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Survival Curve Estimation with Dependent
Left Truncated Data Using Cox's Model

Todd Mackenzie

Abstract

The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide
nonparametric estimation of the distribution of a left-truncated random variable. These estimators
assume that the left-truncation variable is independent of the time-to-event. This paper proposes
a semiparametric method for estimating the marginal distribution of the time-to-event that does
not require independence. It models the conditional distribution of the time-to-event given the
truncation variable using Cox's model for left truncated data, and uses inverse probability
weighting. We report the results of simulations and illustrate the method using a survival study.
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1 Introduction

Truncation prevents observations for a subset of a sample space. In a left-truncated
study, neither the dependent variable, Y, nor the truncating variable, V, are observ-
able if ¥ < V. Examples of double-truncation arise in astronomy as described
by Efron and Petrosian (1992, 94). A common epidemiological example of left-
truncation is the prevalent cohort. In the prevalent cohort, left-truncated times-
to-event arise because subjects are identified for study inclusion after the inception
time (i.e., the time at which the time-to-event begins). Age at death is left-truncated
if a subject does not enter the study at birth. Left-truncation is also referred to as
delayed entry.

The Cox model for left-truncated data (Andersen et al, 1997, Keiding, 1992,
Gail et al, 2009) is frequently used to model covariate effects on age at event. In
this version of Cox’s model, age is used as the time-scale (i.e., argument of the
hazard function) and the counting process style of data specification is used, which
consists of the start time (i.e., the age of left-truncation), the stop time (age at event
or right censoring) and the event indicator.

If the left-truncation variable is independent of the time-to-event of interest,
the distribution of the time-to-event can be estimated using the estimator of Lynden-
Bell (1971). The distribution of an estimator which is both left-truncated and right-
censored can be estimated using the estimator of Kaplan and Meier (1958). In
this case the risk set used for calculating the Kaplan-Meier is defined differently
than in the non-truncated setting: the risk set at a particular time, ¢, is that set of
subjects for whom the time-to-event and censoring time exceed ¢, and whose left-
truncation is less than #. The Lynden-Bell estimator is not applicable when right-
censoring is present. It also differs from the Kaplan-Meier in that the former is left-
continuous but the latter is right-continuous. The asymptotics of the Kaplan-Meier
under independent truncation have been discussed by Woodroofe (1985), Wang,
Jewell and Tsai (1986) and Tsai, Jewell and Wang (1987). A treatment of truncation
in terms of Markov processes was given by Keiding and Gill (1990). Estimation
of marginal survival in the setting of a truncation variable that is independent but
parameterized was addressed by Wang (1989). Length-biased sampling (Wang,
1996, Ashgarian et al, 2002) can be considered a special case of left-truncation. The
Kaplan-Meier is sensitive to small risk sets if there is left-truncation. For instance,
if there is an event when the size of the risk set is one, the resulting Kaplan-Meier
decreases to zero. Lai and Ying (1991) proposed a method for overcoming this by
only taking increments in the Kaplan-Meier when the risk set exceeds na for some
O<a<l(eg a=1/3).
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If the truncation variable and time-to-event variable are not independent of
the survival time, and furthermore unparameterized, then the Kaplan-Meier and
Lynden-Bell are not consistent estimators of the time-to-event distribution. Posi-
tive correlations lead to underestimation, and negative correlations cause overes-
timation (Keiding, 1992). Tsai (1990) proposed a generalization of the Kendall
tau test statistic to test for independence of truncation times and times-to-event in
left-truncated right-censored data sets. Efron and Petrosian (1992,94) discussed
its application with data that are left-truncated but not right-censored. The test is
developed further by Martin and Betensky (2005). A test based on the product-
moment correlation has been proposed by Chen et al (1996). Alternatively, Jones
and Crowley (1992) proposed the use of Cox’s model for testing the association.
In particular, they model the conditional distribution of time-to-event given trun-
cation time using Cox’s model for left-truncated data (Andersen et al, 1997). The
conditional distribution can be used to predict time-to-event based on truncation
time.

