
Volume 8, Issue 1 2012 Article 4

The International Journal of
Biostatistics

Estimation of the Mean Frequency Function
for Recurrent Events when Ascertainment of

Events Is Delayed

T Charles Casper, University of Utah
Thomas D. Cook, University of Wisconsin, Madison

Recommended Citation:
Casper, T Charles and Cook, Thomas D. (2012) "Estimation of the Mean Frequency Function
for Recurrent Events when Ascertainment of Events Is Delayed," The International Journal of
Biostatistics: Vol. 8: Iss. 1, Article 4.

DOI: 10.1515/1557-4679.1303
©2012 De Gruyter. All rights reserved.



Estimation of the Mean Frequency Function
for Recurrent Events when Ascertainment of

Events Is Delayed
T Charles Casper and Thomas D. Cook

Abstract
In many large clinical trials there are delays between the time at which events occur and the

time at which they are reported. Estimators of the mean frequency function for recurrent events
that are currently used are inconsistent in these circumstances. We propose two new estimators
to be used when events are reported with delay. One method is a basic inverse probability of
censoring weighting approach, while the other explicitly estimates the distribution of the reporting
delays. The asymptotic properties of these estimators are discussed and variance estimators are
given. We examine the results of simulations comparing the new estimators to each other and to
existing estimators that do not properly account for the delays. We also calculate some of these
quantities using data from TNT, a clinical trial in which there were delays and events of interest
were recurrent.
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1 Introduction

1.1 Background

In many medical studies, events of interest are recurrent in nature, possibly includ-

ing several types such as non-fatal MI, hospitalization, or worsening heart failure.

Many authors have discussed estimation of parameters of interest when dealing with

recurrent non-fatal events in the presence of death (Ghosh and Lin, 2000; Cook and

Lawless, 1997; Li and Lagakos, 1997). In large, multicenter clinical trials, there is

usually a delay between the time an event occurs and the time it is reported to the

statistical analysis center. At the conclusion of such trials, the final analyses will

be performed after collection of all data, giving the most reliable analysis of the

whole trial. For interim analyses, however, only data that have been reported at the

time of the analysis can be used to provide timely information to DSMBs, steer-

ing committees, or sponsors. While hypothesis testing should be considered the

primary purpose of a clinical trial and early stopping a primary consideration at in-

terim analyses, estimation of event rates is typically performed and provides useful

information. Estimates can be used to check design assumptions, to assess sample

size requirements, to predict the time at which an event target will be reached, and

to plan for when the trial will be finalized. In the setting of delayed reporting, ex-

isting estimators of mean event frequency are inconsistent. Our goal is to use the

available, reported information to obtain the most reliable estimates possible.

One of the most commonly used methods for dealing with delayed ascer-

tainment is that of back-censoring. In the usual survival setting, rather than censor-

ing event times for event-free individuals on the date of the analysis, the censoring

date is set to 6 months, or some other, often arbitrary, amount of time, in the past.

This means that any reported events that have occurred in the most recent 6 months

are ignored. When this is done, censoring is purely administrative and no depen-

dence is induced between the survival time and the censoring time. In the recurrent

event case, if there is no possibility of any delay surpassing 6 months, then using

this convention, the usual Ghosh and Lin (2000) estimator (GL) is consistent. In

this situation the estimator is inefficient, however, as many events are discarded.

Even worse, no estimation is possible in the tail. In this situation, one must also

choose the value to be used for the maximum possible delay. This is a difficult task

due to the fact that the delays are right-truncated—events with longer delays are

less likely to be observed by the time of the analysis. The distribution of the delays

observed in TNT, a clinical trial that will be described in Section 4, is shown in Fig-

ure 1. While a large majority of delays were less than 6 months, many were greater

and some were many times greater. Figure 2 shows estimated mean frequency of

recurrent events for both treatment groups combined in the same trial. It represents
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a hypothetical interim estimate at 3 years after the first subject was randomized.

The true GL, which could be calculated if there were no delays, is shown for ref-

erence. At the time of the analysis, however, the delays make this impossible to

calculate. Also shown are the GL that makes no adjustment for delays and the GL

that cuts off the data 6 months before the analysis. The GL that ignores the last 6

months is somewhat better, but only provides an estimate through 2.5 years. This

illustrates the bias introduced by reporting delays and the motivation for developing

new methods.
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Figure 1: The cumulative distribution of delays in TNT.

Another method is often used in trials that monitor patients at regular visits.

