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Abstract
Targeted minimum loss based estimation (TMLE) provides a template for the construction of

semiparametric locally efficient double robust substitution estimators of the target parameter of the
data generating distribution in a semiparametric censored data or causal inference model (van der
Laan and Rubin (2006), van der Laan (2008), van der Laan and Rose (2011)). In this article we
demonstrate how to construct a TMLE that also satisfies the property that it is at least as efficient
as a user supplied asymptotically linear estimator. In particular it is shown that this type of TMLE
can incorporate empirical efficiency maximization as in Rubin and van der Laan (2008), Tan (2008,
2010), Rotnitzky et al. (2012), and retain double robustness. For the sake of illustration we focus
on estimation of the additive average causal effect of a point treatment on an outcome, adjusting for
baseline covariates.
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1 Introduction
Targeted minimum loss based estimation (TMLE) provides a template for the con-
struction of semiparametric locally efficient double robust substitution estimators
of the target parameter of the data generating distribution in a semiparametric cen-
sored data or causal inference model (van der Laan and Rubin (2006), van der Laan
(2008), van der Laan and Rose (2011)). It is assumed that the data set is a realiza-
tion of n independent and identically distributed random variables, the probability
distribution of this random variable is known to be an element of a semiparamet-
ric statistical model, and the target parameter (mapping) is defined as a particular
function of the possible probability distributions in this semiparametric model. A
targeted minimum loss based estimator (TMLE) of the target parameter is defined
by an initial estimator of a relevant part of the data generating distribution, a para-
metric submodel through an initial estimator, a loss function for this relevant part,
minimizing the empirical risk of the loss function along the parametric submodel to
iteratively update the initial estimator until convergence. This final estimator is the
TMLE of the relevant part of the data generating distribution, and the evaluation of
its target parameter value is the TMLE of the target parameter. By enforcing that the
loss-based score of the submodel (at zero fluctuation of the initial estimator) spans
the efficient influence curve of the target parameter (at the initial estimator), it fol-
lows that the TMLE of the relevant part of the data generating distribution solves the
efficient score estimating equation, making the TMLE locally efficient and double
robust, under regularity conditions. By choosing a parametric submodel with extra
fluctuation parameters, the TMLE can be arranged to solve additional estimating
equations, and thereby satisfy additional properties of interest (e.g., be an imputa-
tion estimator, see Gruber and van der Laan (2010a)). One particular example of
such an iterative TMLE was presented in the original TMLE article, van der Laan
and Rubin (2006), which involved also fluctuating the treatment/censoring mecha-
nism, resulting in a TMLE that, assuming convergence, also equals an IPTW/IPCW
estimator and is guaranteed to outperform the IPTW/IPCW estimator defined by the
initial estimator of the treatment/censoring mechanism.

Another desirable property of an estimator is that it is guaranteed to be
more efficient than a user-supplied class of estimators in the case that the cen-
soring/treatment mechanism is correctly specified. This has been achieved with
empirical efficiency maximization (Rubin and van der Laan (2008), Tan (2008,
2010),Cao, Tsiatis, and Davidian (2009), van der Laan and Rose (2011)). How-
ever, in general this technique as presented in Rubin and van der Laan (2008) may
come at a cost of losing double robustness (e.g, see Robins and Rotnitzky (1992)
and van der Laan and Robins (2003)). Tan (2008) demonstrates how in the context
of estimating equation methodology for estimating a population mean under miss-
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ingness the double robustness can be preserved. Recently, Rotnitzky, Lei, Sued,
and Robins (2012) shows how to combine empirical efficiency maximization with
double robust locally efficient substitution estimators, by fluctuating the treatment
mechanism with a carefully chosen clever covariate derived from the empirical effi-
ciency maximization procedure. Borrowing this fundamental idea, in this article we
demonstrate that this enhanced efficiency property can be achieved with the above
mentioned TMLE of van der Laan and Rubin (2006) (jointly updating treatment
mechanism and outcome regression), by fluctuating the treatment mechanism with
this additional clever covariate as suggested by Rotnitzky et al. (2012). TMLE with
this property remains double robust, and is as efficient as any competing regular
asymptotically linear estimator. For the sake of illustration we focus on estimation
of the additive average causal effect of a point treatment on an outcome, adjusting
for baseline covariates.

1.1 Organization

In Section 2 we present the statistical estimation problem. In Section 3 we present
the TMLE, and the enhanced empirically efficient TMLE, and explain its prop-
erties. From the presentation in Section 3, for experts familiar with the theory of
augmented IPCW estimating equations (Robins and Rotnitzky (1992), van der Laan
and Robins (2003)) it will also be clear how this TMLE is generalized to all CAR-
censored data and causal inference models. In Section 4 we review the method for
empirical efficiency maximization of Rubin and van der Laan (2008), and an adap-
tive version of it as presented in van der Laan and Rose (2011), used as an ingredient
in the enhanced empirically efficient TMLE. In Section 5 we present simulations
confirming the enhanced efficiency property of the TMLE presented in Section 3,
and comparing it with the (non-double robust) empirical efficiency maximization
estimator in Rubin and van der Laan (2008), and a regular TMLE. We end with
some concluding remarks. We also provide an appendix with the R-code of the
TMLEs implemented in the simulation study.