The marginal distribution of the time-to-event retains importance if there
is a correlated left-truncation time. The conditional distribution of the time-to-
event given the left-truncation time may be of interest in some applications, but
left-truncating time may be a nuisance variable. Chaieb et al (2006) developed
an estimator of the time-to-event distribution in the presence of non-independent
truncation. They provide a nonparametric estimate of the time-to-event distribution
using a copula to model the joint distribution of time-to-event and left-truncation
time. Implementation of their method requires the user to specify a copula from an
Archimedian family. Choice of this copula was discussed by Beaudoin et al (2008).

We propose a semi-parametric method for estimating the distribution of a
time-to-event from left-truncated data that does not assume independence or any
parametric form for the distribution of the truncation variable. This method starts
by modelling the dependence of survival on the truncation time using Cox’s model
for left-truncated data (Andersen et al, 1997, Keiding, 1992). It proceeds by in-
voking inverse probability estimation (Horvitz and Thompson, 1952, Robins and
Rotnitsky, 1992). The Kaplan-Meier has been shown to be an inverse probability
estimator (Satten and Datta, 2001, Shen, 2003). In addition to the marginal distri-
bution of survival times, this approach also yields an estimate of the distribution
of the left-truncation times, and an estimator of the probability of truncation. We
report the behavior of our estimator using simulations, and illustrate our method
using left-truncated data from users of the health system of the Veterans Adminis-
tration (VA) to estimate the survival of VA users after the age of 65. We conclude
with a discussion addressing the strengths and limitations of this method.
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2 Methods

2.1 Notation and Assumption of Non-informative Censoring

Let Y be the time-to-event of interest, with cumulative distribution function (CDF)
Fy,and let Sy = 1 — Fy. Let Fy be the CDF of the truncating variable, V. We as-
sume that F'y and Fy are continuous functions. The available data are {T;, A;, Vi}! |,
where 7; = min(Y;, V; + E;), A; equals 1 if ¥; < V; + E;, and O otherwise, and E; is a
follow-up time that commences when the person enters the cohort. We assume that
E; is independent of Y; conditional on V; and Y; > V.. In the case of no truncation
where Pr[V = 0]=1 this is equivalent to the usual assumption of non-informative
censoring.

Suppose the distribution of the time-to-event, Y, given the left-truncation
variable, V, follows a Cox model. Note that this assumption is untestable: we can
test the assumption on the sample space Y > V, but we cannot know if it holds
for Y < V. The assumption of this Cox model can be written, Pr[Y > y|V = v] =
exp[—g(v; B)A(y)] where A(y) is the baseline cumulative hazard function and g(v; 8)
is some continuous function of S for which g(v;0) = 1 (e.g., g(v; 8) = exp[Bv]). In
counting process notation we are assuming that EdN;(¢) =dA(t)g(v;; B)R;(t) where
N;(t) is the counting process which equals 1 if A; = 1 and 7; < t, and is zero
otherwise, R;(¢) is the predictable process which equals 1 if 7; > ¢t > V; and is 0
otherwise.

We shall let O = Pr[Y > V], the probability that an observation is not
excluded due to left-truncation.

2.2 Estimation

The marginal distribution of Y is given by

PrlY > y] = fo exp[—g(v; B)AWIAFy(v) ey

We shall estimate this by substituting estimators for 8, A(¢), and Fy(¢). Estima-
tors for S and A are available using existing theory. A consistent estimator of
the parameter S can be found by solving the solution to the estimating equation

5 7 [vi= E Ritw; explBril/ 3. Ry(t) explBy j]] dN() (Andersen et al, 1997, Kei-
i=1 =1 =1

ding, 1992). This can be done readily using existing software by specifying the
truncation time as both a covariate and as the entry time in the time-to-event triplet
consisting of the time of event (or censoring), the event (censoring) indicator, and
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the entry time. In the statistical language R, this is accomplished using code such as
coxph(Surv(tr_time, time, status)). In order to be less sensitive to small risk sets we
use the correction of Lai and Ying (1991), which prevents the cumulative hazard
from taking a jump if the size of risk set is less than n'/3.

