented here, make this estimating equation based es-
timator computationally feasible. The EE is just like the TMLE-a double robust
locally efficient estimator-but the TMLE is also a substitution estimator, while the
EE is not. The Time-Dependent IPCW is defined as the empirical mean of

DIPCW (O) =
I(T > k,A = 1,C > k)

Ḡn(k− | X ,A = 1)gA(0),n(A(0) |W )
,

where gA(0),n is an estimator of the treatment mechanism g0, conditional on baseline
covariates. Ḡn(t− | X ,A = 1) = ∏s<t{1− gA(s),n(1 | Pa(A(s)))} is the estimator
of the survivor function of censoring, conditional on baseline treatment, baseline
covariates, and time-dependent covariates.

The goal of the first set of simulations presented here is to illustrate the
bias reduction that occurs when one adjusts for time-dependent covariates that af-
fect drop-out beyond the effect of the baseline covariates on time to drop-out. The
second set of simulations show that if censoring is non-informative, a TMLE and
EE incorporating the available time-dependent covariates improve efficiency rel-
ative to an estimator that ignores the time-dependent covariates, even though in
this independent censoring scenario the latter is still a valid asymptotically linear
estimator. Furthermore, our simulations also demonstrate that a locally efficient
double-robust substitution estimator (Time Dependent TMLE) performs better in
finite samples than both a locally efficient double-robust non-substitution estimator
(Time Dependent EE) and the current standard for accounting for time-dependent
covariates (Time Dependent IPCW). In fact, the simulations suggest that the benefit
of targeted learning increases quickly, and dramatically, when the complexity (e.g.,
dimension of data structure) of the estimation problems increases.

In our simulations we simulate a longitudinal data structure:

O = (W (0),A(0),N(1),W4(1),W5(1),A(1)...,N(K),W4(K),W5(K),A(K),N(K +1)),

for t = 1, ...,K+1. Here W (0) = (W1(0),W2(0),W3(0),W4(0),W5(0)) are the base-
line covariates, A(0) is the binary baseline treatment randomized with probability
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0.5, N(t) is the indicator of observing a failure time event at time t, Ac(t) is the
indicator of observing a censoring event at time t, and W4(t) and W5(t) are the con-
tinuous time-dependent covariates. In each simulation, 500 simulated data sets with
sample size n = 500 were generated, the treatment specific survival curve S1(t0) at
time point t0 = 3 was estimated using each of the six different estimators, and esti-
mates of bias and MSE were reported. In each simulation the true treatment specific
survival S1(t0) equals .469. All estimators were supplied consistent estimators of
the conditional intensity of the censoring process, and failure-time process, while
the conditional distributions of the time-dependent covariates were estimated in-
consistently by discretizing the continuous covariates W4(t), W5(t), coding these
discretized covariates with binary indicators, and estimating the conditional distri-
bution of the binary indicators with logistic parametric regression.

4.1 Simulations with Informative Censoring

The precise data generating mechanism is described as follows.
1. The drawing of the baseline covariates W (0) involved first generating from a
mean zero multivariate normal and truncating any component from above by 2 and
from below by -2. The covariance matrix was defined as 1 on the diagonal and 0.2
off-diagonal. The truncation was enforced to ensure that the censoring mechanisms
was not suffering too much from practical violations of the positivity assumption,
as required for identifiability of S1(t0).
2. The two time-dependent covariates W4(t) and W5(t) are generated as follows:

W4(t) = .2A(0)+ .5W1(0)− .4W2(0)− .4W3(0)+2W4(t−1)+2W5(t−1)+U4
W5(t) = .1A(0)+ .1W1(0)+ .1W2(0)− .4W3(0)+2W4(t)+2W5(t−1)+U5,

where U4 and U5 are i.i.d. N(0,σ = 0.4).
3. The event indicators, N(t), were generated as Bernoulli-indicators with the prob-
ability defined by the following conditional intensity of time to failure T :

λT (t) = expit(−3+ .3A(0)+ .3W1(0)− .3W2(0)− .3W3(0)+2W4(t−1)+2W5(t−1)).