2 The statistical model, target parameter, and esti-
mation problem

Let O = (W,A,Y )∼ P0 be a random variable, where W represents a vector of base-
line covariates, A a binary treatment, and Y a continuous or binary outcome with
values in [0,1]. Let g0(A |W ) be the conditional probability distribution of A, given
W . Consider a statistical model M that makes no assumptions about the marginal
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distribution of W , and the conditional distribution of Y , given A,W , but might make
assumptions about g0. In particular, it is assumed that 0 < g0(1 |W ) < 1 so that
the following target parameter is well defined. The statistical target parameter
Ψ : M → IR of interest is defined as

Ψ(P) = EP(EP(Y | A = 1,W )−EP(Y | A = 0,W )).

If one assumes an underlying nonparametric structural equation model W = fW (UW ),
A= fA(W,UA), Y = fY (W,A,UY ) (Pearl (2000)), and the randomization assumption
UA is independent of UY , given W , then Ψ(P0) identifies the additive causal effect
E0(Y (1)−Y (0)), where Y (a) = fY (W,a,UY ) is the treatment-specific counterfac-
tual. For the sake of estimation, we are only concerned with the statistical target
parameter.

Let QW (P) be the marginal distribution of W under P, Q̄(P)(A,W ) = EP(Y |
A,W ), and we will denote corresponding parameter values with QW and Q̄, respec-
tively. Let Q(P) = (QW (P), Q̄(P)). Note that Ψ(P) only depends on P through
QW (P) and Q̄(P). Therefore, we will also use the notation

Ψ(Q) = EQW {Q̄(1,W )− Q̄(0,W )}.

Our goal is to estimate ψ0 = Ψ(Q0) based on observing n i.i.d. copies O1, . . . ,On
of O∼ P0 ∈M .

The TMLE requires knowing the canonical gradient/efficient influence curve
of the pathwise derivative of Ψ : M → IR. The efficient influence curve of Ψ : M →
IR at P is given by

D∗(P)(O) =
2A−1

g(A |W )
(Y − Q̄(A,W ))+

{
Q̄(1,W )− Q̄(0,W )−Ψ(Q)

}
≡ D∗Y (P)(O)+D∗W (P)(W ),

where the latter decomposition in a score D∗Y (P) of the conditional distribution of
Y , given A,W , and score D∗W (P) of the marginal distribution of W will be utilized
in TMLE. In order to establish the enhanced efficiency property of the proposed
TMLE we will also utilize the augmented IPCW-representation of the efficient in-
fluence curve (Robins and Rotnitzky (1992), van der Laan and Robins (2003)):

D∗(P)(O) =
2A−1

g(A |W )
Y −Ψ(Q)−

{
Q̄(1,W )

g(1 |W )
+

Q̄(0,W )

g(0 |W )

}
(A−g(1 |W ))

≡ DIPTW (Q,g)(O)+DCAR(Q̄,g)(O),

where DCAR(Q̄,g) =−HCAR(Q,g)(W )(A−g(1 |W )) with

HCAR(Q,g)(W )≡
{

Q̄(1,W )

g(1 |W )
+

Q̄(0,W )

g(0 |W )

}
.
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In cases where we want to stress the representation of the efficient influence curve
D∗(P) as an estimating function in ψ indexed by nuisance parameters Q̄0,g0, we
will also use the notation DIPTW (ψ0,g0) for DIPTW (Q0,g0), and D∗(ψ0, Q̄0,g0) for
D∗(P0). We will use the subscript ′0′ to denote the truth, and ′n′ to denote estimates
from data.

Another ingredient of the TMLE presented in the next section is an influence
curve D(P) of a competing regular asymptotically linear estimator of Ψ at P in the
model M . The TMLE ψ∗n will be constructed so that it is at least as efficient as
this competing estimator at P0 in the case that we estimate g0 consistently. By
the representation theorem for the class of gradients in CAR-censored data models
(van der Laan and Robins (2003), p. 65), it follows that

D(P) = DIPTW (Q,g)+DCAR(Q̄e,g)

for a particular function Q̄e = Q̄e(P). Let Q̄e
0 denote the true value of this parameter

P→ Q̄e(P).
The TMLE presented in the next section will use an estimator Q̄e

n of Q̄e
0 in

order to define a clever covariate HCAR(Q̄e
n,g

k
n) in the definition of the TMLE. As a

consequence of this choice of clever covariate, the TMLE Q∗n,g
∗
n will solve

0 = Pn
(
DIPTW (ψ∗n ,g

∗
n)+DCAR(Q̄e

n,g
∗
n)
)
,

and thereby have an influence curve at least as efficient as D(P0), if g0 is estimated
consistently.

A particular choice for Q̄e
0 is defined by empirical efficiency maximization

over a user-supplied working model as in Rubin and van der Laan (2008). That is,
let {Q̄β : β} be a parametric working model, and define

Q̄e(P0) = argmin
Q̄β

P0{DIPTW (ψ0,g0)+DCAR(Q̄β ,g0)}2. (1)

Here we used the notation P f ≡
∫

f (o)dP(o). With this choice, D(P0) represents
the influence curve with minimal variance among the class of influence curves
{DIPTW (Q0,g0)+DCAR(Q̄β ,g0) : β} indexed by β .

