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Estimation in a Semi-Markov Transformation
Model

Dorota M. Dabrowska

Abstract
Semi-Markov and modulated renewal processes provide a large class of multi-state models

which can be used for analysis of longitudinal failure time data. In biomedical applications,
models of this kind are often used to describe evolution of a disease and assume that patient may
move among a finite number of states representing different phases in the disease progression.
Several authors proposed extensions of the proportional hazard model for regression analysis
of these processes. In this paper, we consider a general class of censored semi-Markov and
modulated renewal processes and propose use of transformation models for their analysis. Special
cases include modulated renewal processes with interarrival times specified using transformation
models, and semi-Markov processes with with one-step transition probabilities defined using
copula-transformation models. We discuss estimation of finite and infinite dimensional parameters
and develop an extension of the Gaussian multiplier method for setting confidence bands for
transition probabilities and related parameters. A transplant outcome data set from the Center for
International Blood and Marrow Transplant Research is used for illustrative purposes.
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1 Introduction

We consider estimation in a semi-Markov regression model with a finite state space
J = {1, . . . ,r}. In the absence of covariates, the model can be described by a
sequence(T,J) = {(Tn,Jn) : n ≥ 0}, whereT0 < T1 < T2 . . . are consecutive times
of entrances into the statesJ0,J1,J2, . . . ,Jn ∈ J = {1, . . . ,r}. The sequenceJ =
{Jn : n ≥ 0} of states visited forms a Markov chain and givenJ, the sojourn times
T1,T2−T1, . . . are independent with distributions depending on the adjoining states
only. Alternatively, the distribution of the sojourn timesTn+1−Tn,n ≥ 0 satisfies

P(Tn+1−Tn ≤ x Jn+1 = j|J0,T0,J1,T1, . . . ,Jn,Tn)

= P(Tn+1−Tn ≤ x Jn+1 = j|Jn) .

Properties of semi-Markov processes were discussed in some detail in classical pa-
pers of Pyke (1961,ab), Pyke and Schaufele (1964,1966), and textbooks of Cinlar
(1975), Daley and Vere-Jones (1988), Karr (1991), Last and Brandt (1995) and
Limnios and Oprisan (2001). Numerous examples of applications to areas such
as reliability, insurance and finance were provided by Janssen (1999), Janssen and
Manca (2006,2007) and Janssen and Limnios (2001), for instance. In such studies,
it is most common to consider estimation methods assuming that a single realiza-
tion of a semi-Markov process is observed over a finite time interval[0,τ] whose
length tends to infinity (τ ↑ ∞). Greenwood and Wefelmeyer (1996) and Green-
wood, Müller and Wefelmeyer (2004) developed a general framework for analysis
of non- and semi-parametric semi-Markov processes in this setting. In particular,
they studied properties of classical estimators of the jump frequency and the propor-
tion of visits to a given state, as well as Moore and Pyke’s (1968) non-parametric
estimator of the kernel of the process. Estimation of transition intensities and tran-
sition probabilities was considered by Ouhbi and Limnios (1996,1999).

In survival analysis, it is more common to consider estimation based on a
large number of iid copies of a semi-Markov process observed over a deterministic
or random time intervals. Lagakos, Sommer and Zelen (1978), Gill (1980), Voelkel
and Crowley (1984) and Phelan (1999) developed nonparametric estimators of the
semi-Markov kernel of the process in the presence of random censoring. Exam-
ples of applications of these processes to analysis of survival data can be found in
Commenges (1986), Keiding (1986), Dabrowskaet al. (1994), Changet al. (1994,
1999,2000), Cook and Lawless (2007), among others.

In this paper, we assume that the evolution of the process(Tm,Jm)m≥0 de-
pends also on anRd-valued covariate(Zm)m≥0, Zm = [Z jm : j ∈ J ], which repre-
sents either a vector of time independent covariates, or a vector of time dependent
covariates changing at the successive renewal times. As an extension of the semi-
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Markov process to the regression setting, Cox (1973) proposed to consider a pro-
portional hazards modulated renewal process. More precisely, letÑ = {Ñ j(t) : t ≥
0, j = ( j1, j2) ∈ J ×J } be the counting process registering transitions among
adjoining states of the model,

Ñ j(t) = ∑
m≥0

1(Tm+1 ≤ t,Jm+1 = j2,Jm = j1).