4. The censoring indicators, Ac(t), were generated as Bernoulli-indicators with the
probability defined by the following conditional intensity for censoring for the low
and high informative censoring case, respectively:

λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)+ .1W4(t)+ .1W5(t−1))
λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)+1W4(t)+1W5(t−1)).

The results are presented in Table 1. Each table below presents the mean of the
estimates, mean of the influence curve based standard errors, mean square error,

22

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 26



and the coverage probabilities for 95 percent wald-type influence curve based con-
fidence intervals for each of the estimators investigated. The low-informative cen-
soring results show 1) that the TMLE and EE estimators that only use the baseline-
covariates are very similar to the estimators that incorporate the time-dependent co-
variates, and 2) the Time-Dependent IPCW is highly inefficient relative to the other
estimators. The simulation for the high-informative censoring shows some interest-
ing results. Firstly, the estimators that only incorporate the baseline-covariates are
highly biased: the MSE of the Baseline estimators are over 13 times larger than the
MSE of the Time-Dependent TMLE. Secondly, the Time-Dependent TMLE has an
MSE that is almost 75% smaller than the MSE of the Time-Dependent EE, demon-
strating the crucial benefit of being a substitution estimator beyond being a double
robust efficient estimator.

Interestingly, in this particular case, the Time-Dependent IPCW estimator
performs remarkably well. However, it can be explained as a specific scenario
where a biased estimator happens to produce the right answer. This has to do with
the fact that the covariates that strongly affect the event are also very predictive
of censoring, causing the IPCW estimator to do artificially well in this scenario.
This is because the High Censoring scenario is a simulation where the informative
censoring is so extreme that there are levels of covariates that are so predictive of
censoring that in finite samples it is extremely rare to find an uncensored individ-
ual at those levels of the covariates. Moreover, those same levels of the covariates
are extremely predictive of the event, so much so that by the time point of inter-
est the event will have occurred with almost probability of 1 for those individuals.
As a result, the contributions to the IPCW estimator for individuals that have a high
probability of being censored is always zero, which is exactly the right contribution,
since the probability of the event for those individuals happening before the time
of interest is also essentially 1. We show below that if the direction of the effect
of the baseline variables on the censoring is switched, the IPCW does very poorly.
Apparently, a change in the censoring mechanism dramatically affects the MSE of
the IPCW-estimator, demonstrating that this initial finding represents a-typical be-
havior of the IPCW-estimator. This is because those individuals that were at levels
of W which were almost completely predictive of an event and being uncensored in
the first scenario are now at levels of W that are still almost completely predictive
of an event but also completely predictive of censoring.

In our modified simulation, we generated the censoring events for the low
and high informative censoring case as follows:

λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)− .01W4(t)− .01W5(t−1)),
λC(t) = expit(−4+ .8A(0)+ .3W1(0)− .3W2(0)− .3W3(0)− .1W4(t)− .1W5(t−1)).
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Low Informative Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.469 0.469 0.486 0.475 0.475 0.475
Mean SE 0.027 0.027 0.041 0.027 0.027 0.040
Mean Square Error 0.00070 0.00070 0.00113 0.00076 0.00076 0.00077
Coverage 0.942 0.942 0.986 0.940 0.938 0.996
High Informative Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.479 0.470 0.475 0.587 0.585 0.595
Mean SE 0.029 0.035 0.039 0.034 0.034 0.059
Mean Square Error 0.00112 0.00440 0.00073 0.01485 0.01453 0.01740
Coverage 0.898 0.898 0.996 0.066 0.074 0.352

Table 1: Simulation Results For Informative Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators

Table 2 presents the results for this simulation. Again, the incorporation of the
time-dependent covariates results in an important bias reduction (and MSE) for the
TMLE and EE estimators. In the low informative censoring simulation, the Time-
Dependent IPCW estimator has an MSE that is 1.6 times as large as the MSE of
the Time-Dependent TMLE and EE estimator. In the high informative censoring
scenario, the MSE of the Time-Dependent IPCW estimator is 128 times as large as
the MSE of the Time-Dependent TMLE and EE estimator. The latter demonstrates
a complete break down of the IPCW-estimator, reflecting that it is simply a very
unreliable estimator, even though it represents current practice.