3 The TMLE that is at least as efficient as competing
estimator

The TMLE of Ψ(Q0) as presented in van der Laan and Rubin (2006) is defined by 1)
a loss function L (Q,g)=L (Q)+L (g) for (Q0,g0) so that Q0 = argminQ P0L (Q),
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g0 = argming P0L (g), 2) a submodel {Q(ε1) : ε1} through Q at ε1 = 0, a submodel
{g(ε2) : ε2} through g at ε2 = 0, and 3) an initial estimator Q0

n, g0
n. The TMLE is

defined by iterative minimization of the empirical risk, and updating:

ε1n = argmin
ε1

PnL (Q0
n(ε1))

ε2n = argmin
ε2

PnL (g0
n(ε2)),

Q1
n =Q0

n(ε1n), g1
n = g0

n(ε2n), and this updating process is iterated until εn =(ε1n,ε2n)
≈ 0. The resulting Q∗n,g

∗
n solve the loss-based score equation:

Pn
d

dε
L (Q∗n(ε),g

∗
n(ε))

∣∣∣∣
ε=0

= 0. (2)

By defining the loss-function L and submodel through (Q,g), one can control the
estimating equation (2) solved by the TMLE. In particular, one wants the loss-
based scores to span the efficient influence curve D∗(Q∗n,g

∗
n) so that the resulting

Ψ(Q∗n) will be double robust and locally efficient. Below we present a submodel
{g(ε2) : ε2} so that the additional desired enhanced efficiency property is achieved
as well. The goal is to guarantee that the estimator is at least as efficient as a given
estimator, even when Q̄ is misspecified, and one application of this is to guarantee
that it is at least as efficient as an empirically efficient estimator that maximizes
efficiency over a parametric model. The TMLE presented in this article is improved
locally efficient, and, as in Rotnitzky et al. (2012), is double robust and will be at
least as efficient as the augmented IPTW estimator that uses Q̄e

n as an estimator of
the true Q̄0, and tailors Q̄e

n to maximize efficiency when g∗n is consistent.

3.1 Initial estimators

Let Q0
W,n, Q̄0

n, g0
n, and Q̄e

n be initial estimators of QW,0, Q̄0, g0, and Q̄e
0, respectively.

Let Q0
W,n = QW,n be the empirical probability distribution of W1, . . . ,Wn. The esti-

mator of Q̄0 can be based on the least squares or (quasi-)log-likelihood loss function

L (Q̄)(O) =−
{

Y log Q̄(A,W )+(1−Y ) log{1− Q̄(A,W )}
}
. (3)

This is the log-likelihood loss-function for Q̄0 if Y is binary. We refer to Gruber
and van der Laan (2010b) in which this loss function is proposed for TMLE with
a continuous bounded outcome Y ∈ [0,1]. By a simple linear transformation, this
also provides a loss function for Y ∈ [a,b] with bounded a,b. In particular, Q̄0
could be estimated with a loss-based super learner using this loss function for the
cross-validation selector (van der Laan, Polley, and Hubbard (2007)).
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The estimator of g0 can be based on the log-likelihood loss function L (g) =
− logg. The estimation method for Q̄e

0 might depend on the type of parameter it
represents. If Q̄e

0 is defined by (1), then one could estimate it as

Q̄e
n = argmin

Q̄β

Pn{DIPTW (ψ0
n ,g

0
n)+DCAR(Q̄β ,g

0
n)}2, (4)

where Pn denotes the empirical probability distribution of O1, . . . ,On, and ψ0
n rep-

resents an estimator of ψ0 that is consistent if g0
n is consistent. For example, ψ0

n
could be any TMLE that takes Q̄0

n and g0
n as initial estimator. We assume that Q̄e

n is
consistent for Q̄e

0 if g0
n is consistent.

3.2 Loss function

We select the log-likelihood loss functions L (g) = − logg, L (QW ) = − logQW
for g0 and QW,0, respectively, and we select L (Q̄) (3) as loss function for Q̄0. Let
L (Q,g)≡L (Q̄)+L (QW )+L (g) be the loss function for (Q0,g0).

3.3 TMLE that is at least as efficient as competing estimator

Let ḡ(W )≡ g(1 |W ). For a given Q̄k
n, gk

n, define the submodels

LogitQ̄k
n(ε1) = LogitQ̄k

n + ε1H∗(gk
n)

Logitḡk
n(ε2) = Logitḡn + ε21HCAR(Q̄k

n,g
k
n)+ ε22HCAR(Q̄e

n,g
k
n),

where H∗(gk
n) = (2A− 1)/g(A |W ). We also define a submodel QW,n(ε0) = (1+

ε0D∗W (Qk
n))QW,n through the empirical probability distribution QW,n. Let ε =(ε0,ε1,

ε2 =(ε21,ε22))). This defines a submodel (Qk
n(ε),g

k
n(ε)) through (Qk

n =(Qk
W,n, Q̄

k
n),

gk
n) at ε = 0. The scores d

dε
L(Qk

n(ε),g
k
n(ε)) of (ε0,ε1) at ε = 0 spans the efficient

influence curve D∗(Qk
n,g

k
n). The score of ε2 at ε = 0 spans any linear combination

of DCAR(Q̄k
n,g

k
n) and DCAR(Q̄e

n,g
k
n).

Given a current estimator (Qk
n,g

k
n), we estimate ε with the MLE εk

n based on
loss function L (Q,g):

ε
k
0n = argmin

ε0
−Pn logQk

W,n(ε0)

ε
k
1n = argmin

ε1
PnL (Q̄k

n(ε1))

ε
k
2n = argmin

ε2
−Pn loggk

n(ε2).
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Note that εk
1n and εk

2n can be fitted with standard univariate logistic regression in-
corporating an offset. We start with k = 0. This defines the first step TMLE up-
date (Q1

n = Q0
n(ε

0
n ),g

1
n = g0

n(ε
0
n )). We can iterate this updating algorithm until con-

vergence so that εn ≈ 0. Let (Q∗n,g
∗
n) be the final TMLE at convergence. Since

Q0
W,n is the empirical probability distribution, we have εk

0n = 0 for all k, so that
this empirical probability distribution is not updated by the TMLE algorithm, i.e.,
Q∗n = (QW,n, Q̄∗n). The TMLE of ψ0 is the substitution estimator ψ∗n = Ψ(Q∗n).