Cox’s model assumes that the compensator of this process, relative to the self-
exciting filtration{Ft}t≥0, is given byΛ j(0) = 0,

Λ j(t) = Λ j(Tm)+
∫ t−Tm

0
1(Jm = j1)e

β T Z j1mΓ j(du)

for t ∈ (Tm,Tm+1] and j = ( j1, j2)∈J ×J . Hereβ is a regression coefficient and
Γ j in an unknown cumulative hazard function. If covariates are time independent
andΓ j(x) = γ jx, the process reduces to a Markov chain regression model. In the
general case, the modulated renewal process allows to incorporate dependence of
the history on the sequence of states visited and the length of time spent in each
state. As a result of this, it has a more flexible structure than Markov chains.

The purpose of this paper is to extend Cox’s modulated process to a class
of transformation models. In the case of single spell models, they provide a com-
mon alternative to the proportional hazard model. In particular, they may be more
appropriate than the proportional hazard model if relative differences between co-
variates dissipate or diverge over time. As an extension to multistate models, we
consider here a modulated renewal process assuming that the counting processÑ
has compensator given byΛ j(0) = 0,

Λ j(t) = Λ j(Tm)+

∫ t−Tm

0
1(Jm = j1)α j(Γ( j1,.)(u),θ ,Z j1m)Γ j(du) (1.1)

for t ∈ (Tm,Tm+1] and j = ( j1, j2) ∈ J ×J . For any such pairj = ( j1, j2), α j

is a hazard function dependent on an unknown Euclidean parameterθ and a vec-
tor of unknown increasing functionsΓ( j1,.) = [Γ j(x) =

∫ x
0 γ j(u)du : j = ( j1, j2) ∈

J ×J ,x ≥ 0]. The components ofΓ( j1,.) depend on all states which can be
reached from the statej1 in one step. If covariates are time independent, then
(1.1) includes as a special case renewal processes whose interarrival times satisfy
common transformation models. Other choices include semi-Markov models with
one-step transition probabilities defined using copula graphic models (e.g. Zheng
and Klein (1995), Rivest and Wells (2001), Lo and Wilke (2010)) or extensions of
the dynamic Cox-McFadden’s model (Chintagunta and Prasad (1998)) combining
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transformation models and multinomial regression. These models are defined in
more detail in Section 2, where covariates are also allowed to change at the renewal
times of the process.

For purposes of estimation, we consider a modification of procedures stud-
ied by Bagdonovicius and Nikulin (1999,2004) and Dabrowska (2006) in the case
of single spell transformation models. Section 3 provides properties of the estimates
as well as an extension of the Gaussian multiplier method of Linet al. (1994) for
setting pointwise and simultaneous confidence bands for the unknown transforma-
tions and related parameters. In analogy to Cox’s model, the counting processÑ
has a compensator depending on the backwards recurrence time and as a result
of this, it falls outside the class of multiplicative models studied by Andersenet
al. (1993), for instance. In the case of Cox’s modulated renewal process or non-
parametric semi-Markov models, estimation of the cumulative hazards of one-step
transitions leads to a time transformation which arranges observations according to
the length of time spent in each state rather than calendar time. As a result of the re-
arrangement of the time scale, usual counting process methods for analysis of large
sample properties of stochastic integrals do not apply (Gill (1980), Oakes (1981),
Oakes and Cui (1994)). To alleviate these problems, we use Hoeffding’s projection
method and empirical processes in Section 5.

In Section 4, we consider a transplant outcome data set from the Cen-
ter for International Blood and Marrow Transplant Research (CIBMTR). The ex-
ample data set consists of patients who received HLA-identical sibling transplant
from 1995 to 2004 for acute myelogenous leukemia (AML) or acute lymphoblas-
tic leukemia (ALL). Multistate models for analysis of the bone marrow transplant
recovery process have been proposed by several authors. The early work in this
area focused on competing risk models and goes back Prenticeet al. (1978) who
discussed estimation of cause specific cumulative hazards in the proportional haz-
ard model. More recent approaches towards analysis of leukemia transplant data
are based on multistate models. They provide a convenient tool for evaluation of
the impact of intermediate events in the transplant recovery process on the main
outcome events corresponding to leukemia relapse and death in remission. How-
ever, analysis of multistate regression models leads to some difficulties in the in-
terpretation of the results because there is no one-to-one correspondence between
regression coefficients and transition probabilities. Each covariate may increase the
risk of transition among some states of the model and at the same time decrease
it among the others. Correspondingly, its overall impact on the outcome events is
often not clear. To obviate difficulties, Arjas and Eerola (1993) and Eerola (1994)
proposed a set of graphical tools which can be used for purposes of interpretation
of regression analyzes based on multistate models. These included graphs of in-
novation gains and plots of the transition probabilities evaluated by conditioning
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on the follow-up history of a patient. The approach was illustrated using a propor-
tional hazard model with time dependent covariates in Eerola (1994). Applications
of these methods to proportional hazard Markov chain models were given in Klein
et al. (1993) and Keidinget al. (2001) and Andersen and Parme (2008), and pro-
portional hazard semi-Markov models in Dabrowskaet al. (1993, 2006). Putteret
al. (2007) discussed special cases of both models.