Gail et al (2009) suggested adjusting for truncation time in models that are
left-truncated. For instance, they recommend that Cox’s model for left-truncated
data include truncation time (e.g., age at beginning of follow-up) as a covariate in
addition to other covariates of interest. This is to account for any association of
truncation time with survival time. In our paper, Cox’s model for left-truncated
data includes no other covariates except the truncation time. The parameter A(f) of
Cox’s model for left-truncated data can be consistently estimated using the Breslow

n

estimator for left-truncated data ), fOT & (Andersen et al, 1997, Keiding,
i=1 Zl R;(t) explBv;]
£

1992).

An estimator of the distribution of V, represented by F'y, can be found using
the concept of inverse probability weighting (Horvitz and Thompson, 1952, Satten
and Datta, Shen, 2003). The probability of not being left-truncated if V = v, is
PrlY > V|V = v] which equals exp[—g(v; B)A(v)]. The principle of inverse proba-
bility weighting is to weight an observation by the reciprocal of the probability that
the observation is not missing, e.g., not truncated. For instance, the weight assigned
to the observation for which V = v is 1/ exp[—g(v; B)A(V)].

In order to explain this estimator we find it useful to introduce the following
harmonic mean. Let Q equal n/ i 1/ exp[—g(vi;E)K(vi)], the harmonic mean of

i=1

{exp[—g(vi; BIA(v)]}L,. The inverse probability weighted estimator of F'y assigns

a mass of %/ exp[—g(vi; ,@)A(vi)] to the point v;. This harmonic mean, @ , 1S an
estimator of the probability of not being truncated. This is because Q = Pr[Y > V]
equals fooo PriY 2 vldFy(v) = fooo exp[—g(v; ,@)A(v)]dF v(v), which we estimate by
the expression

D {exp{—g(vi;ﬁm(wﬂ% exp[—g(vgﬁ)/\(w)]} =0. 2)
i=1
The estimator of the truncation distribution is
o) = £ Y expl-gvii BIRG) - Rl (3)
n Vvi<y

An estimate of the marginal distribution of Y is obtained by substituting estimates
of B, A and Fy into (1) to yield
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n

> expl-gvis BYAM) = AW )

i=1

—_

Sy(y) =

3 Q)

This expression reduces to an expression related to the Nelson-Aalen esti-
mator for left-truncated survival if O is substituted for 8 (work not shown). If we
express the right-hand side of equation (1) using product integral notation, the re-

— -~ n Jy —_~ —~
sulting estimatoris S y(y) = % > [1[1—-g(v;; B)dA(u)], which reduces to the Kaplan-

i=1 v;
Meier for g = 0.
To estimate the variance we suggest a bootstrap or jackknife approach.

2.3 Untestable Assumption

This method does make an untestable assumption: whereas it is possible to test the
modelling assumption of the joint distribution of the time-to-event and the trunca-
tion time (i.e. Cox model) on the observable region, it is not possible to verify it on
the truncated region. It is possible that the association determined using the observ-
able region does not hold on the truncation region. As a consequence the estimator
we propose may be biased. The extent of this bias will be driven by the discrepancy
(e.g. how much the joint distribution on the truncated region differs from the model
extrapolated from the observable region) and the frequency of truncation, Q. As
Y and V are not observed on the region ¥ < V we know nothing about their joint
distribution on that region. It is plausible that the joint distribution actually has
zero mass on the region Y < V. In other words, there is no actual truncation. Our
method is based on the extrapolation of a Cox model on the observeable region to
the truncated region and then integrating with respect to V' to obtain the marginal
of Y.

3 Example

In this section we estimate the overall survival curve of users of the VA health
system. The survival distribution of VA users is essential to policy decisions made
by the VA. We use survival data from approximately 850,000 VA patients who
were randomly sampled to complete a VA survey in 1999 (MacKenzie et al, 2010).
These survival data are based on records from the VA Vital Status Registry. Age at
death is the time-to-event of interest, Y. The left-truncation time, V, is age at the
time of the 1999 survey, as patients who died before the survey are not part of the
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Figure 1: Survival curves for Veterans over the age of 65 based on 350 thousand
respondees to a random survey. The curves have been estimated using the Kaplan-
Meier for left-truncated data (dashed line) which assumes independence of survival
and age at time of survey, and the method we are proposing (solid line) with 95%
confidence intervals (dashed lines). This estimator assumes that the dependence of
survival and age at survey follow a Cox model. The dotted line is the estimator of
Chaieb et al (2006) implemented using a copula from the Frank family.
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dataset. We have restricted attention to VA users who were age 65 or more in 1999.
Individuals are right censored if they were alive as of 2006.