At the time of analysis, if a subject is not known to have experienced an event

since the most recent clinic visit, the subject is censored at that time. There are

several problems with this approach, however. First, the data collected at these visits

may not be reported immediately, so it may not adequately address the original

problem. Also, events are commonly not reported until after one or more clinic

visits have occurred. Finally, and most important, this censoring convention induces

dependence between the event times and the censoring times. If an event of interest

has not occurred and been reported by the time of analysis, the censoring time is set
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Figure 2: A graph of estimates of mean frequency for an interim analysis at 3

years: the “true” GL estimate (solid), the unadjusted GL estimate (dashed), and the

GL estimate that ignores the last 6 months (dotted).

in the past. Otherwise, it is implicitly set to the time of analysis. This violates one

of the required assumptions, that event times and censoring times are independent.

For the case of survival estimation for time to a terminal event with delayed

ascertainment, Hu and Tsiatis (1996) presented an estimator that correctly accounts

for delays when patients are monitored at regular visits. The estimator makes use

of both monitoring times and corresponding reporting times, but the authors point

out that these times are not usually recorded. Van der Laan and Hubbard (1998)

and Hubbard et al. (2000) produced two more general consistent estimators that do

not rely on regular monitoring. The first, called the “simple” estimator, is an inverse

probability of censoring weighted (IPCW) estimator. The other, the “one-step” esti-

mator, is based on semiparametric efficiency theory, attains optimal efficiency under

certain assumptions, and is asymptotically equivalent to the simple estimator in the

absence of informative covariates. No methods have been developed to account for

delays when the events of interest are of multiple types or recurrent in nature. In

this paper, we propose two methods. The first could be considered an extension

of the terminal event IPCW concept into a recurrent-event setting. The second is
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similar, but involves direct estimation of the distribution of reporting delays.

1.2 Data and Notation

We use a counting process approach to describe the data. We will use as the full

data for a subject

X = {N(t),V(t), t ∈ [0,τ]},

where N(t) is the process that has a jump of size one at each recurrent event, V (t)
is the reporting process, and τ is a maximum follow-up time. If there is an event

at time t, V (t) is the reporting time for that event. If there is no event at time t,

V (t) is equal to the reporting time of the earliest event after t. In the case that no

event occurs after t, we let V (t) = t. The definition of V (t) is somewhat arbitrary

for non-event times because, in the end, only values at event times will play a role.

Let C be the censoring time or time of analysis. We will use an asterisk to denote

observed counterparts of the full data, so we have observed data

Y = (C,{N∗(t),V∗(t), t ∈ [0,C]}),

where N∗(t) has a jump at each observed event and V ∗(t) gives the reporting pro-

cess for observed events. When t is an observed event time, V ∗(t) is that event’s

reporting time. When t is not an observed event time, V ∗(t) is the reporting time

of the earliest observed event occurring after t. If no event is observed to occur

after t, V ∗(t) = t. Defined in this way, V and V ∗ are well-defined, left-continuous

functions.

We are interested in estimating the parameter µ(t), defined as the expected

number of recurrent events in (0, t], based on n replicates of Y . Ghosh and Lin

(2000) discuss the estimation and interpretation of this parameter with no delays.

We use two approaches to estimate this parameter when ascertainment of events

is delayed. One method is similar to the IPCW method used for terminal events

by van der Laan and Hubbard (1998). We discuss the key assumption made when

using this estimator and propose another method that relies on more plausible as-

sumptions and explicitly estimates the delay distribution.

1.3 Outline of Paper

In the following section, we discuss nonparametric estimation of the mean fre-

quency function when events are reported immediately and present two new es-

timators to be used when reporting is delayed. In Section 3, we report the results of

a series of simulations. Section 4 contains the description of a clinical trial in which
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events of interest were recurrent and reporting was delayed. Our methods are then

applied to this dataset. Some final remarks are given in Section 5.

2 Methods

2.1 Estimating Mean Frequency with No Delays

First, we review the estimation of µ when reporting of events occurs immediately,

as discussed by Ghosh and Lin (2000). Let T be a subject’s time of death. The

parameter of interest, µ(t) = E [N(t)], is defined as a marginal expectation; that

is, it implicitly takes into account the termination of the recurrent-event process by

death. We assume that C is independent of T and N. With no delays, V (t) = t and,

for t ≤C, N∗(t) = N(t). Let

Λ(t) =
∫ t

0
E{dN(s) | T ≥ s}.

We have the following relationship:

dµ(t) = S(t)dΛ(t),

where S(t) = P(T ≥ t). We can estimate Λ(t) with

Λn(t) =
∫ t

0

dN
∗
(s)

Y (s)
,

where dN∗(s) = ∑ni=1 dN
∗
i (s) and Y (s) = ∑ni=1 I(Ci ≥ s,Ti ≥ s) (here, I(·) denotes

the indicator function). The resulting estimator of µ(t) is

µn(t) =

∫ t

0
Ŝ(s)dΛn(s),

where Ŝ is the Kaplan–Meier estimator of S.