In this paper, we consider a data set involving patients who received ei-
ther bone marrow (BMT) or peripheral blood stem cell transplant (PBSCT). Many
clinical studies have reported that PBSCT may be beneficial during the early post-
transplant period as it leads to faster engraftment and hematopoietic recovery than
BMT (e.g. Flowerset al. 2002, Ringdenet al. 2002). Several studies have also
pointed out that differences between the two transplant types may dissipate over
time (e.g. Friedrichset al. 2010, Cutleret al. 2002ab). Such dissipating time ef-
fects are better captured by the proportional odds ratio model than the proportional
hazard model, and in Section 5 we discuss an extension of it to semi-Markov mod-
els. In this section we also propose pointwise and simultaneous confidence bands
for comparison of transition probabilities.

2 The model

Throughout the paper we assume that(Ω,F ,P) is a complete probability space and
(Tm,Vm)m≥0 is a marked point process defined on it with marks taking on values
in a separable measure space(E,E ) and enlarged by the empty mark∆. Thus
T0 < T1 < .. .Tm . . . is a sequence of random time points registering occurrence of
some events in time such thatTm are almost surely distinct andTm ↑∞ P-a.s. At time
Tm we observe a variableVm such thatVm ∈ E if Tm < ∞, andVm = ∆ if Tm = ∞.

For anyB ∈ E , let Ñ(t,B) = ∑m≥01(Tm+1 ≤ t,Vm+1 ∈ B) be the process
counting observations falling into the set[0, t]×B. The internal history of the pro-
cess,{F N

t }t≥0, represents information collected oñN until time t, and is given by
F N

t = σ(1(Tm ≤ s,Vm ∈ B) : m ≥ 1,s ≤ t,B ∈ E )∨σ(V0). Let Ft = N ∨F N
t be

the self-exciting filtration associated with the processÑ, obtained by adjoining the
P-null sets to the internal history of the process. The compensator of the processÑ
with respect toFt is given by

Λ̃(t,B) = Λ̃(Tm,B)+
∫

(Tm,t]×B

Pm(d(s,v))
Pm([s,∞);E ∪∆)

for t ∈ (Tm,Tm+1] ,

where Pm(d(s,v)) is a version of a regular conditional distribution of(Tm+1,
Vm+1) givenFTm (Jacod (1975)).
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In this paper we assume that the marksVm have the formVm = (Jm, Z̃m),
whereJm ∈ J = {1, . . . ,r} is a discrete variable representing the type of the event
occurring at timeTm andZ̃m are covariates taking on value inRd . The covariatẽZm

may correspond to some measurements taken upon entrance into the stateJm. The
process̃N = [Ñ j, j = ( j1, j2) ∈ J ×J ],

Ñ j(t,B) = ∑
m≥0

1(Tm+1 ≤ t,Jm+1 = j2,Jm = j1, Z̃m+1 ∈ B),

has compensator given by

Λ̃ j(t,B) = Λ̃ j(Tm,B)

+
∫ t−Tm

0
µm+1(B,u+Tm, j)1(Jm = j1)α j(Γ( j1,.)(u),θ ,Z j1m)Γ j(du),

for t ∈ (Tm,Tm+1]. Hereµm+1(B,Tm+1,Jm,Jm+1) is the conditional probability of
the event{Z̃m+1 ∈ B} givenσ(FTm,Tm+1,Jm+1).

Further,Z j1m = g j1m(Tl,Jl, Z̃l : l = 0, . . . ,m) is a fixedRd valued function,
measurable with respect toFTm. Finally, α j denotes a hazard rate dependent on a
Euclidean parameterθ and a vector of unknown monotone increasing functions
Γ( j1,.) = [Γ j : j = ( j1, j2) ∈ J ×J ]. In particular, settingB = Rd and using

µm+1(Rd,Tm+1,Jm,Jm+1)1(Tm+1 < ∞) = 1 P-a.s., Λ̃ j(t,Rd) reduces to (1.1) and
represents the compensator of the “marginal” counting process

Ñ j(t) = Ñ j(t,R
d) = ∑

m≥0
1(Tm+1 ≤ t,Jm+1 = j2,Jm = j1) (2.1)

registering transitions among the adjoining states of the model.
To give examples of the model, we assume first that the covariates are time

independent. If events are of a single type(|J | = 1), then (1.1) represents com-
pensator of a renewal regression model assuming that the interarrival times follow a
transformation model. Thus in this case{α(u,θ ,Z) : θ ∈ Θ} is a parametric family
of hazard rates, and the model stipulates that conditionally onZ, the interarrival
times,Xm+1 are independent and their conditional survival function has cumulative
hazard functionA(Γ(x),θ ,Z).