An iterative TMLE algorithm involving updating both g0
n and Q0

n was pre-
sented and implemented in van der Laan and Rubin (2006)), that did not include
the extra clever covariate H(Q̄e

n,g
k
n). The important choice of extra clever covariate

H(Q̄e
n,g

k
n) in a model for g0 in order to establish the enhanced efficiency property

without losing double robustness was presented in Rotnitzky et al. (2012).

3.4 Estimating equations solved by TMLE, and resulting alter-
native representations of the TMLE

We assume that the algorithm converges. In that case, (Q∗n,g
∗
n) solves the score

equations for the sub-model {Q∗n(ε),g∗n(ε) : ε} at ε = (ε0,ε1,ε21,ε22) = 0. As a
consequence, the TMLE solves the following equations:

PnD∗(ψ∗n , Q̄
∗
n,g
∗
n) = 0

PnDIPTW (ψ∗n ,g
∗
n) = 0

PnDCAR(Q̄e
n,g
∗
n) = 0

PnD∗(ψ∗n , Q̄
e
n,g
∗
n) = 0.

This allows for a variety of representations of the TMLE. It is a plug in estimator

ψ
∗
n = Ψ(Q∗n);

it is an IPTW estimator

ψ
∗
n =

1
n

n

∑
i=1

2Ai−1
g∗n(Ai |Wi)

Yi;

it is an augmented IPCW-estimating equation based estimator

ψ
∗
n =

1
n

n

∑
i=1

2Ai−1
g∗n(Ai |Wi)

Yi−HCAR(Q∗n,g
∗
n)(Wi)(Ai− ḡ∗n(Wi)),

corresponding with the implicit estimator Q̄∗n,g
∗
n of the nuisance parameters (Q̄0,g0)

of the estimating function D∗(ψ, Q̄0,g0) in ψ; and, finally, it is also an augmented
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IPCW-estimating equation based estimator

ψ
∗
n =

1
n

n

∑
i=1

2Ai−1
g∗n(Ai |Wi)

Yi−HCAR(Qe
n,g
∗
n)(Wi)(Ai− ḡ∗n(Wi)),

corresponding with estimating Q0 with Qe
n.

Even though the TMLE allows these representations, the actual construction
of the TMLE is fundamentally different from these estimators since the nuisance
parameters g0,Q0 are estimated with the implicitly defined TMLE g∗n,Q

∗
n itself. So

from that perspective it is misleading to refer to the TMLE as also being an IPCW
and augmented-IPCW estimator, since the latter estimators are defined by solving
the corresponding estimating equation at an initial explicit estimator of the nuisance
parameters g0,Q0. Nonetheless, these representations help us understand that the
proposed TMLE will inherit the same asymptotic properties as these estimating
equation based estimators, while retaining fundamental advantages by also being a
well defined substitution estimator respecting the global constraints of the statisti-
cal model and target parameter TMLE does not require a closed form estimating
equation, but indirectly solves the efficient influence curve equation (and avoids the
problem of multiple solutions) as a by-product of minimizing a loss function for fit-
ting the fluctuation parameter. In addition, by simultaneously fitting the additional
parameter derived by Rotnitzky et al. (2012), the proposed algorithm ensures that
additional score equations associated with empirical efficiency maximization are
solved. The iterative procedure can be carried out to arbitrary precision.

In the case that Qe
n is defined by empirical efficiency maximization (1), then

the latter estimator is the estimator of Rubin and van der Laan (2008), obtained by
maximizing empirical efficiency of the class of estimating functions D(ψ, Q̄β ,g0)
(or equivalently, D(ψ, fβ ,g0), as reviewed in next section) over the working model
{Q̄β : β} at the (implicit) estimator g∗n of g0, and defining the estimator of ψ0 as
the solution of the corresponding estimating equation. Note that in this particular
situation Q̄e

n could be used as an initial estimator of Q̄0 in the above algorithm.
However, in general, substituting Q̄e

n for Q̄0
n has drawbacks. In the above procedure

Q̄0
n plays the role of the best initial estimate of the relevant portion of the likelihood,

while Q̄e
n comes from the influence curve of an estimator that provides an upper

bound on the efficiency of the parameter estimate. This estimator may be less than
ideal, for example, Q̄e

n might be a parametric regression-based estimator, when in
fact it is not necessary to place such a restriction on Q̄0

n, thus it is important to
distinguish between these two objects, and obtaining a separate estimate of Q̄0

n is
preferred.
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3.5 Properties of TMLE

The TMLE presented above satisfies both the definition of the TMLE as well as
the definition of the empirical efficient maximization (estimating equation based)
estimator of Rubin and van der Laan (2008), using the implicit estimator g∗n for g0.
As a consequence, it inherits the properties of both the TMLE, as a locally efficient
double robust substitution estimator, as well as the empirically efficient maximiza-
tion estimator of Rubin and van der Laan (2008), as an estimator that is maximally
efficient among a user supplied class of asymptotically linear estimators in the case
that g0 is estimated consistently. For the sake of being self-contained we present
here the rationale resulting in these properties. Formal proofs of these properties
would require regularity conditions, and is beyond the scope of this article. There-
fore, below we present the general statements, and refer to the general theorems that
would have to be applied to formally establish the claimed asymptotic properties.
For a completely worked out proof of a TMLE for the additive treatment effect, we
refer to Zheng and van der Laan (2010) and van der Laan and Rose (2011).