2.2 An IPCW Estimator

We now turn to the situation in which events are reported with delay. We propose an

IPCW approach to estimate the mean frequency for the recurrent-event process that

can be used both when only recurrent events are possible and when there is a ter-

minating event. We will assume that censoring times for all subjects are observed.

This is a reasonable assumption to make for interim analyses of clinical trial data.
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An event of interest is observed at time t if and only if (1) there is an event at time

t and (2) that event is reported at or before the censoring time. Thus, we have the

relationship dN∗(t) = I{C ≥V (t)}dN(t), and an IPCW estimator analogous to the

simple estimator discussed by van der Laan and Hubbard (1998) and Hubbard et al.

(2000) is

µ̃(t) =
1

n

n

∑
i=1

∫ t

0

dN∗
i (s)

Gn{Vi(s)}
,

where Gn(t) is the empirical estimate of G(t) ≡ P(C ≥ t). The assumption here is

that G{V (t)}> 0 FX–almost everywhere so that

E

[∫ t

0

dN∗(s)

G{V (s)}
| X

]
=

∫ t

0

dN(s)

G{V (s)}
E [I{C ≥V (s)} | X ] (1)

= N(t),

almost everywhere, and

E

[∫ t

0

dN∗(s)

G{V (s)}

]
= µ(t).

In the absence of delays and without death, Gn{Vi(s)} = Gn(s) = 1/nY(s),

Ŝ= 1, and µ̃(t) is equal to the Ghosh and Lin (2000) estimator. When there are no

delays, but mortality is a consideration, the difference between these two estimators

is minimal.

The assumption that G{V (t)} > 0 is a strong assumption and unlikely to

hold when censoring is purely administrative, which is the case for interim analyses

in clinical trials. The assumption implies that any reporting time will be less than

the maximum possible censoring time with probability one. This forces the delay

times to be compressed for events occurring later in study time. If the delays are

bounded above by some time, d0, then consistent estimation is still achieved for the

set of times {
t : G(t+d0) > 0

}
.

To see this, we consider equation (1). Now, if t is such that G(t + d0) > 0, then

G(s+d0)> 0 for all s≤ t. We also haveV (s)≤ s+d0. In summary, ifG(t+d0) > 0,

then G{V (s)} > 0 for all s≤ t and

E

[∫ t

0

dN∗(s)

G{V (s)}
| X

]
= N(t),

as desired. Outside this range of times, the method will likely produce good es-

timates, having lower bias than the naı̈ve estimator, but consistency is no longer
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guaranteed. As the distance from the valid set of times increases, the asymptotic

bias should increase.

Of course, even if the parameter d0 exists, it will not be known in practice.

It could be estimated from observed delays, but this estimator may not be reliable

because the observed delays are right truncated. That is, longer delay times are

associated with later reporting times and are, therefore, less likely to be observed. In

this case, it is not only the value of the delay that is missing, but also the knowledge

of its existence.

2.2.1 Asymptotic Properties of µ̃

We now introduce some notation to help describe the asymptotic distribution of µ̃ .

Let

ϕ(t) =

∫ t

0

dN∗(s)

G{V (s)}
−µ(t), (2)

E
(1)
t (s) = E

[∫ t

0

dN∗(u)

G{V (u)}
|C > s

]
,

E
(2)
t (s) = E

[∫ t

0

dN∗(u)

G{V (u)}
|C = s

]
,

and

dMG(s) = I(C = s)−dΛC(s)I(C≥ s),

where ΛC(s) is the cumulative hazard of C. Note that dMG(s) is the martingale

corresponding to the process that jumps at C. Finally, let

ϕeff(t) = ϕ(t)−

∫ {
E

(2)
t (s)−E

(1)
t (s)

}
dMG(s). (3)

We prove the following theorem in the appendix.

Theorem 2.1 Assume that C1, . . . ,Cn are independent of N1(t), . . . ,Nn(t). Also, as-
sume that there exists d0 such that P{V (t)− t ≤ d0} = 1. For any t such that

G(t+d0) > 0, ϕeff(t) is the efficient influence curve and

n1/2{µ̃(t)−µ(t)} → N{0,σ 2(t)},

in distribution, where σ 2(t) = var{ϕeff(t)}. Thus, µ̃(t) is asymptotically efficient.

To estimate the variance of µ̃(t), we must find consistent estimates of E
(1)
t (s)

and E
(2)
t (s). For the first, we can use the mean of

∫ t
0[Gn{Vi(u)}]

−1dN∗
i (u) for all
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subjects that satisfy Ci > s. Call this estimate Ê
(1)
t (s). To estimate the second, we

can assume a regression model for
∫ t

0[Gn{V (u)}]−1dN∗(u) onC:

E

[∫ t

0

dN∗(u)

Gn{V (u)}
|C

]
= g(C)

with an appropriate function g. We then use the corresponding fitted value and call

this estimate Ê
(2)
t (s). Similar methods are described by van der Laan and Robins

(2003) for other data models. Finally, we must also estimate dMG(s), but this has

been done by estimating G. Now, a consistent estimate of σ 2(t) is

σ̂2(t) =
1

n

n

∑
i=1

[∫ t

0

dN∗
i (s)

Gn{Vi(s)}
− µ̃(t)−

∫ {
Ê

(2)
t (s)− Ê

(1)
t (s)

}
dMGn,i(s)

]2

.