Simple examples of multi-type processes are given by competing risk and
semi-Markov regression models. In particular, a semi-Markov regression model
assumes that one-step transition probabilities satisfy

P(Xm+1 ≤ x,Jm+1 = j2|(Tℓ,Jℓ)m
ℓ=0,Z) = P(Xm+1 ≤ x,Jm+1 = j2|Jm,Z).
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The matrix[Fj, j = ( j1, j2) ∈ J ×J ],

Fj(x|Z) = P(Xm+1 ≤ x,Jm+1 = j2|Jm = j1,Z),

forms the kernel of the process. One way to define it is to consider latent variable
models. Specifically, suppose that transitions originating from the statej1 have the
same conditional distribution as the pair(U,V), where

U = min[U j : j = ( j1, j2) ∈ J ×J ],

V = [1(U =U j) : j = ( j1, j2) ∈ J ×J ],

and [U j : j = ( j1, j2) ∈ J ×J ] is a multivariate vector whose joint conditional
survival function givenZ is

S( j1,.)(u,θ ,z) = S0
( j1,.)

([Γ j(u j)e
θ T

j z : j = ( j1, j2) ∈ J ×J ]).

Hereu = [u j, j = ( j1, j2) ∈ J ×J ] andS0
( j1,.)

is a known multivariate survival
function with a density with respect to Lebesgue measure supported on the entire
upper orthant ofRq j1 , q j1 = |{ j2 : ( j1, j2) ∈ J ×J }|. The functionsα j in (1.1)
are equal to

− ∂
∂y j

logS0
( j1,.)

([y je
θ T

j z : j = ( j1, j2) ∈ J ×J ]).

With this choice the cumulative intensity (1.1) corresponds to a semi-Markov model
whose kernel is given by

Fj(x|Z) = P(Xm+1 ≤ x,Jm+1 = j2|Jm = j1,Z) (2.2)

=

∫ x

0
F ( j1,.)(u|Z)α j(Γ( j1.)(u),θ ,Z)Γ j(du),

where j = ( j1, j2) ∈ J ×J andF( j1,.)(x|z) is the survival function of the sojourn
time in statej1,

F ( j1,.)(x|z) = P(Xm+1 > x|Jm = j1,z) = (2.3)

= exp
[
− ∑

j=( j1, j2)

∫ x

0
α j(Γ( j1,.)(u),θ ,z)Γ j(du)

]

= S( j1,.)(Γ( j1,.)(x),θ ,z).
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If the state space of the process consists of one ephemeral state (J0 = 1, say) and
q−1 absorbing states,q ≥ 3, then the semi-Markov process reduces to a competing
risk model. In this case transition probabilities (2.2) provide a regression analogue
of copula-graphic models proposed for analysis of competing risks by Zhang and
Klein (1995) and Rivest and Wells (2001). The special case of Archimedean copula

models corresponds to the choiceS(0)
( j1,.)

(y( j1,.)) = S(‖y( j1,.)‖1), whereS is a known

survival function with a density supported on the positive half-line and‖ · ‖1 is the
ℓ1-norm of a vector.

Another example of a semi-Markov model is provided by the dynamic Cox-
McFadden model (Chintagunta and Prasad, 1998). In this case, the distribution
of the sojourn time in statej1 ∈ J is specified by means of a transformation
model for univariate failure time data, i.e. the survival function (2.3) is of the form
F( j1,.)(x|z) = exp[−Ã j1(Γ j1(x),θ1,z)] for some univariate cumulative hazard func-

tion Ã j1. The kernel of the process is given by

Fj(x|z) =
∫ x

0
π j(u,z,θ2)F( j1,.)(du|z),

whereF( j1,.)(·|z) = 1−F( j1,.)(·|z) and for j = ( j1, j2),

π j(Xm+1, ,Z,θ2) = P(Jm+1 = j2|Xm+1,Jm = j1,Z) (2.4)

are the one-step state transition probabilities. The state transition probabilities can
be specified using multinomial regression models such as the logistic or probit
model. If the state transition probabilities (2.4) do not depend on the length of
the sojourn timeXm+1, the model reduces to a stationary process, i.e. conditionally
on Z, the transition probabilities do not depend onm.

In practice, the assumptions of the semi-Markov process may be violated if
transitions from a statej1 to a statej2 depend on the sequence or the time spent in
states visited prior to the entrance into the statej1. Both models can accommodate
this problem by allowing the covariates to depend on the internal history of the
process. The time dependent covariates may represent for instance the total number
of events occurring prior to the entrance into the statej2 or the length of time spent
in states preceding entrance into the statej1. The time dependent covariates may
also represent changing treatment types or levels of drugs.