By the fact that it is a TMLE that solves the efficient influence curve esti-
mating equation PnD∗(ψ∗n , Q̄

∗
n,g
∗
n) = 0 it follows that ψ∗n will be consistent if either

Q̄∗n or g∗n is consistent. In addition, under regularity conditions (e.g., van der Laan
and Robins (2003), van der Laan and Rubin (2006)), ψ∗n will be an asymptotically
linear estimator if either Q̄∗n or g∗n is consistent, and it will be efficient if both are
consistent. This corresponds with stating that ψ∗n is a double robust locally efficient
estimator.

Before we proceed with explaining the enhanced efficiency property we first
provide background on estimating equation based estimators in CAR censored data
models (Robins and Rotnitzky (1992), van der Laan and Robins (2003)). Sup-
pose that ψn is an estimator that solves the estimating equation 0 = PnD∗(ψ, Q̄,g0)
for some Q̄. Then it follows that ψn is asymptotically linear with influence curve
D∗(ψ0, Q̄,g0). In addition, if Q̄n converges to Q̄, then under weak regularity condi-
tions, we have that the solution ψn of PnD∗(ψ, Q̄n,g0) is also asymptotically linear
with influence curve D∗(ψ0, Q̄,g0). By Theorem 2.3 in van der Laan and Robins
(2003), if the estimator g∗n of g0 is such that a particular specified smooth function
Φ(g∗n) is an efficient estimator of Φ(g0) so that its influence curve is an element of
the tangent space TCAR(P0) = {S(A |W ) : Eg0(S |W ) = 0} of g at P0 under CAR,
then, under regularity conditions, the solution ψn of PnD∗(ψ, Q̄n,g∗n) = 0 is asymp-
totically linear with an influence curve that has a variance smaller than or equal to
the variance of D∗(ψ, Q̄,g0). (Here TCAR(P0) consists of all functions, S, of A,W
with conditional mean zero, given W , which corresponds with the definition of
TCAR(P0) as the tangent space of the censoring mechanism g as in van der Laan and
Robins (2003).) That is, consistent (and efficient) estimation of the orthogonal nui-
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sance parameter g0 only improves the efficiency of the estimating equation based
estimator of ψ0. Since g∗n is a pure MLE-based estimator, under regularity condi-
tions, and under the assumption that g0

n is consistent for g0, one can show that Φ(g∗n)
is an asymptotically linear estimator of Φ(g0) with influence curve in TCAR(P0).

Given that we know that PnD∗(ψ∗n , Q̄
e
n,g
∗
n) = 0, if g∗n is consistent for g0 and

Q̄e
n converges to Q̄e

0, it follows that ψ∗n will be asymptotically linear with an influ-
ence curve with variance smaller than or equal to the variance of D∗(ψ0, Q̄e

0,g0).
That is, in the case that g∗n is consistent, the TMLE ψ∗n is at least as efficient as the
competing estimator whose influence curve equals D∗(ψ0, Q̄e

0,g0).

4 Empirical efficiency maximization
This section concerns the estimation of Qe

0 that forms an ingredient of the TMLE
presented above. We first review empirical efficiency maximization as presented in
Rubin and van der Laan (2008), and then we demonstrate how empirical efficiency
maximization can be embedded in loss-based learning of Q0 by using as loss func-
tion the square of the efficient influence curve (van der Laan and Rose (2011)).

4.1 Empirical Efficiency Maximization as in Rubin, van der Laan
(2008)

In order to determine a solution that optimizes the variance of the influence curve
among a class of influence curves the following method was proposed in Rubin and
van der Laan (2008). Firstly, it is noted that

D∗(g,Q) = DIPTW (Q,g)−HCAR(Q,g)(A−g(1 |W ))

= H∗g (A,W )(Y − f (Q,g)(W ))−Ψ(Q)

≡ D∗(g, f (Q,g),Ψ(Q)),

where H∗g (A,W ) = (2A−1)/g(A |W ), and

f (Q,g) = g(1 |W )Q̄(0,W )+g(0 |W )Q̄(1,W ).

Note that D∗(g, f ,ψ) = DIPTW (g,ψ)−HCAR( f ,g)(A−g(1 |W )), where

HCAR( f ,g) =
f (W )

g(1 |W )g(0 |W )
.

Therefore, minimizing the variance of D∗(g,Q,ψ0) over Q is equivalent with mini-
mizing the variance of D∗(g, f ,ψ0) over a corresponding class of f ’s. We have

VARP0D∗(g0, f ,ψ0) = E0
{

H∗2g0
(A,W )(Y − f (W ))2} .
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As a consequence, minimizing the variance of D∗(g,Q,ψ0) over f ’s corresponds
with minimum weighted least squares, whose solution is often unique, and for
which numerical routines are often available. Thus, given a working model { fβ : β}
for f , one can now define an optimal choice

f e(P0) = argmin
fβ

P0
{

H∗2g0
(A,W )(Y − fβ (W ))2} . (5)

The choice (5) can be estimated with weighted least squares by regressing Y on W
using weights H∗2g0

. An estimator f e
n of f e

0 results in a clever covariate HCAR( f e
n ,g

k
n)

in the k-th step of the TMLE-algorithm presented in the previous section.