2.3 Estimating the Delay Distribution

The approach that was described in the previous section relies on the assumption

that G{V (t)} > 0 almost everywhere, an assumption that is technical, unintuitive,

and untenable in most real situations. The result is consistent estimation over only

a restricted set of times. An alternative approach is one that nonparametrically esti-

mates the delay distribution. This approach relies on the assumption that the delays

are independent, identically distributed, and independent of the event process. Let

H(t | C) be the probability that an event occurring at time t would be observed,

given censoring timeC. Then

E {dN∗(t)} = E [E {dN∗(t) |C}]

= E [E {I(event at t observed)dN(t) |C}]

= E{H(t |C)}dµ(t).

If H is known, then the value of E{H(t | C)} can be consistently estimated by

n−1 ∑n1H(t |Ci).
To get an estimate of H(t | c) for any t and c, we first note that this is

equivalent to estimating the delay distribution. We also note that the observed de-

lays are right truncated; we are less likely to observe delays that are large. Let t j,

j = 1, . . . ,J, be all event times, V (t j) the reporting time of event j, and C j the cen-

soring time of the subject who experienced event j. D j =V (t j)− t j is the reporting

delay, which is only observed if D j ≤C j− t j. Define Z j(s) = I{D j ≤ s≤C j− t j},
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Z(s) = ∑Jj=1Z j(s), K j(s) = I{D j ≤ s}, and dK(s) = ∑Jj=1dK
∗
j (s) . A consistent

estimator of H is given by

Ĥ(t|c) = ∏
u>c−t

(
1−
dK(u)

Z(u)

)
.

The form of the model can be flexible, but this approach seems to work well in

practice. Now, another consistent estimator of µ is

µ̂(t) =

∫ t

0

dN∗(s)

∑ni=1 Ĥ(s |Ci)
.

The consistency of this estimator holds for any t less than the maximum possible

censoring time, given that the maximum possible delay time, d0, is less than the

maximum possible censoring time.

As with µ̃ and the Ghosh and Lin (2000) estimator, µ̂ can be used in the

presence of a terminating event and it can be shown that, like µ̃ , µ̂ is equal to the

Ghosh and Lin (2000) estimator when subjects do not die and events are reported

immediately. A remarkable property of both of these estimators is that, when there

is a terminating event, there is no need to estimate its survival distribution. This

also means that whether or not the terminating event is subject to reporting delay

is irrelevant. As in the case of the Ghosh and Lin estimator with no delays, no

assumptions (for example, independence) about the relationship between recurrent

events and the terminating event are necessary.

It is also possible for some subjects to have two levels of censoring. For ex-

ample, suppose one of the centers in a multicenter trial shuts down and discontinues

follow-up prior to the time of analysis. Events for subjects at this center will only be

observed if they occur prior to the time follow-up is discontinued and are reported

prior to the time of analysis. The estimator can be easily modified to accommodate

such censoring.

2.3.1 Asymptotic Properties of µ̂

Let

U(t) =
I{∑ni=1H(t |Ci) > 0}

∑ni=1H(t |Ci)

and

Mi(t) = N∗
i (t)−

∫ t

0
H(s |Ci)dµ(s),
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i= 1, . . . ,n. Now, let

σ 2
R,n(t) = nE

[{∫ t

0
U(s)dMi(s)

}2
]

.

In the appendix, we prove the following theorem regarding the asymptotic proper-

ties of µ̂ .

Theorem 2.2 Assume that there exists an integer Nmax such that P{N(t) ≤
Nmax} = 1 and a value τ such that G(τ) > 0. For t ∈ (0,τ),

n1/2

[
µ̂(t)−

∫ t

0
I

{
n

∑
i=1

Ĥ(s |Ci) > 0

}
dµ(s)

]
→ N{0,σ 2

R(t)},

in distribution, where σ 2
R(t) = limn→∞ nσ

2
R,n(t), provided this limit exists.

This result suggests that a good estimator for the variance of µ̂ is

σ̂ 2
R,n(t)≡

n

∑
i=1

[∫ t

0
Û(s){dN∗

i (s)− Ĥ(s |Ci)dµ̂(s)}

]2

,

where Û(s) is obtained by substituting Ĥ for H in the expression forU .