We tested the independence of the left-truncation time and age at death
using Jones and Crowley’s (1992) approach based on the Cox model. There was a
significant association (P;0.0001). An increase of one year in age at the time of the
survey was associated with a 4.7% (95% CI: 4.1% to 5.2%) reduction in incident
mortality. This means that among two VA users of the same age, the veteran who
was younger when he completed the survey is more at risk. For example, a veteran
of age 80 in 2010 (69 at time of survey) is more at risk at that age than was a veteran
who was 80 in 2005 (74 at time of survey).

Regression splines were used to explore the functional form of this associ-
ation. We determined that the log hazard is approximately linear with respect to
truncation time. In addition, we found no evidence that the hazard ratio changed
over time.

Figure 1 demonstrates the estimator we propose (solid line) and the Kaplan-
Meier estimator (dotted line) that assumes independence of age at survey and age
at death. The difference between our survival estimate and the Kaplan-Meier is 5%
or more between the ages of 73 and 77. The probability of not being truncated, Q,
was 72% (95% CI: 73% to 74%).

As described in section 2.3, the estimator we propose makes an untestable
assumption. It assumes the conditional distribution of survival given the age at
time of survey is a Cox model both on the observable region (testable) and on the
truncated region (untestable). It assumes that being older at the time of survey is
sign of a decreased hazard not just after the survey but before it. For instance,
individuals who were destined to take the survey at age 65 (should they have lived
until the period of the survey in 1999 and made a visit to the VA during that time)
had a higher mortality rate before age 65 than individuals who were destined to
take the survey at age 75.

4 Simulations

4.1 Methods

We evaluated the bias of the estimator we propose using a range of truncation prob-
abilities, 0.1, 0.3, 0.5, 0.7 and 0.9, (i.e., Q =0.9,0.7,0.5,0.3,0.1), and a range of
associations between the left-truncation time and the time-to-event, as measured
by the hazard ratio comparing those at the 75th percentile of the truncation time to
those at the 25th percentile, HR=exp[1.35 « 8] = 1/2,2/3,1,3/2,2 (i.e., B =-0.51,
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Table 1: Estimation of Q: Mean across 2500 simulations for a range of actual Q and
hazard ratios, and censoring rate of 50%. Q is 1 minus the probability of truncation.

Hazard Ratio

Truncation % Q |1/2 2/3 1 1.5 2

N=200
10 09091 090 090 090 0.90
30 0.7 071 0.71 0.71 0.70 0.70
50 0.5 0.50 050 0.50 0.50 0.50
70 0.3|0.30 030 031 031 0.33
90 0.1024 023 025 026 0.27

N=500
10 09090 090 090 0.90 0.90
30 0.7 0.70 0.71 0.70 0.70 0.70
50 0.5 0.50 050 0.50 0.50 0.50
70 0.3|0.30 029 029 0.30 031
90 0.1 0.18 0.19 021 023 0.24

-0.30, 0.00, 0.30, 0.51). The censoring rate was fixed at 50%. We considered a
sample size of 200 (100 events) and a sample size of 500 (250 events). The time-
to-event followed an exponential distribution, as did the distribution of truncation
times, while the censoring distribution was uniform. For each of these scenarios,
2500 replications were carried out, and estimation of the survival curve was done
using the estimator we propose (4) and the Kaplan-Meier.