4.2 Simulations with Independent Censoring

In this section we repeat the simulation study but with independent censoring. The
data generating distribution is as in the previous section except the censoring mech-
anism is modified to be independent of both the baseline variables and time de-
pendent covariates. The hazard of censoring was now only a function of time, so
that censoring is independent of the evolving processes, but three different hazards
were considered representing different levels of independent censoring: no censor-
ing, medium censoring, and high censoring. In the first scenario every individual
was left uncensored. In the second and third scenario each subject was censored
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Low Informative Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.470 0.470 0.452 0.469 0.469 0.470
Mean SE 0.027 0.027 0.040 0.027 0.027 0.042
Mean Square Error 0.00065 0.00066 0.00105 0.00068 0.00067 0.00077
Coverage 0.960 0.960 0.974 0.956 0.958 1.000
High Informative Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.468 0.468 0.174 0.432 0.433 0.396
Mean SE 0.027 0.027 0.026 0.033 0.033 0.067
Mean Square Error 0.00068 0.00067 0.08732 0.00251 0.00241 0.00731
Coverage 0.960 0.960 0.000 0.798 0.810 0.836

Table 2: Simulation Results For Informative Censoring Using Modified Censoring
Process: Mean of Estimates and Mean Square Error for All Six Estimators

with 20 percent probability (Medium Censoring Scenario) and 60 percent probabil-
ity (High Censoring Scenario), respectively.

The results are presented in Table 3. We know that under independent cen-
soring all 6 estimators are consistent. Indeed, the results demonstrate that all esti-
mators are unbiased across the three simulations, so that the estimators only differ in
their efficiency (i.e., variance). In the no-censoring scenario, all estimators behave
similarly, with the exception of the IPCW-estimators that are somewhat inefficient.
Gains in efficiency due to utilizing the time-dependent covariates can only be ex-
pected if a significant proportion of the subjects are right-censored, since an efficient
estimator treats a censored subject that is very sick at the censoring time differently
than a censored subject that was relatively healthy at the censoring time. Indeed,
the table shows that as the amount of independent censoring increases, the IPCW-
estimators become more and more inefficient relative to the efficient TMLE and
EE estimators. It is also of interest to note that, for the high censoring scenario, the
Time Dependent TMLE is almost 1.8 times more efficient than the Baseline TMLE.
This demonstrates the substantial gain in efficiency one can obtain by utilizing time-
dependent covariates. Furthermore, we note that in the high censoring scenario the
locally efficient double-robust non-substitution estimator (Time Dependent EE) has
a mean square error of almost 2.25 times the MSE of the locally efficient double-
robust substitution estimator (Time Dependent TMLE). This demonstrates, once
again, the importance of being a substitution estimator. This gain is most likely due
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No Censoring Scenario
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.468 0.468 0.468 0.468 0.468 0.468
Mean SE 0.027 0.027 0.038 0.027 0.027 0.038
Mean Square Error 0.00067 0.00068 0.00073 0.00069 0.00069 0.00073
Coverage 0.952 0.952 0.990 0.950 0.950 0.990
Medium Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.469 0.470 0.471 0.469 0.469 0.470
Mean SE 0.028 0.028 0.051 0.029 0.029 0.051
Mean Square Error 0.00070 0.00072 0.00120 0.00081 0.00081 0.00106
Coverage 0.960 0.960 0.996 0.952 0.952 1.000
High Censoring Scenario

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.474 0.481 0.474 0.467 0.467 0.466
Mean SE 0.044 0.047 0.114 0.043 0.042 0.112
Mean Square Error 0.00110 0.00248 0.00712 0.00196 0.00197 0.00496
Coverage 0.988 0.988 0.978 0.940 0.940 0.984

Table 3: Simulation Results For Independent Censoring: Mean of Estimates and
Mean Square Error for All Six Estimators

to estimated censoring probabilities that are empirically imbalanced across strata
of the covariates, so that the estimators behave similarly as in a high-informative
censoring simulation. Finally, it is noteworthy that the Time Dependent IPCW es-
timator has a mean square error over six times as large as the MSE of the Time
Dependent TMLE.