3 Simulations

In order to examine the performance of the estimators, we performed a series of

simulations, generating data under six different scenarios. In each setting, it is

assumed that time of randomization is uniformly distributed on (0,2) and that the

time of analysis is 2 (years). The delay times were generated using the uniform

distribution on the interval (0,d0).
In the first three scenarios (I–III), data are generated according to a gamma

frailty model. Formally, let θi, i = 1, . . . ,n, have gamma distribution with mean 1

and variance 1. Given θi, the event process for subject i is assumed to be a Poisson

process with frequency θiµ(t). Here, we use µ(t) = 5t. The delays are i.i.d. and

the upper bound, d0, is equal to 0.5, 1, and 1.5 in cases I, II, and III, respectively.

Scenario IV represents a homogeneous Poisson process with rate 3 and reporting

delays that are i.i.d. uniform with d0 = 1.

For settings V and VI, the recurrent events are generated according to the

frailty model used for scenarios I–III. For setting V, the delays generated are uni-

formly distributed, but not i.i.d. For an event occurring at time t (after the first ran-

domization), the upper bound of the distribution, d0, now depends on t and is equal
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Table 1: Simulations to Compare Mean Frequency Estimators

Scenario Events Delays Death

I Frailty Model U(0,0.5) No

II Frailty Model U(0,1) No

III Frailty Model U(0,1.5) No

IV Poisson Process (rate= 3) U(0,1) No

V Frailty Model non-i.i.d. No

VI Frailty Model U(0,1) Exp(2)

to 1.5− t/4. Thus, an event that occurs very early in the “trial” will have an ex-

pected delay in reporting of about 9 months, while an event occurring near the two-

year mark, will have an expected delay of about 6 months. This scenario assumes

that event reporting improves with time. For scenario VI, with i.i.d. uniform(0,1)
delays, subjects can also experience death. Time of death is simulated for each in-

dividual according to an exponential distribution with mean 2 years and terminates

the recurrent-event process. A summary of these six situations is given in Table 1.

For each simulated set of data, several estimators are used to estimate the

mean frequency function. The appropriate analysis in the case without delays uses

the Ghosh and Lin (2000) estimator. Three versions of this estimator are calculated

using the simulated data. The first is the “true” version that would be calculated

if there were no delays, denoted TGL. The second (GL) is the version that would

be calculated at the time of analysis, using only reported events. The last (GL6M)

is the version that censors all subjects 6 months prior to the time of analysis. The

two estimators introduced in this paper, µ̃ and µ̂ , are calculated. All estimators are

evaluated at four times: 0.4, 0.8, 1.2, and 1.6 years.

The sample sizes used were 100 and 500. For each scenario and sample

size 1000 simulations were performed. All simulations and computations in this

section were carried out with the R Language and Environment (R Development

Core Team, 2009) and the Condor system (Condor Team, 2007).

Estimated mean squared errors for all estimators are shown in Tables 2

and 3. The naı̈ve estimator (GL) performs very poorly. Although the estimator

that ignores the past 6 months shows modest improvement, in every case, the new

estimators show superior performance.

When the delays are i.i.d., the performance of µ̃ seems to be equivalent to

that of µ̂ for early times. For later times, especially when the delays are longer, the
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performance of µ̃ is not as good. The source of this trouble is seen in Table 4, which

gives bias. A sample size of 500 is sufficiently large to observe the asymptotic bias

in these estimators. As t moves out of the valid range, given by

{
t : G(t+d0) > 0

}
,

the asymptotic bias of µ̃ increases. µ̂ , however, is asymptotically unbiased for all

times of interest. In fact, the performance of µ̂ comes close to that of the estimator

that “knows” event times when they happen, rather than when they are reported.

In scenario V, when the delays are not i.i.d., µ̃ performs best. The formulas

for the variance of µ̃ and µ̂ were also evaluated in each setting and gave satisfactory

results.

4 A Clinical Trial Example: TNT

In this section, data from a real clinical trial will be used to illustrate the methods.

The Treating to New Targets (TNT) trial (LaRosa et al., 2005) was a double-blind,

randomized clinical trial designed to assess the safety and efficacy of reducing low-

density lipoprotein (LDL) cholesterol levels in patients with coronary heart disease.

Several cardiovascular events were of interest to the study investigators: death, non-

fatal MI, resuscitation after cardiac arrest, hospitalization for congestive heart fail-

ure or unstable angina, and stroke. A common practice, especially in cardiology, is

to consider the composite of a set of related components as an outcome of interest,

in addition to the individual component outcomes. A total of 10,001 patients were

randomly assigned to either 10 mg or 80 mg of atorvastatin.

The available trial data include event dates and reporting dates, although

some reporting dates were not recorded early in the trial. Since reporting times and

delays are crucial in our discussion, we simulated delays for approximately 1000

events for which reporting dates were missing. We did this by randomly picking

delays that were recorded, based on event type. This should be a good approxi-

mation of what actually happened in the trial and allows successful illustration of

the methods. We consider the mean frequency function for the composite outcome

process, combining all non-terminal event types.