4.2 Results

Table 1 shows the mean of the estimator of the quantity Q, the complement of the
truncation probability, for the cases of N=200 and N=500 (censoring rate fixed at
50%) as the true value of Q and the hazard ratio vary. There is very little bias
when the actual Q is 0.5 or larger. For Q = 0.3 absolute bias is as large as 0.02.
The estimator is poor when the true truncation rate is 90% (Q = 0.1) and when
the hazard ratio is 1 or larger. It is only slightly ameliorated for a larger sample
size. This poor behavior for 90% truncation rates is not due to bias of the partial
likelihood estimator of the hazard ratio. Mean values of the estimator of the log
hazard ratio are shown in Table 2. The partial likelihood estimator for Cox’s left-
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Table 2: Estimation of Cox’s Hazard Ratio with Correlated Truncated Data: Table
shows mean of the log hazard ratio across 2500 simulations for a range of truncation
probabilities, 1-Q, and actual hazard ratios, and censoring rate of 50%.

Truncation % Q Hazard Ratio
1/2 2/3 1 1.5 2
log Hazard Ratio
-0.69 -040 0 0.40 0.69
N=200
10 09 |-070 -041 0.00 041 0.69
30 0.7 | -0.70 -0.41 0.01 041 0.70
50 0.5|-0.70 -041 0.00 041 0.70
70 0.3 |-0.68 -042 0.00 042 0.71
90 0.1 |-0.71 -044 0.00 045 0.72
N=500
10 0.9 |-070 -041 0.00 040 0.69
30 0.7 | -0.69 -0.41 0.00 0.40 0.70
50 0.5 -0.70 -0.40 0.00 0.40 0.69
70 0.3 |-0.69 -0.39 0.00 042 0.69
90 0.1 |-0.72 -042 0.00 0.44 0.71

truncated model exhibits a minor amount of bias for N=200 and Q = 0.1 but is
otherwise unbiased.

Figure 2 shows the simulation results for the bias of the survival curve es-
timator for a sample size of 200, and 50% censoring. Each panel in the figure is
a plot of the bias (estimated survival curve minus actual survival curve) versus the
time argument, transformed using the function that maps ¢ to 1 — S (¢) so it is con-
fined to the unit interval. The solid line is the bias of the estimator we propose. The
dashed line is the Kaplan-Meier for left-truncated data. An estimator is biased to
the extent that it deviates from the zero line. The 25 panels are indexed vertically
by hazard ratios of 1/2, 2/3, 1, 1.5 and 2, and horizontally by Q.

There is no bias in the Kaplan-Meier when the time-to-event and truncation
time are independent (hazard ratio of 1). The bias of the Kaplan-Meier increases as
the hazard ratio moves away from unity, and as the truncation rate increases (as Q
decreases). There is little bias in the Kaplan-Meier when the truncation rate is 10%

(Q=0.9).
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Figure 2: Results of simulations for a sample size of 200 and a range of non-
truncation probabilities, Q, and a range of associations of the time-to-event and
left-truncation time, HR, for a fixed right-censoring rate of 50%. There is one
panel for each choice of HR from the list, 0.5, 0.67, 1, 1.5 and 2, and each choice of
Q from the list 0.9, 0.7, 0.5, 0.3, 0.1. The bar above each panel shows the Q and the
HR. Each panel is the bias over time as the mean value of the estimate (based on
2500 replications) minus the true value. The solid line is the estimator we propose
and the dashed line is the Kaplan-Meier. The time scale has been transformed to
the unit scale using the transformation, 1 — S (7).
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Figure 3: Results of simulations for a sample size of 500 and a range of non-
truncation probabilities, Q, and a range of associations, HR, of the time-to-event
and left-truncation time, for a fixed right-censoring rate of 50%. There is one panel
for each choice of HR from the list, 0.5, 0.67, 1, 1.5 and 2, and each choice of Q
from the list 0.9, 0.7, 0.5, 0.3, 0.1. The bar above each panel shows the Q and the
HR. Each panel is a plot of the bias (mean value of the estimate based on 2500
replications minus actual value) versus time (transformed to the unit interval using
the inverse cumulative distribution function). The solid line is the estimator we
propose and the dashed line is the Kaplan-Meier for left-truncated data.
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There is nearly zero bias of the estimator we propose if Q is 0.5 or greater
and if the hazard ratio is unity or less. In contrast, the Kaplan-Meier overestimates
by more than 0.2 for Q = 0.3 and HR = 2 and underestimates by more than 0.2 for
Q =0.3 and HR = 1/2. The advantage of our estimator over the Kaplan-Meier is
most evident with the truncation rate between 30% and 70% and when the hazard
ratio is less than unity, corresponding to a positive correlation of time-to-event and
truncation time. Conversely, with Q = 0.1, where a full 90% of the data has been
truncated, our estimator exhibits almost as much bias as the Kaplan-Meier.