We further assume that the process is subject to censoring and times at which
the process is observed is determined by a processC(t) = ∑m≥11(Cm−1 < t ≤Cm),
where 0≤C0 ≤C1≤ . . .≤Cm... is an increasing sequence such thatCm ∈ [Tm,Tm+1]
are stopping times with respect to a larger filtration{Ht}t≥0,Ft ⊆ Ht . If Tm =Cm

then no information is available on either the sojourn timeXm+1 = Tm+1−Tm or the
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marks(Vm,Vm+1). If Cm = Tm+1 then the sojourn timeXm+1 = Tm+1−Tm and the
marks(Vm,Vm+1) are observable. Finally, ifTm < Cm < Tm+1 then the markVm is
visible while the sojourn timeXm+1 is only known to exceedCm −Tm. Following
Andersenet al. (1993), we assume that the compensatorΛH , of the marked point
process̃N, relative to the filtration{H }t≥0, satisfiesΛH = Λ, P-a.s. and that the
censoring process and the compensatorΛ depend on parameters which do not share
components in common. We also make the assumption that the censoring process
is monotone so that with probability 1,Tm ≤Cm < Tm+1 ⇒Cm′ = Tm′ for all m′ >m.
This condition stipulates that the process terminates once censoring takes place.

These conditions are satisfied in two common applications. The first as-
sumes that the process is subject to censoring by a univariate failure timeT ′ such
thatT ′ is independent of the the sequence(Tm,Vm), conditionally on the initial state
of the process,V0. In this case,Cm = Tm +min(T ′−Tm,Xm+1)1(T ′ ≥ Tm) and the
augmented filtration is given byHt = Ft ∨σ(T ′).

The second example assumes that the state space of the process has an ex-
tra absorbing state corresponding censoring, say{c}, which can be reached in one
step from each transient statej1 ∈ J . TimeT till entrance into the censoring state
forms then stopping time with respect to the filtrationHt = Ft . Consequently,
there exist nonnegative variablesUm such that on the event{T ≥ Tm}, we have
T ∧Tm+1 = (Tm +Um)∧Tm+1, andUm is measurable with respect toFTm . Corre-
spondingly,Cm = Tm +min(Um,Xm+1)1(T ≥ Tm). In this setting, the assumption
of non-informative censoring means that the compensators of one-step transitions
into the the censoring state depend on different parameters than the compensator of
transitions among the remaining states of the model.

Let J0 ⊂ J ×J be the set of pairs of adjacent states in the model, i.e.
j = ( j1, j2) ∈ J0 iff the subject may progress from statej1 to statej2 in one step.
For j = ( j1, j2)∈J0 andm ≥ 0, letN jm(x) = 1(Xm+1≤ x,Jm = j1,Jm+1 = j2,Tm =
Cm+1), Yjm(v) = 1(Xm+1 ≥ x,Cm −Tm ≥ x,Jm = j1) and set

M jm(x,θ) = N jm(x)−Λ jm(x,θ),

Λ jm(x,θ) =

∫ x

0
Yjm(u)α j(Γ j1,.(u),Z j1m,θ)Γ j(du) .

The aggregate processesN j.,Yj. andM j. are defined asN j. = ∑m N jm, Yj. = ∑m Yjm

andM j. = ∑m M jm, respectively.
Note that the model depends on two parameters,θ and Γ, however, we

suppress the dependence onΓ in the notation. In analogy to single spell models in
Bagdonovicius and Nikulin (1999,2004) and Dabrowska (2006), under regularity
conditions stated in Section 5, we can associate, with anyθ ∈ Θ, a vectorΓθ of
locally bounded increasing functions. For this purpose, we shall require only that
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the processesN j. andYj. have a finite expectation. To show asymptotic normality
of estimates we shall require existence of the second moments of these processes.
More precisely, we assume the following conditions.

Condition 2.1 For all j ∈ J0

(i) The functionsEYj.(x) have at most a finite number of discontinuity points
andEYj.(0)2 < ∞.

(ii) The functionsEN j.(x) are continuous,EN j.(τ)2 < ∞ and the pointτ satisfies
inf{x : EN j.(x)> 0}< τ < τ j0, whereτ j0 = sup{x : EYj.(x)> 0}.

(iii) We haveP(|ZJ(t−),Ñ..(t−)| ≤ C) = 1, whereC is a finite constant,J(t) is the

state occupied by the process at timet andÑ..(t) = Σ jÑ j.(t) is the total num-
ber of events observed in the interval[0, t].