Figure 3 represents the same hypothetical interim analysis that was shown

in Figure 2. The goal is to estimate µ(t), the expected number of non-fatal events in

(0, t]. As a standard for comparison, the “true” Ghosh and Lin estimator is shown.

This is the estimator that would be used if all events were reported immediately.

We are now able to compute this “true” estimator by using information that was

unavailable at the analysis time. The estimator that ignores delays is also shown,

as is the estimator that cuts the data off 6 months in the past. Finally, the two
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Table 2: MSE of Mean Frequency Estimators. Sample Size n = 100. TGL is the

“true” Ghosh and Lin estimator, GL is the Ghosh and Lin estimator, and GL6M is

the Ghosh and Lin estimator, ignoring the last 6 months.

Scenario t µ(t) TGL GL GL6M µ̃ µ̂

I

0.4 2.0 0.1 0.1 0.1 0.1 0.1

0.8 4.0 0.2 0.6 0.3 0.3 0.3

1.2 6.0 0.5 1.8 0.9 0.7 0.7

1.6 8.0 1.1 4.9 2.3 1.6 1.5

II

0.4 2.0 0.1 0.4 0.1 0.1 0.1

0.8 4.0 0.2 1.8 0.5 0.3 0.3

1.2 6.0 0.6 5.5 1.7 1.0 0.8

1.6 8.0 1.2 14 5.9 2.4 1.8

III

0.4 2.0 0.1 0.7 0.3 0.1 0.1

0.8 4.0 0.2 3.7 1.7 0.5 0.4

1.2 6.0 0.5 11 5.4 1.6 1.1

1.6 8.0 1.1 23 14 5.6 2.5

IV

0.4 1.2 0.0 0.1 0.0 0.0 0.0

0.8 2.4 0.0 0.6 0.1 0.1 0.1

1.2 3.6 0.1 1.9 0.4 0.2 0.1

1.6 4.8 0.1 4.9 1.9 0.6 0.3

V

0.4 2.0 0.1 0.5 0.2 0.1 0.2

0.8 4.0 0.3 2.6 0.9 0.6 0.7

1.2 6.0 0.6 7.5 3.1 1.1 2.2

1.6 8.0 1.2 18 9.5 2.9 5.5

VI

0.4 1.8 0.1 0.3 0.1 0.1 0.1

0.8 3.3 0.2 1.2 0.4 0.3 0.3

1.2 4.5 0.4 2.9 1.0 0.7 0.7

1.6 5.5 0.8 5.7 2.5 1.3 1.3
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Table 3: MSE of Mean Frequency Estimators. Sample Size n = 500. TGL is the

“true” Ghosh and Lin estimator, GL is the Ghosh and Lin estimator, and GL6M is

the Ghosh and Lin estimator, ignoring the last 6 months.

Scenario t µ(t) TGL GL GL6M µ̃ µ̂

I

0.4 2.0 0.01 0.09 0.02 0.02 0.02

0.8 4.0 0.0 0.4 0.1 0.1 0.1

1.2 6.0 0.1 1.4 0.2 0.1 0.1

1.6 8.0 0.2 4.2 0.7 0.3 0.3

II

0.4 2.0 0.01 0.32 0.05 0.02 0.02

0.8 4.0 0.0 1.6 0.3 0.1 0.1

1.2 6.0 0.1 5.2 1.1 0.2 0.2

1.6 8.0 0.2 14 4.8 1.2 0.4

III

0.4 2.0 0.01 0.71 0.28 0.02 0.02

0.8 4.0 0.1 3.7 1.6 0.1 0.1

1.2 6.0 0.1 11 5.2 0.9 0.2

1.6 8.0 0.2 24 14 4.5 0.5

IV

0.4 1.2 0.00 0.11 0.02 0.00 0.00

0.8 2.4 0.0 0.6 0.1 0.0 0.0

1.2 3.6 0.0 1.9 0.4 0.0 0.0

1.6 4.8 0.0 4.9 1.7 0.4 0.1

V

0.4 2.0 0.01 0.47 0.13 0.04 0.05

0.8 4.0 0.0 2.4 0.8 0.1 0.3

1.2 6.0 0.1 7.3 2.6 0.2 0.9

1.6 8.0 0.2 17 8.4 1.5 2.5

VI

0.4 1.8 0.01 0.27 0.05 0.02 0.02

0.8 3.3 0.0 1.1 0.2 0.1 0.1

1.2 4.5 0.1 2.8 0.6 0.2 0.1

1.6 5.5 0.2 5.6 1.8 0.5 0.3
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Table 4: Bias of Mean Frequency Estimators. Sample Size n = 500. GL is the

Ghosh and Lin estimator and GL6M is the Ghosh and Lin estimator, ignoring the

last 6 months.