In each of the tables above we show the 95 percent confidence interval cov-
erage probabilities. These confidence intervals were constructed by relying on the
fact that the TMLE solves the efficient influence curve estimating equation. In
three of the four informative censoring scenarios the TMLE produces valid 95 per-
cent confidence intervals. In the fourth, the high informative censoring scenario for
the first simulation (Table 1), the TMLE has a coverage probability of 89.8 percent,
which is less than ideal. In all cases the confidence intervals constructed for the
estimators using only baseline variables are far less than the desired 95 percent

26

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 26



coverage for the high informative censoring scenarios. For more details concerning
these confidence intervals see Stitelman, De Gruttola, and van der Laan (2011).

4.3 Simulations - Mis-specifying both of the initial estimates, Qn
and gn

The simulations presented in the previous sections have been based on initial esti-
mates of Qn and gn which incorporated all potential confounders and used a correct
model for g0, and an approximately correct model for Q0. For the three estima-
tors that only used baseline information, the known model was used excluding the
time-dependent components. The intention for the simulation study presented in
the current subsection is to illustrate the effect of mis-specifying both of the ini-
tial estimates, Qn and gn, on the behavior of the different estimators of the target
parameter.

The data used for this simulation study were simulated in the same way as
the data simulated for the modified high informative censoring scenario of section
4.1. For the study here we evaluate what happens to the simulation results when
the time dependent covariates, W4, W5, and then both W4 and W5 are removed from
the models for the initial estimates of Qn and gn. This allows us to observe how
the different estimators behave when the initial estimates for Qn and gn are both
initially mis-specified.

Table 4 displays the results of this simulation study. As for the original sim-
ulation, all of the estimators that only incorporate baseline information continue to
perform poorly. These methods initially used mis-specified models for their initial
Qn and gn since they only incorporate baseline covariates, so it should be no sur-
prise that further mis-specifying the initial models causes the estimators to behave
even more poorly in terms of both bias and mean square error. The time dependent
IPCW estimator, which was very unstable even when gn was correctly specified,
behaves as poorly as before in terms of both bias, variance and coverage of its con-
fidence intervals with mis-specification. A direct comparison of the time dependent
TMLE and EE reveals the stability of the TMLE even when both the initial Qn and
initial gn are estimated based off of a mis-specified model. Both methods produce
slightly biased estimates and in one case the TMLE does slightly better and in the
other the EE does slightly better. However, these two methods of the six are the
only ones that produce estimates that are on average anywhere close to the truth,
.469.

In the case where either W4 or W5 are removed from the model specification,
the TMLE is 9 to 12 times more efficient than the EE. The TMLE and EE produce
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similar confidence interval coverage, using Wald type influence curve based vari-
ance estimates, but the confidence interval lengths for the TMLE are about half
the size of those for the EE (Mean SE differences of 0.034 vs 0.063 and 0.034 vs.
0.066). When both W4 and W5 are removed from the specification of the initial
model, the relative stability of the TMLE is displayed and the fact that the EE can
produce estimates that don’t obey the proper model is made obvious. The EE com-
pletely breaks down in this situation and the method is very biased, with a mean
estimate of 1.243 (outside the proper range). However, the TMLE remains stable
and produces a mean estimate of 0.462. This is because the TMLE is able to adjust
the initial Qn by updating it at each node in the causal graph through the backward
passing algorithm. So even though the initial Qn is mis-specified in terms of the
relationship of W4 and W5, it is able to readjust in the updating steps, while the EE
does not posses this quality. However, the Mean SE which is based on the mis-
specified estimate of the influence curve, does blow up in this situation for both
the TMLE and the EE. Thus, the coverage probabilities are 1 but they are so large
that they are useless in practice. However, the stability of the TMLE estimates sug-
gests that quantile based confidence intervals constructed with the nonparametric
bootstrap would still produce reasonable confidence intervals. This demonstrates
an important advantage (i.e., robustness property) of the nonparametric bootstrap
relative to influence curve based inference that relies on consistent estimation of g0.