4.2 Adaptive empirical efficiency maximization

The choice Q̄e(P0) (1) corresponds with minimizing the empirical risk of the loss
function Lg0(Q̄) = {D∗(ψ0, Q̄,g0)}2 over a working model {Q̄β : β}. Note that
Lg0 is indeed a valid loss function since Q̄0 = argminQ̄ P0Lg0(Q̄) (van der Laan and
Robins (2003)). The strength of this loss function is that its loss-based dissimilarity
is given by

P0{Lg0(Q̄)−Lg0(Q̄0)}= P0
{

D∗(ψ0, Q̄,g0)−D∗(ψ0, Q̄0,g0)
}2

,

which follows by the Pythagorean theorem (van der Laan and Rose (2011)). In
some cases (as in the previous subsection), one can define another (e.g., squared
error) loss function that has the same loss-based dissimilarity, but with an empir-
ical risk that might be easier to minimize. The validity of the loss function relies
on g0 being known or consistently estimated. At the known g0, this loss-based
dissimilarity is targeted towards ψ0 since it concerns approximating the true effi-
cient influence curve, and it also corresponds with minimizing the variance of the
influence curves D∗(ψ0, Q̄,g0) over Q̄.

Instead of working with a single working model, we can alternatively use
loss-based learning, using cross-validation based on this loss function Lg0 (van der
Laan and Dudoit (2003), van der Laan et al. (2007)). For example, suppose one
considers a collection of K working models {Q̄k

β k : β k}, k = 1, . . . ,K. Each working

model results in an estimator Q̄k
n defined by the minimizer of the empirical risk

PnLg0(Q̄
k
β k) over the working model indexed by parameter vector β k. One can now

select the choice k of working model with the V -fold cross-validation selector

kn = argmin
k

V

∑
v=1

∑
i∈Valv

Lg0(Q̄
k
n,v)(Oi),

where Valv is the validation sample for the v-th sample split, and Q̄n,v is the fit of
the k-th working model based on the training sample Trainv (i.e., the complement of
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Valv) for the v-th sample split, v = 1, . . . ,V The estimator would now be Q̄e
n = Q̄kn

β
kn
n

,

which plays the role of an estimator of Q̄e
0.

As shown in van der Laan and Rose (2011), the general oracle results of the
cross-validation selector kn apply to this loss function Lg0(Q̄) (van der Laan and
Dudoit (2003)), under the assumption that the efficient influence curve is uniformly
bounded in supremum norm (i.e., δ < g0(1 |W ) < 1− δ for some δ > 0). As a
consequence, under this boundedness condition, if none of the working models are
correctly specified, the cross-validation selector will asymptotically make the opti-
mal choice, even if the number K of working models grows polynomial in sample
size, while, if one of the working models is correctly specified, then the resulting
Q̄e

n will converge at rate 1/
√

n to Q̄0. These oracle results will also apply if g0 is es-
timated at a rate faster than that at which Q̄0 is estimated (van der Laan and Dudoit
(2003)).

As a consequence, if g0 is estimated consistently, the augmented IPTW es-
timator that uses Q̄e

n as estimator of Q̄0 will now have an influence curve that is
more efficient than D∗(ψ0, Q̄k

β k ,g0) for any β k, and any k = 1, . . . ,K. We note that
this estimator Q̄e

n based on using loss-based (super) learning can now be used in the
clever covariate HCAR(Q̄e

n,g
k
n) in the TMLE proposed in the previous section. The

TMLE presented in the previous section using this estimator Q̄e
n as estimator of Q̄e

0
will now not only be a double robust locally efficient substitution estimator, but,
if g0 is estimated consistently, it will also be at least as efficient as the augmented
IPTW estimator that uses Q̄e

n as estimator of Q̄0.
If one implements an Lg0-based super learner with a library of candidate

estimators of Q̄0 that includes nonparametric estimators, so that at least one candi-
date in the library will be asymptotically consistent for Q̄0, then Q̄e

0 = Q̄0 and Q̄e
n is

now an estimator of the globally optimal Q̄0. However, if one estimates g0 consis-
tently, then Q̄e

n is also a fully targeted estimator of Q̄0 in the sense that it is tailored
to result in a best estimate of the efficient influence curve itself. Again, we can use
this estimator Q̄e

n in the clever covariate HCAR(Q̄e
n,g

k
n) in the TMLE proposed in

the previous section. The resulting TMLE is not only a double robust locally effi-
cient substitution estimator, but also an augmented IPTW estimator that estimates
Q̄0 with an estimator Q̄e

n that is tailored to maximize efficiency in the case that gn is
consistent.
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5 Simulations illustrating empirical efficiency prop-
erty of TMLE

We illustrate the additional enhanced efficiency property of the TMLE proposed in
the previous section by comparing the performance of the enhanced TMLE with
the standard TMLE and the empirical efficiency maximization estimator proposed
in Rubin and van der Laan (2008). Two data generating distributions were defined,
and the additive treatment effect parameter was estimated for one thousand samples
of size n = 500 drawn from each. Results in Table 1 below verify that when there
are no violations of the positivity assumption, at a misspecified working model for
Q̄0 and correctly specified working model for g0, the performance of the enhanced
TMLE is on a par with the empirical efficiency maximization estimator, and both
outperform the TMLE that does not aim for maximal efficiency.

Data were generated according to the following two mechanisms:

W1,W2 ∼ N(0,1)
g0,1(1 |W ) = 0.5
g0,2(1 |W ) = Expit(−0.3−0.1W1−0.3W2)

P0,1(Y = 1 | A,W ) = Expit(−1+A+W1 +2.5W 2
1 )

P0,2(Y = 1 | A,W ) = Expit(−1+A+W1 +2.5W 2
1 −0.2W2).