Scenario t µ(t) GL GL6M µ̃ µ̂

I

0.4 2.0 –0.3 0.0 0.0 0.0

0.8 4.0 –0.6 0.0 0.0 0.0

1.2 6.0 –1.1 0.0 0.0 0.0

1.6 8.0 –2.0 –0.5 –0.1 0.0

II

0.4 2.0 –0.6 –0.2 0.0 0.0

0.8 4.0 –1.3 –0.5 0.0 0.0

1.2 6.0 –2.3 –1.0 –0.1 0.0

1.6 8.0 –3.7 –2.1 –0.9 0.0

III

0.4 2.0 –0.8 –0.5 0.0 0.0

0.8 4.0 –1.9 –1.3 –0.2 0.0

1.2 6.0 –3.2 –2.2 –0.8 0.0

1.6 8.0 –4.8 –3.7 –2.0 0.0

IV

0.4 1.2 –0.3 –0.1 0.0 0.0

0.8 2.4 –0.8 –0.3 0.0 0.0

1.2 3.6 –1.4 –0.6 –0.1 0.0

1.6 4.8 –2.2 –1.3 –0.6 0.0

V

0.4 2.0 –0.7 –0.3 0.1 0.2

0.8 4.0 –1.5 –0.8 0.2 0.4

1.2 6.0 –2.7 –1.6 –0.1 0.8

1.6 8.0 –4.2 –2.9 –1.1 1.4

VI

0.4 1.8 –0.5 –0.2 0.0 0.0

0.8 3.3 –1.0 –0.4 0.0 0.0

1.2 4.5 –1.7 –0.7 –0.1 0.0

1.6 5.5 –2.4 –1.3 –0.5 0.0
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Figure 3: Estimates of mean frequency for an interim analysis at 3 years: the “true”

GL estimate (solid), the unadjusted GL estimate (short dashes), the GL estimate

that ignores the last 6 months (dotted), µ̃ (dot-dash), and µ̂ (long dashes).

new estimators, µ̃ and µ̂ , are also displayed. In this example, the estimator that

has the greatest error, of course, is the one that makes no adjustment for the delays.

Ignoring 6 months gave a better result, but not as good as that of the new estimators.

In this analysis, we have combined all nonfatal event types into a single

recurrent-event outcome. While each event type will have a distinct frequency func-

tion and reporting delay distribution, µ(t) retains a valid interpretation as the mean

frequency of the composite recurrent outcome. If delay time is dependent on event

type, this can be incorporated into the estimation of the delay distribution.

Although the frequency of events in this example is low, the data are fun-

damentally different from single-event survival data. Prior to the 3-year mark, 442

subjects had experienced multiple events, over 30 had experienced at least 5 events,

and one individual had experienced 18 events. This example depicts only one pos-

sible monitoring time. We performed the calculations at other times and observed

results similar to those shown.
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5 Discussion

We have proposed estimators that can be used to estimate the mean frequency func-

tion for a recurrent-event process when event reporting is delayed. These include

an inverse probability of censoring weighted estimator that is the equivalent of the

van der Laan and Hubbard simple estimator in the new setting and an estimator that

uses explicit estimation of the delay distribution. Both can be applied to situations

with or without a terminating event, such as death.

The properties of the IPCW estimator are based on semiparametric theory.

This type of estimator relies heavily on the assumption thatG{V (t)}> 0 FX–almost

everywhere or that t is small enough and the delays are bounded. Some of the

effects of violating this assumption can be seen in the simulation results. The other

estimator, µ̂ , does not have this restriction. Instead, the assumption is made that

the delays are independent and identically distributed. When dealing with recurrent

events, it is quite possible that this assumption does not hold. For example, two or

more of a subject’s events could be reported at the same time. In these situations,

it is possible for µ̃ to perform better. In most cases, however, slight violations

of the independent and identically distributed assumption will probably not have

an adverse effect on the estimation of H. The estimator µ̂(t) has an additional

advantage over µ̃(t). When reporting dates are missing, as is the case for early

data in the TNT example, if we can assume that they are missing at random, the

delay distribution can be estimated from the remaining events and the estimate µ̂(t)
computed as usual. On the other hand, µ̃(t) cannot be calculated when reporting

times are missing.

Appendix

Proof of Theorem 2.1. We will use semiparametric efficiency theory as discussed

by van der Laan and Robins (2003). A similar discussion can be found in Tsiatis

(2006). Let PFX ,G represent the distribution of Y , the observed data, where FX is

the distribution of the full data, X . The nuisance “parameter” in this case is G, the

distribution function of C. The nuisance tangent space for the observed recurrent-

event process is

S
(
PFX ,G

)
=

{∫
U(s)dMG(s) :U

}
∩L2

0 (FX),

where dMG(s) = I(C = s)−dΛC(s)I(C ≥ s) and L2
0 (FX) is the space of functions

of X with mean zero and finite variance. The projection of a function h(Y) onto this
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space is

∏
{
h(Y ) | S

(
PFX ,G

)}
=

∫
[E {h(Y) |C = s}−E {h(Y) |C > s}]dMG(s).