Figure 3 shows simulation results for the sample size of 500 and 50% cen-
soring. The findings are very similar to those for N=200. The estimator we propose
exhibits no bias for Q of 0.3 or larger. For Q = 0.1 the estimator is somewhat biased
but slightly less than for the case of N=200.

5 Discussion

We have proposed an estimator for the cumulative distribution function of a right-
censored time-to-event that is sampled under dependent left-truncation. This method
is semi-parametric. It makes no assumptions about the marginal distribution of the
time-to-event, nor the marginal distribution of the truncation time. It should be
considered when there is evidence of dependence between the time-to-event and
the truncation time.

It assumes that the conditional distribution of the time-to-event given the
truncation time follows the Cox model for left-truncated data. The advantage of this
approach is the universality of Cox’s model in biostatistics. It would be preferable
to use a completely nonparametric approach but it is not clear that this is possible.
A semi-parametric estimator has also been derived by Chaieb et al (2006). The
Chaieb estimator requires specification of a copula for the joint distribution of the
time-to-event and truncation time.

The appropriateness of the assumption of Cox’s model can be examined and
if violations of Cox’s model are indicated, then a generalization of Cox’s model can
be used. For instance, it is not necessary to use the usual hazard ratio of exp(v; S).
The actual functional form of the hazard ratio could be estimated using a method
of nonparametric regression. The hazard ratio g(v; ) could be generalized to a
time-dependent hazard ratio, g(v, y; 8).

A clear limitation of our approach is that it involves an untestable assump-
tion. The appropriateness of Cox’s model can be evaluated on the sample space
for which Y > V. However it cannot be evaluated on the sample space for which
Y < V. Analogously, the approach of Chaieb et al (2006) makes the assumption

12
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that the joint distribution of ¥ and V can be be parameterized by a copula, which
is untestable in the truncated region. Without observation of the truncated region
one cannot know anything about the actual distribution of ¥ and V on it. It is
plausible that there is zero mass on the truncated region. Our method involves the
extrapolation of a model estimated using the observeable region to the truncated
region. This extrapolation will lead to biased estimation of the distribution of Y to
the extent that the extrapolation is poor and the probability of truncation is large.
Further work could explore the development of sensitivity analyses for exploring
violations of the extrapolation. Further work should also be directed at determin-
ing just how weak the untestable assumption can be made. Whether the concepts
of quasi-independence for truncated data (Tsai, 1990, Martin and Betensky, 2005)
can be generalized to quasi-dependence is also an area requiring further research.
Untestable assumptions are not uncommon in statistics: the assumption of non-
informative censoring that is required for consistent estimation of the Kaplan-Meier
and most survival estimators is untestable.

The scenario of left-truncation imposes counterfactual considerations. In
our example using VA data, the left-truncation time is age at the time of the survey.
The truncated individuals are those who would have completed the survey had they
lived that long. This is a counterfactual concept. Another example of dependent
left-truncation is estimation of survival in cystic fibrosis (CF) patients using a CF
registry. Individuals who die before being diagnosed with CF are left truncated.
Older age at diagnosis is associated with greater longevity. Using the method of
this manuscript to estimate survival for CF patients would yield an estimate of age
at death among people who have been or would be diagnosed with CF if they were
to live long enough. Again, this is counterfactual reasoning. It is possible to avoid
the counterfactual reasoning by estimating the conditional distribution of survival
given the age at diagnosis.

A limitation of marginal estimators based on truncated data, including the
Kaplan-Meier and the estimator we propose, is that they may severely underesti-
mate survival. For example, the risk set at the first event time (or any event time)
may contain only one subject, in which case the Kaplan-Meier becomes zero at that
point because the contribution to the product-limitis 1 — 1/1 = 0. An approach to
helping resolve this limitation has been proposed by Lai and Ying (1991). Their
resolution could be adapted to our estimator.