The first simulation study mimics a randomized controlled trial in which treatment
assignment is independent of baseline covariates W = (W1,W2). The probability of
being assigned to the treatment group is 0.5 for all subjects. In the second study W1
and W2 confound the effect of treatment on the outcome. For this simulation true
treatment assignment probabilities ranged between 0.26 and 0.60. The true values
of the target parameter for these two simulations are ψ0,1 = 0.1579 and ψ0,2 =
0.1570. These true values were obtained as an average of the additive effect (Y1−
Y0) calculated from the full data for ten samples of size n = 107. For both studies,
(misspecified) logistic linear regression of Y on (A,W1) was used to obtain the initial
estimate of Q̄0, and the correctly specified logistic regression model was used to
obtain the initial estimate of g0. The estimators of ψ0 are of the following form:

ψ
T MLE
n =

1
n

n

∑
i=1

{
Q̄1∗

n (1,Wi)− Q̄1∗
n (0,Wi)

}
,

ψ
Empe f f
n =

1
n

n

∑
i=1

2Ai−1
g(Ai |Wi)

(Yi− f e
n (Wi)) ,

ψ
T MLEen
n =

1
n

n

∑
i=1

{
Q̄k∗

n (1,Wi)− Q̄k∗
n (0,Wi)

}
.
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Here LogitQ̄1∗
n = LogitQ̄0

n + εnH∗gn
, with εn fit by maximum likelihood estimation.

The target function f e
0 (W ) = fc0,α0,β0(W ), which defines the empirical efficiency

maximization estimator, is defined in terms of a working model fc0,α0,β0(W ) =
c+Expit(α +βW1) (see section 4 above). The true values (c0,α0,β0) of the co-
efficients are estimated with weighted least squares using the nlm function in R
(Team, 2010) and weights {H∗gn

}2. Finally, Q̄k∗
n (A,W ) is a targeted estimate of Q̄0

obtained by applying the iterative TMLE procedure described in Section 3 to ini-
tial estimates Q̄0

n,gn, f e
n , where k denotes the final step. Convergence was defined as

abs(ε1)< 0.00001 and abs(ε2)< 0.00001, and typically occurred after two to three
iterations (i.e., k typically equals 2 or 3). Table 1 also reports unadjusted estimates

Table 1: Additive treatment effect estimates, 1000 samples (n = 500).

Simulation 1 Simulation 2
Bias Var MSE Bias Var MSE

Unadj 0.0014 0.0017 0.0017 −0.0023 0.0017 0.0017
TMLE 0.0015 0.0017 0.0017 −0.0006 0.0017 0.0017
Emp eff 0.0011 0.0015 0.0015 −0.0001 0.0015 0.0015
TMLEen 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015

ψ
unad j
n = En(Y = 1 | A = 1)−En(Y = 1 | A = 0), where E0(Y = 1 | A) is estimated

with univariate logistic regression of Y on A. The unadjusted estimator is unbiased
in simulation 1, but biased in simulation 2.

Results in Table 2 verify the claim made in section 3.4 that in addition to
being a double robust locally efficient substitution estimator, the enhanced TMLE is
also an IPTW estimator, an augmented IPTW estimating-equation based estimator

Table 2: Alternative representations of additive treatment effect estimates.

Simulation 1 Simulation 2
Bias Var MSE Bias Var MSE

TMLEen 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015
IPTW 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015
AIPTWa 0.0013 0.0015 0.0015 −0.0002 0.0015 0.0015
AIPTWb 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015
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in which the nuisance parameters Q0,g0 are estimated with the TMLE Q∗n,g
∗
n, and

an augmented IPTW estimating-equation based estimating in which the nuisance
parameters Q0,g0 are estimated with (QW,n, Q̄e

n),g
∗
n. Recall that the latter is the

empirical efficiency maximization estimator of Rubin and van der Laan (2008),
except that g0 is estimated with g∗n instead of the initial estimator gn.

We next investigate estimator performance under increasing levels of con-
founding. In simulation 3a the treatment assignment mechanism is held fixed and
confounding is made stronger by increasing the association between W2 and the
outcome, Y . In simulation 3b the conditional distribution of Y given (A,W ) is held
fixed while the association between W2 and A increases, leading to violations of the
positivity assumption as confounding grows stronger. For each simulation estimates
were obtained for 1000 samples of size n = 500 with gn(1 |W ) bounded away from
0 and 1 at level (p,1− p), with p = (10−9,0.01,0.025,0.05,0.1).
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Figure 1: Simulation 3a: Estimator bias and variance at each value of γ2, two trun-
cation levels for gn(1 |W ), (10−9,1−10−9) (left), and (0.1, 0.9) (right). Symbols on
the plot refer to 1: Unadjusted, 2: TMLE, 3: Emp Eff, 4: TMLEen.
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Data for simulation 3 were generated as

W1,W2 ∼ N(0,1)
g0,3(1 |W ) = Expit(−0.3−0.1W1− γ1W2)

P0,3(Y = 1 | A,W ) = Expit(−1+A+W1 +2.5W 2
1 − γ2W2)

with γ1 fixed at 0.3 and γ2 set to (0,0.1,0.2, . . . ,2) for simulation 3a, and γ1 set to
(0,0.2, . . . ,1) while γ2 was fixed at 1, for simulation 3b.

Figure 1 summarizes results for simulation 3a with bounds on gn(1 |W ) set
to either (10−9,1− 10−9) or (0.1, 0.9). The bias of the unadjusted estimator (1)
increases with γ2, while the TMLE (2), Emp Eff (3), and TMLEen (4) estimators
remain unbiased. When confounding is strong, the unadjusted estimator has the
highest variance, followed by TMLE, while as predicted by theory, the variance of
the TMLEen estimator closely matches that of the empirical efficiency estimator,
designed to minimize variance. Because the treatment assignment mechanism does
not lead to a violation of the positivity assumption (0.14< g0(1 |W )< 0.77), results
are the same regardless of the choice of truncation level for gn(1 |W ).