Under the added assumption that the model corresponds to the censored
modulated renewal process, andθ represents the true parameter, we have the fol-
lowing moment identities.

Lemma 2.1 Let L(t) = t −TÑ..(t−) be the backwards time of the processÑ and let
{ϕm(x),m ≥ 0,x ≥ 0} be a sequence of random functions such that the process
ϕ ◦ L, ϕ ◦ L(t) = ϕÑ..(t−)(t − TÑ..(t−)), is predictable with respect to the filtration

{Ht}t≥0 andE
∫ ∞

0 [ϕ ◦L]2(s)Λ̃ j(ds,θ)< ∞. Then

E ∑
m

∫ ∞

0
ϕm(u)N jm(du) = E ∑

m

∫ ∞

0
ϕm(u)Λ jm(du,θ),

E[∑
m

∫ ∞

0
ϕm(u)M jm(du,θ)]2 = E ∑

m

∫ ∞

0
ϕ2

m(u)Λ jm(du,θ).

In addition, if{ϕ1m : m ≥ 0} and{ϕ2m : m ≥ 0} are two such sequences, then

E[∑
m

∫ ∞

0
ϕ1m(u)M jm(du,θ)][∑

m

∫ ∞

0
ϕ2m(u)M j′m(du,θ)] = 0

for pairs j 6= j′, j, j′ ∈ J0.

Similarly to Gill (1980), this lemma follows from the dominated conver-
gence theorem, martingale properties of the processesM̃ j = Ñ j(t)− Λ̃ j(t), and the
identities

∫ ∞

0
[ϕ ◦L]k(s)C(s)Ñ j(ds) = ∑

m≥0

∫ ∞

0
ϕk

m(u)N jm(du),
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∫ ∞

0
[ϕ ◦L]k(s)C(s)Λ̃ j(ds,θ) = ∑

m≥0

∫ ∞

0
ϕk

m(u)Λ jm(du,θ).

The identities hold almost surely fork = 1,2. We omit the details.

3 Estimation

Throughout the remainder of this paper, we assume that we have an iid sample of
size n of the censored modulated renewal process and covariates. The subscript
” i" refers to thei-th subject under study andDi represents the associated vector of
observations. It corresponds to the sequence of states visited, duration of the time
spent in each state, the initial covariate and its updates occurring at uncensored
renewal times.

Further, letq = |J0| be the total number of possible one-step transitions in
the model. For eachj = 1, . . . ,q, we let (r( j),c( j)) = ( j1, j2) if the pair j ∈ J0

corresponds to the one-step transition from statej1 to the statej2. For any such
j ∈ J0, the covariateZ j1m is denoted asZ jm. We shall also find it convenient to
write Γ= [Γ1, . . . ,Γq]

T for the vector obtained by stacking the columns of the matrix
Γ = [Γ j] j∈J×J on the top of each other and deleting all entries corresponding to
the pairs( j1, j2) 6∈ J0. For the sake of convenience, we shall writeα j(y,θ ,z)
for each j ∈ J0 andy = (y1, . . . ,yq)

T ,y j ∈ R+, j = 1, . . . ,q. However, it is tacitly
assumed here that forj = ( j1, j2) ∈ J0, the functionα j(y,θ ,z) may depend only
on yk’s such that(r(k),c(k)) = ( j1, ℓ) for some( j1, ℓ) ∈ J0.

Under assumptions stated in section 5, the parameterθ varies over a bound-
ed open subsetΘ of Rd and the functionsℓ j(y,θ ,z) = logα j(y,θ ,z), y ∈ Rq are

twice continuously differentiable with respect to(y,θ). We letℓ′j = (ℓ
(1)
j , . . . , ℓ

(q)
j )T

be a vector whosek-th component is equal to the partial derivative ofℓ j(y,θ ,z) with
respect toyk,k = 1, . . . ,q. Likewise,ℓ̇ j denotes the (column) vector of lengthd cor-
responding to the derivative ofℓ j with respect toθ . We further setS j(y,θ ,x) =
n−1∑n

i=1 ∑mYjmi(x)α j(y,θ ,Z jmi), y ∈ Rq and denote bẏS,S′ the derivatives of these
processes with respect to(y,θ). Here,Ṡ is a d × q matrix, whosej-th column is

given byṠ j(y,θ ,x), the derivative ofS j with respect toθ . FurtherS′= [S(k)j ] j,k=1,...,q

is aq×q matrix, whose(k, j) entry is equal to the partial derivativeS(k)j (y,θ ,x) of
S j(y,θ ,x) with respect toyk,k = 1, . . . ,q. Let s and let ˙s,s′ be the matrices of ex-
pected Ṡ and S′ processes. Finally, for eachj ∈ J0, we let N j..(x) =
n−1∑n

i=1 ∑m N jmi(x) be the averaged process counting transitions from the state
j1 = r( j) to the statej2 = c( j) and whose sojourn time in the statej1 does not
exceedx.
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As an estimate of the unknown transformationsΓ = [Γ1, . . . ,Γq]
T , we con-

sider a vector valued analogue of the estimator proposed by Bagdonovicius and
Nikulin (1999,2004) for analysis of single spell models. The estimator is given by

Γ jnθ (x) =
∫ x

0

N j..(du)

S j(Γnθ (u−),θ ,u)
, (3.1)

Γ jnθ (0−) = 0, θ ∈ Θ,x ≥ 0, j ∈ J0.