5 Tshepo Analysis Revisited
In an earlier paper we used a targeted maximum likelihood estimator (TMLE) to
assess the causal effects of different cART treatments on the time until HIV viral
progression. That analysis was based on the Tshepo study, an open-label, ran-
domized, 3x2x2 factorial design HIV study of 650 subjects conducted at Princess
Marina Hospital in Gaborone, Botswana to evaluate the efficacy, tolerability, and
development of drug resistance of six different first-line cART regimens. For more
details about the study see Wester et al. (2010). In particular, we focused on the
effect of two NNRTI-based cART therapies to which subjects were randomized.
The two therapies of interest were efavirenz (EFV) and nevirapine (NVP) and we
assessed the causal effect of treatment as well as whether gender modified the effect
of the therapy. The initial paper illustrated the advantages of using TMLE to esti-
mate causal effects on time to event outcomes, as opposed to the Cox proportional
hazards model, the typical approach in this setting.

Our initial analysis of the Tshepo study was based on TMLEs of the causal
effect of the treatment on survival, and corresponding effect-modification parame-
ters, only adjusting for the baseline covariates (Stitelman and van der Laan (2011)).
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Correctly Specifying Initial Models
Time Dependent Baseline

TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.468 0.468 0.174 0.432 0.433 0.396
Mean SE 0.027 0.027 0.026 0.033 0.033 0.067
Mean Square Error 0.00068 0.00067 0.08732 0.00251 0.00241 0.00731
Coverage 0.960 0.960 0.000 0.798 0.810 0.836
Removing W4(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.457 0.455 0.172 0.420 0.421 0.411
Mean SE 0.034 0.063 0.026 0.035 0.036 0.067
Mean Square Error 0.00133 0.01211 0.08893 0.00360 0.00359 0.00512
Coverage 0.900 0.900 0.000 0.740 0.740 0.910
Removing W5(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.459 0.461 0.173 0.411 0.411 0.396
Mean SE 0.034 0.066 0.026 0.038 0.038 0.065
Mean Square Error 0.00133 0.01649 0.08840 0.00467 0.00465 0.00725
Coverage 0.920 0.920 0.000 0.640 0.650 0.810
Removing W4(t) and W5(t) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Mean of Estimates 0.462 1.243 0.357 0.405 0.405 0.403
Mean SE 0.616 0.619 0.056 0.038 0.038 0.063
Mean Square Error 0.00472 1.02729 0.01415 0.00549 0.00549 0.00604
Coverage 1.000 1.000 0.440 0.590 0.600 0.870

Table 4: Simulation Results For Both Models Mis-specified: Mean of Estimates
and Mean Square Error for All Six Estimators

Here we extend this TMLE to account for potential bias due to informative censor-
ing by time-dependent covariates, CD4 and viral load, which have an affect on both
the time to drop-out and the time to event of interest. We will directly compare
results using the TMLE that only incorporates the baseline covariates to the TMLE
that accounts for time dependent confounding. Moreover, we will compare these
results to results based on an IPCW estimator and a locally efficient double robust
estimating equation based estimator.

For the analysis performed here, we evaluate the effect modification of gen-
der on the two cART treatments for two outcomes of interest:

1. Time to death censored by treatment modification or end of study (DEATH).
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2. Time to minimum of virologic failure, death, or treatment modification cen-
sored by end of study (TLOVR).

For each of the two time to event outcomes we will estimate the difference
in additive risk by gender at 36 months after randomization to cART therapy. We
will estimate this parameter using the six estimators examined in the simulation
analysis in the previous section. Prior to doing this analysis, we expected that uti-
lizing the time-dependent covariates should have a small effect on the estimates for
the TLOVR outcome since censoring is independent for this time to event outcome.
On the other hand, the time to death is subject to censoring by time to treatment
modification which is expected to be informed by CD4 and viral load, so that one
might expect a bias reduction for the new TMLE relative to the previously imple-
mented TMLE that only incorporated the baseline covariates.