Estimator performance under increasing practical violations of the positiv-
ity assumption is illustrated in Figure 2, which shows results at three truncation
levels of gn(1 |W ): (10−9,1− 10−9), (0.025, 0.975), and (0.1, 0.9). Increasing
truncation introduces a small amount of bias into TMLE, the empirical efficiency
maximization estimator, and TMLEen, but this amount is dwarfed by the bias of the
unadjusted estimator. We observe that the variance of all but the unadjusted estima-
tor increases with increased confounding, and is slightly ameliorated by increased
truncation of gn(1 |W ). At extreme violations of the positivity assumption (see
Table 3) the variance of TMLEen(4) is slightly larger than that of the empirical ef-
ficiency maximization estimator (3), but overall these two estimators are very close
to one another.

Table 3: True conditional treatment assignment probabilities as a function of γ1.

γ1 Range of g0(A |W ) γ1 Range of g0(A |W )

0 0.305 0.551 0.6 0.035 0.926
0.2 0.212 0.676 0.8 0.013 0.969
0.4 0.090 0.837 1 0.005 0.987
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Figure 2: Simulation 3b: Estimator bias and variance at each value of γ1. Columns
correspond to truncation level for gn(1 |W ), (10−9,1− 10−9) (left), (0.025, 0.05)
(center), and (0.1, 0.9) (right). Symbols on the plot refer to 1: Unadjusted, 2: TMLE,
3: Emp Eff, 4: TMLEen.

6 Discussion
The TMLE represents a template for construction of a loss-based substitution esti-
mator of a target parameter defined on a semiparametric model, defined by a choice
of loss function for a relevant part of the data generating distribution, a paramet-
ric submodel, and a strategy for iteratively minimizing the empirical risk over the
parametric submodel. The choice of submodel and loss function defines the score
equations the TMLE will solve. In this manner it can be arranged that the TMLE
solves not only the efficient score equation, but also an estimating equation corre-
sponding with the influence curve of a competing estimator. By solving this esti-
mating equation the TMLE is at least as efficient as the competing estimator in the
case this competing estimator is asymptotically linear and g0

n is consistent.
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In this article we demonstrated this type of TMLE for the simple point treat-
ment data structure (W,A,Y ) and the additive effect parameter. Our presentation
is straightforwardly generalized to general CAR-censored data models, and target
parameters, since we only relied on a general representation of the efficient influ-
ence curve as an augmented IPCW-function as presented in Robins and Rotnitzky
(1992), van der Laan and Robins (2003). Suppose now that the target parameter
is multivariate. One needs to define the collection of real valued parameters, and
one needs to define a competing estimator for each of these real valued parameters.
For example, one might define one single real valued parameter as a function of the
multivariate parameter, or one might define each component of the target parame-
ter as a real valued parameter. Each of the real valued parameters now implies an
influence curve of the corresponding competing estimator. Each of these influence
curves implies a clever covariate for the treatment mechanism playing the role of
H(Qe

n,g
k
n) in the above TMLE algorithm. The resulting TMLE will not only be a

double robust locally efficient substitution estimator of the target parameter, but it
will also estimate each of the real valued parameters in a more efficient way than
the competing estimators, in the case that g0 is estimated consistently.

Appendix: R Implementation
The R function below calculates the enhanced TMLE for binary outcomes. Re-
quired arguments are Y (binary outcome vector), A (binary treatment indicator vec-
tor), and initial estimates Q̄0

n(A,W ), g0
n(A |W ), and f e

n (W ). Q̄0
n(A,W ) is an n× 3

matrix containing values for Q̄0
n(A,W ), Q̄0

n(0,W ), and Q̄0
n(1,W ) on the logit scale.

Predicted values for gn(A |W ) are bounded away from 0 and 1.

bound <- function(x, bounds){

x[x<min(bounds)] <- min(bounds)

x[x>max(bounds)] <- max(bounds)

return(x)

}

tmle_en <- function(Y, A, g1W, Q, f, gbds = c(10^-9, 1-10^-9)){

g1w <- bound(g1W, gbds)

eps1 <- eps2 <- Inf

epsilon <- .00001

maxIter <- 30

iterations <- 0

while((any(abs(c(eps1, eps2)) > epsilon)) & iterations <= maxIter){

iterations <- iterations + 1

h <- cbind(A/g1W - (1-A)/(1-g1W), 1/g1W, -1/(1-g1W))

m <- glm(Y ~ -1 + offset(Q[,"QAW"]) + h[,1], family=binomial)

eps1 <- coef(m)
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Q <- Q + eps1*h

h2 <- plogis(Q[,"Q1W"])/g1W + plogis(Q[,"Q0W"])/(1-g1W)

h3 <- f/(g1W * (1-g1W))

g <- glm(A ~ -1 + offset(qlogis(g1W)) + h2 + h3, family=binomial)

g1W <- bound(predict(g, type = "response"), gbds)

eps2 <- coef(g)

}

Q <- plogis(Q)

psi.en <- mean(Q[,"Q1W"] - Q[,"Q0W"])

psi.IPTW <- mean((A/g1W - (1-A)/(1-g1W)) * Y)

psi.AIPTWQstargstar <- mean((A/g1W - (1-A)/(1-g1W)) * Y

- (Q[,"Q1W"]/g1W - Q[,"Q0W"]/(1-g1W))*(A-g1W))

psi.AIPTWQegstar <- mean((A/g1W - (1-A)/(1-g1W)) * Y

- f/(g1W * (1-g1W)) * (A-g1W))

return(c(psi.en, psi.IPTW, psi.AIPTWQstargstar, psi.AIPTWQegstar))

}
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