For fixedθ , (3.1) forms a sample analogue of the non-linear vector-valued Volterra
equation

Γ jθ (x) =
∫ x

0

EN j..(du)

s j(Γθ (u−),θ ,u)
, Γ jθ (0−) = 0,x ≥ 0, j ∈ J0. (3.2)

Using arguments similar to Dabrowska (2006), we can show that under the reg-
ularity conditions stated in Section 5, the equation (3.2) has a unique solution
Γθ = [Γ1θ , . . . ,Γqθ ]

T and its estimator (3.1) is uniformly consistent. Further, the
functionΘ ∋ θ →{Γθ (x) : x ∈ [0,τ]} ∈C([0,τ])q is Frèchet differentiable with re-
spect toθ . The derivative is ad × q matrix of continuous functions satisfying the
matrix-valued linear Volterra equation

Γ̇θ (x) =−
∫ x

0
ṡ(Γθ (w−),θ ,w)Cθ (dw)−

∫ x

0
Γ̇θ (w−)Qθ (dw), (3.3)

whereCθ (x) is the diagonalq× q matrix Cθ (x) = diag[C1θ (x), . . . ,Cqθ (x)] with
entries

C jθ (x) =
∫ x

0

EN j..(du)

s2
j(Γθ (u−),θ ,u)

and
Qθ (x) =

∫ x

0
s′(Γ(w−),θ ,w)Cθ (dw).

The solution to the Volterra equation is given by

Γ̇θ (x) =−
∫ x

0
ṡ(Γθ (w−),θ ,w)Cθ (dw)Pθ (w,x). (3.4)

wherePθ (w,x), 0< w ≤ x is the Peano series (Gill and Johansen, 1990)

Pθ (u,x) = I +
∞

∑
m=1

∫

u<w1<...<wm≤x
(−1)mQθ (dw1) · . . . ·Qθ (dwm). (3.5)
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HereI is theq×q identity matrix. A uniformly consistent estimate of{Γ̇θ (x) : x ∈
[0,τ],θ ∈ Θ} can be obtained by substituting the processesN j.. andS j,S′j, Ṡ j into
the preceding expressions.

To define the score equation for estimation of the Euclidean parameter, let

e j[ f j](u,θ) =
E ∑mYjmi(u)[ f jα j](Γθ (u),θ ,Z jmi)

E ∑mYjmi(u)α j(Γθ (u),θ ,Z jmi)
,

where f j(y,θ ,Z jmi) is a function of covariates, jointly continuous with respect to
(y,θ) and bounded on every compact set ofRq ×Θ. Likewise, for any two vectors
f1 j and f2 j of such functions, define

covj[ f1 j, f2 j](u,θ) =
(
e j[( f1 j ⊗ f2 j)]− (e j[ f1 j]⊗ e j[ f2 j])

)
(u,θ)

and set varj[ f j](u,θ) = covj[ f j, f j](u,θ).
To estimate the parameterθ , we use a solution to the score equationUn(θ)=

Unϕn(θ) = oP(n−1/2), where

Unϕn(θ) =
1
n

n

∑
i=1

∑
j
∑
m

∫ τ

0
b̂ jmi(Γnθ (u),θ ,u)N jmi(du), (3.6)

b̂ jmi(Γnθ (u),u,θ) = b̂ jm1i(Γnθ (u),u,θ)−ϕnθ(u)b̂ jm2i(Γnθ (u),u,θ) and

b̂ jm1i(y,θ ,u) = ℓ̇ j(y,θ ,Z jmi)− [Ṡ j/S j](y,θ ,u),
b̂ jm2i(y,θ ,u) = ℓ′j(y,θ ,Z jmi)− [S′j/S j](y,θ ,u).

Hereϕnθ (x) is an estimate of ad × q matrix of bounded functionsϕθ (x), whose
j-th column is absolutely continuous with respect toΓ jθ .