Table 5 shows the results for the TMLE of treatment effect modification
by gender for the TLOVR outcome. As expected, there is little difference in the
TMLE with only baseline covariates and the TMLE which also incorporates the
time-dependent covariates, in the sense that the point estimate, standard error (SE),
and p-value are similar. However, the two double robust locally efficient estimators
have much lower estimates of the standard error. The method used to estimate the
SE for the IPCW estimator is known to be conservative, so a direct comparison in
this situation is not appropriate. However, if one looks at the risk difference at 36
months, the point estimates do change slightly for the two double robust locally
efficient estimators that take into account time dependent covariates (TD TMLE
and TD EE) compared to their baseline counterparts ( BASE TMLE and BASE
EE). Given our simulation results and the supporting theory, this change in the point
estimate may be attributed to an efficiency gain due to an adjustment for empirical
confounding, a chance imbalance between the confounders for different levels of
censoring. The fact that the IPCW estimator does not change is just further evidence
of this estimator’s inability to efficiently extract information from the data. Overall,
these changes do not make an appreciable difference in the conclusions drawn from
the results. The results, as a whole, indicate that gender does in fact modify the
effect of drug treatment on the TLOVR outcome. The same conclusion that was
determined based on an analysis that just accounts for baseline confounding.

Table 6 shows the results for treatment effect modification by gender for
the death outcome. In this table, we see an appreciable difference in TD TMLE
versus BASE TMLE. In fact, this difference changes the way in which the results
may be interpreted. In this case we know that there is a large amount of informative
censoring since treatment modification is one of the censoring events and individ-
uals modify treatment for many reasons, including that there are side effects or the
treatment is not working. The difference between TD TMLE and BASE TMLE is
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Risk Difference @ 36 Months
Time Dependent Baseline

TMLE DR-EE IPCW TMLE DR-EE IPCW
Est 20.0% 20.1% 18.3% 18.9% 18.9% 18.3%
SE 5.0% 4.9% 10.3% 4.9% 4.9% 10.3%

p <0.001 <0.001 0.074 <0.001 <0.001 0.074

Table 5: Gender Effect Modification on TLOVR

Risk Difference @ 36 Months
Time Dependent Baseline

TMLE DR-EE IPCW TMLE DR-EE IPCW
Est 6.3% 6.5% 5.2% 5.1% 5.1% 5.2%
SE 2.3% 2.3% 12.5% 2.4% 2.4% 12.5%

p-value 0.005 0.004 0.680 0.029 0.030 0.680

Table 6: Gender Effect Modification on Death

striking and the change in significance moves from significant at the 95 percent level
to significant at the 99.5 percent level. The TD TMLE results indicate that gender
does in fact modify the effect of the drug treatment EFV/NVP and the difference in
the effect between males and females at 36 months is 6.3 percent.

Figure 1 shows the survival curves upon which these parameter estimates
are based. The IPCW estimator, due to its instability and inefficient use of the data,
is unable to produce any bias reduction by accounting for time dependent covariates
in this situation. Figure 2 more clearly depicts the instability of IPCW in situations
with sparse outcomes like this one. The figure compares the TD TMLE to the TD
IPCW treatment specific survival curve for men treated with EFV. It is clear from
these plots that the IPCW estimator is unable to stay stable and produce a mono-
tonic survival curve, while the TMLE remains stable and produces sensible results.
In other situations we have observed the IPCW estimator to produce estimates of
survival probabilities that exceed 1. These characteristics of the IPCW estimator
make it unreliable in practice.

6 Discussion
This article represents the first implementation of TMLE to estimate the causal
effect of a multiple time point intervention that is subject to time-dependent con-
founding. In this particular case, the multiple time point intervention is represented
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Figure 1: Gender Specific Treatment Specific Survival Curves: Death Outcome

by a point treatment at baseline, and a time-dependent process that can only jump
once from zero to one, where the latter represents the censoring process. The TMLE
presented here generalizes to TMLE of causal effects of any other multiple time
point intervention that is subject to time-dependent confounding. This general-
ization includes the TMLE of the causal effect of a time-dependent treatment or
exposure on a time to event outcome that might also be subject to right-censoring,
incorporating time-dependent covariate processes to improve efficiency and remove
bias.