This allows us to find the efficient influence function for estimation of µ .

Assuming that G is known, the influence function of µ̃(t) is (2). We have

already shown that, for all t such that G(t+ d0) > 0, E{ϕ(t) | X} = N(t)− µ(t).
This last quantity is the efficient influence function for estimation of µ when the full

data, X , are observed. We calculate the projection of this function onto the nuisance

tangent space:

∏
(
ϕ(t) | S

(
PFX ,G

))
=

∫
(E [ϕ(t) |C = s]−E [ϕ(t) |C > s])dMG(s).

The efficient influence function in the observed data model is found by subtracting

from ϕ(t) its projection onto the nuisance tangent space. This is ϕeff(t) in (3).

Consider µ̃(G) as a functional on the space of distribution functions. We

have that

µ̃(Gn)−µ = µ̃(G)−µ + µ̃(Gn)− µ̃(G)

= µ̃(G)−µ +Φ(Gn)−Φ(G)+oP(n
−1/2),

where

Φ( f ) ≡ E

[∫ t

0

dN(s)

1− f {V (s)}

]
,

for any function f satisfying 0 ≤ f < 1. The second equality is due to the uniform

convergence of Gn, the empirical distribution function. We recall also that Gn is an

efficient estimator of G, so that Φ(Gn) is an efficient estimator of Φ(G). Then, by

Theorem 2.3 in van der Laan and Robins (2003), µ̃(Gn), is a regular, asymptotically

linear estimator with influence function given by ϕeff(t). This completes the proof.

Proof of Theorem 2.2. Although Mi(t) i = 1, . . . ,n, defined in Section 2.3

has the form of a martingale, in general it is not, due to likely within-subject de-

pendence of events. Let N∗
i j, j = 1, . . . ,Nmax, be the counting process of the jth

observed event for subject i. Now, define N∗∗
il , l = 1, . . . ,Nmax, such that

{
N∗∗
i1 ,N∗∗

i2 , . . . ,N∗∗
i,Nmax

}

is a random permutation of

{N∗
i1,N

∗
i2, . . . ,N

∗
i,N∗i (t)

, 0,0, . . . ,0︸ ︷︷ ︸
Nmax−N∗i (t)

}.
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So we have, marginally, that

N∗∗
il (t) =





N∗
i1(t), with prob 1/Nmax
...

...

N∗
i,N∗i (t)

(t), with prob 1/Nmax

0, with prob 1−N∗
i (t)/Nmax

.

We have now defined a collection of counting processes. These are not mu-

tually independent, but they do have identical marginal distributions with expected

value

E {N∗∗
il (t)} =

1

Nmax

∫ t

0
E{H(s |Ci)}dµ(s).

It follows that each

Mil(t) = N∗∗
il (t)−

1

Nmax

∫ t

0
H(s |Ci)dµ(s),

l = 1, . . . ,Nmax, is a martingale with respect to its history, Ft,il = (C,{N∗∗
il (s),s≤

t}). Note that
Nmax

∑
l=1

N∗∗
il (t) =

Ni(t)

∑
j=1

N∗
i j(t) = Ni(t).

Thus, Mi(t) = ∑
Nmax
l=1 Mil(t) is the sum of dependent martingales that all have the

same compensator, N−1
max

∫ t
0H(s |Ci)dµ(s).

Defined in this way, the data fall into a category of clustered survival data

similar to that discussed by Gangnon and Kosorok (2004). We note that

sup
t

∣∣∣n−1 ∑ Ĥ(t |Ci)−E{H(t |Ci)}
∣∣∣ → 0, (4)

almost surely, by standard probability results and the boundedness of H. Over the

interval (0,τ), nU(t) has bounded variation and

sup
t∈K

∣∣∣n{Û(t)−U(t)}
∣∣∣ → 0,

in probability, for any closed subinterval K of (0,τ). Let

MU(t) =
∫ t

0
U(s)

n

∑
i=1

dMi(s)

and note that var{MU(t)}= σ 2
R,n(t). We also have

M
Û
(t)−MU(t) =

∫ t

0
n{Û(s)−U(s)}

1

n

n

∑
i=1

dMi(s). (5)
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Arguments similar to those given by Gangnon and Kosorok (2004) can be used to

show that

n1/2MU(t) → N{0,σ 2
R(t)},

and by (4) and (5) the same result holds when MU(t) is replaced by M
Û
(t). This

gives the desired result.
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