Our Monte Carlo simulations demonstrated excellent behavior of our esti-
mator for truncation rates at or below 50% (i.e., Q of 0.5 or more) and a hazard
ratio (of the interquartile range) of unity or less. We speculate that the reason the
estimator has more difficulty for hazard ratios greater than unity is due to a nega-
tive association between the time-to-event and truncation time, which is a difficult
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association to estimate using only data that fall on one side of the line of identity
(Y > V). For rates of truncation of 90% (Q=0.1), the estimator we propose exhibits
almost as much bias as the Kaplan-Meier for left-truncated data. Further investiga-
tion is needed to determine the cause of this poor behavior, and if possible, how to
correct this estimator for bias. R

Future directions include incorporation of covariates, X, into the model,
Pr[Y > VIV = v, X = x] = exp[—g(v, x; 8)A(y)]. Other future directions include
adapting the correlated left-truncated problem to the case of parameterized trunca-
tion distributions (Wang, 1989) and to the case of bivariate truncation as observed
in applications with age-of-onset anticipation (Huang et al, 2001).

6 Appendix 1: R Code

dep.truncation.Survival - function(time, truncation.time, status, Prob. Trunc=NULL,
Lower.Bound=NULL) {

keep j- !is.na(time) & lis.na(status) & !is.na(truncation.time)

t ;- time[keep]

v j- truncation.time[keep]

s j- status[keep]

if (is.null(Lower.Bound)) Lower.Bound ;- 0

ord j- order(v)

v - v[ord]
t ;- tlord]
s j- s[ord]

0.cox j- coxph(Surv(v, t, s) “v)

lin j- as.matrix(v) %*% o.cox$coef
lin ;- lin - mean(lin)

0.CH ;- Cumulative.Hazard(t, v, s, lin)
n.t j- length(o.CH$time)

tt ;- c(0, 0.CHS$time)

CH - ¢(0, 0.CH$Cum.Haz)

if (is.null(Prob.Trunc)) {

Prob.Trunc ;- rep(NA, length(v))

1.t j- 14+n.t

for (i in length(v):1) {

while(tt[i.t] ; v[i]) i.t j- i.t-1
Prob.Trunc[i] - exp(-exp(lin[i])*CH[i.t])
¥
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}
if (!is.null(Prob.Trunc)) {

Prob.Trunc ;- (Prob.Trunc[keep])[ord]

}

# Use lower bound

Prob.Trunc ;- ifelse(Prob.TruncjLower.Bound, Lower.Bound, Prob.Trunc)

Q ;- I/mean(1/Prob.Trunc)

S i- rep(NA, n.t)

for (i.tin 1:n.t) {

S[i.t] j- Q * mean(exp(-exp(lin)*0.CH$Cum.Haz[i.t]) / Prob.Trunc)

}

S.cond - list(time=0.CHS$time, surv=exp(-0.CH$Cum.Haz))

list(survival=S, time=0.CHS$time, Q=Q, log. HR=0.cox$coef, cox.iter=o0.coxSiter,
S.cond=S.cond)

}

Cumulative.Hazard ;- function(time, time.start=0, status, x, correction.power=1/3)

if (length(time.start)==0) time.start ;- rep(0, length(time))

n j- length(time)

ot - order(time)

ti.ot j- time[ot]

ti.start.ot j- time.start[ot]

st.ot j- status[ot]

x.ot j- x[ot]

uniq.ev.ti j- unique(ti.ot[st.ot==1])

n.uniq.ev.ti j- length(uniq.ev.ti)

H ;- rep(NA, n.uniq.ev.ti)

nr j- rep(NA, n)

for (i in 1:n.uniq.ev.ti) {

Y.i.t j- (ti.ot;=uniq.ev.ti[i]) * (ti.start.ot  uniq.ev.ti[i])

H[i] ;- ifelse(sum(Y.i.t)j=n"correction.power, 0, sum(st.ot==1 & ti.ot==uniq.ev.ti[i])
/sum(Y.i.t * exp(X.ot)))

}

list(time=uniq.ev.ti, Cum.Haz = cuamsum(H))

}
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