The enormous challenge in semiparametric estimation of causal effects of
multiple time-point intervention has been that incorporating an estimate of the treat-
ment and censoring mechanism can easily do more harm than good. Even esti-
mating equation based estimators, known to be double robust and asymptotically
locally efficient, suffer from this instability due to not respecting known global
constraints implied by the statistical model. On the other hand, by being a substitu-
tion estimator, TMLE fully respects all global constraints implied by the statistical
model and the target parameter mapping, while being double robust and locally ef-
ficient. For example, consider the TMLE implemented in this article. If at any point
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Figure 2: Treatment Specific Survival Curves For Men Treated With EFV: TD
TMLE vs TD IPCW

in time t for a particular subject the censoring probability approaches 1, then that
subject will contribute at that time point t large weights for the TMLE-updates of
Qs jl,n for s≥ t. That means, such subjects can cause large values of the fluctuation
parameters εs jl . However, these potentially large values of the fluctuation param-
eters enter on the logistic scale, and can at most cause predicted probabilities for
some of the binary variables to approach 1 or 0.

The results of our simulations and data analyses demonstrate the remark-
able stability of the TMLE that incorporates all measured covariates, reproducing
results obtained with robust methods that ignore time-dependent covariates when it
is known that censoring is exogenous, while it properly adjusts for time-dependent
confounding in the case that the outcome is subject to informative censoring. It
is shown that this stands in sharp contrast to the currently popular IPCW-estimator
that is typically not able to properly utilize the measured time-dependent covariates.
Moreover, we have shown that even when both the initial estimates of Qn and gn
are mis-specified the TMLE remains very stable relative to other methods.
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We suggest that this TMLE should replace the current analysis of random-
ized controlled trials with time to event outcomes based on Cox-proportional haz-
ards analysis. The Cox-proportional hazards analysis is known to be biased because
it ignores both baseline and time-dependent covariates and is also known to be
very inefficient. TMLE improves on IPCW, augmented IPCW-estimation as well
as on maximum likelihood based methods such as multiple imputation methods,
but provides an important marriage between the camps that pursue double robust
semiparametric efficient estimators, and the camp that prefers the practically ro-
bust maximum likelihood based substitution estimators based on parametric mod-
els. One particular limitation of TMLE is that it is a more complex method than
IPCW estimators and this may make practitioners less likely to adopt TMLE. How-
ever, hopefully the advantages of TMLE in terms of stability and robustness will
outweigh the complexity and computational costs needed for implementing TMLE.

In future work we plan to extend this TMLE to other causal inference prob-
lems, and incorporate the C-TMLE extension of TMLE that allows the selection
of covariates into the estimates of the censoring and treatment mechanisms based
on the log-likelihood of the resulting TMLE (van der Laan and Gruber (2010)). In
the Appendix to our earlier technical report we provide a generalization of our fast
implementation of TMLE to general longitudinal data structures, and parameters
defined by marginal structural working models for static or dynamic interventions
(Stitelman et al. (2011)).
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A Appendix A: The Clever Covariate Under The Bi-
nary Factorizaiton

The efficient influence curve can be represented as a projection of an IPCW-estimating
function DIPCW onto the tangent space of the parameter Q:

D∗(Q,g) = Π(DIPCW |TQ);

where TQ is the tangent space of the Q-factor of the density P = Qg of O. The
DIPCW is given by

DIPCW (O) =
1(A = a)1(C > K)1(T > K)

gA(0)(a)∏
K
t=1 gAc(t)(0 | Pa(Ac(t)))

,

where C is the censoring time and T is the event time. Thus the efficient influence
curve can be decomposed as

D∗(Q,g) = ∏(DIPCW (Q,g) | TQ) = D0 +∑
t jl

Dt jl,

where, D0 and Dt jl are given by:

D0 = P[La,0(K +1,1,1) = 0 | A = a,L(0)]
Dt jl = Ct jl(Q,g)[L(t, j, l)−QL(t, j,l)(1 | Pa(L(t, j, l)))].

The function Ct jl(Q,g) is only a function of O through Pa(L(t, j, l)) and can be
factorized into a part that is a function of g and a part that is a function of Q:

Ct jl(Q,g) =Ct jl(Q)Ct jl(g),

where

Ct jl(Q) = {P[La,0(K +1,1,1) = 0 | L(t, j, l) = 1,Pa(L(t, j, l))]− (8)
P[La,0(K +1,1,1) = 0 | L(t, j, l) = 0,Pa(L(t, j, l))]},

and

Ct jl(g) =
I(A = a)I(C > t−)

gA(0)(1 | L(0))∏
t−1
s=1 gA(s)(0 | Pa(A(s))

. (9)
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