We further define matrices

Σ0(θ) = ∑
j

∫ τ

0
v j,ϕ(u,θ)EN j..(du),

Σ1(θ) = Σ0(θ)+∑
j

∫ τ

0
ρ jϕ(u,θ)EN j..(du)[Γ̇θ (u)+ϕθ (u)]

T ,

Σ2(θ) = Σ0(θ)+
∫ τ

0
Dϕ(u,θ)TCθ (du)Dϕ(u,θ),
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wherev j,ϕ(u,θ) = varj[ℓ̇ j −ϕθ ℓ
′
j](u,θ), ρ j,ϕ(u,θ) = covj[ℓ̇ j −ϕθ ℓ

′
j, ℓ

′
j](u,θ) and

Dϕ(u,θ) = ∑
j

∫ τ

u
Pθ (u,w)EN j..(dw)ρ jϕ(w,θ)T .

Proposition 3.1 Let εn ↓ 0 be a sequence such that
√

nεn → ∞ and letB(θ0,εn) =
{θ : |θ −θ0| ≤ εn} be the ball of radiusεn centered atθ0. Suppose that the matrix
Σ0(θ0) is positive definite and the matrixΣ1(θ0) is non-singular. Under conditions
stated in Section 5, the score equationUnϕn(θ) = oP∗(n−1/2) has a solution̂θ in the
ball B(θ0,εn), with (inner) probability tending to 1. Further, letΞ̂ =

√
n(θ̂ − θ0)

andŴ0 =
√

n[(Γnθ̂ − Γθ0)
T − (θ̂ − θ0)

T Γ̇nθ̂ ]. Then [Ξ̂,Ŵ0] converges weakly in
Rd × ℓ∞([0,τ]×J0) to a tight mean zero Gaussian process[Ξ,W0] with covariance

covΞ = Σ−1
1 (θ0)Σ2(θ0)[Σ−1

1 (θ0)]
T ,

cov(W0(x),W0(x
′)) = Kθ0(x,x

′),

cov(Ξ,W0(x)) =−Σ−1
1 (θ0)∑

j

∫ τ

0
ρ j,ϕ(u,θ0)EN j..(du)Kθ0(u,x),

whereKθ ,θ ∈ Θ is aq×q matrix

Kθ (x,x
′) =

∫ x∧x′

0
PT

θ (u,x)Cθ (du)Pθ (u,x
′). (3.7)

HereX1 = ℓ∞([0,τ]×J0) denotes the space of bounded functions map-
ping the set[0,τ]×J0 into R and equipped with uniform metric and Borelσ -field.
The Borelσ -field X = Rd ×X1 is generated by open sets in the product topol-
ogy of the Euclidean spaceRd and the spaceX1. It is equal toB(Rd)⊗B(X )
becauseRd is a complete separable metric space. The processX = (Ξ,W0) has a
version whose almost all paths are in the separable subspace ofX corresponding
to Rd ×Cb([0,τ]×J0), whereCb([0,τ]×J0) is the space functions continuous
with respect to the variance pseudo-metric. Weak convergence of the sequence
Xn = [Ξ̂,Ŵ0] to (Ξ,W0) means that for all bounded continuous functionsf on X ,
we haveE∗ f (Xn)−E f (X)→ 0, whereE∗ is the outer expectation. This implies that
Xn is asymptotically measurable. In particular, we haveE∗ f (Xn)−E∗ f (Xn)→ 0 for
all bounded continuous functionsf on X , whereE∗ f (Xn) = −E∗(− f (Xn)) is the
inner expected (van der Vaart and Wellner (1996), Dudley (1999)). We also note
that the spaceX1 = ℓ∞(T ×J0) is isometric to the product spaceY = ℓ∞([0,τ])q

equipped with uniform metricdY (x,y) =maxj supt |x j(t)−y j(t)| and product topol-
ogy of Y coincides with the topology induced by metricdY . Under assumptions
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of section 5, the spaceCb([0,τ]×J0) is isometric to the spaceC([0,τ])q andW0

is a linear transformation of a vector ofq independent time-transformed Brownian
motions.

The M-estimator̂θ depends on the specification of the matrixϕθ and its
estimatorϕnθ . Depending on the measurability properties of the estimatorϕnθ , the
solution to the score equation exists either with probability tending to 1, or with
inner probability tending to 1 (Section 5). Two simple choices of the functionϕθ
correspond toϕθ ≡ 0 andϕθ = −Γ̇θ . In particular, with the latter choice, the es-
timateθ̂ is an analogue of the pseudo- maximum likelihood estimators considered
by Bagdonovicius and Nikulin (1999,2004) in the case of single spell models. Un-
der regularity conditions, the optimal choice of this function corresponds to solu-
tion of a system of Sturm-Liouville equations and yields an asymptotically efficient
estimate of the Euclidean component of the model. If the process registers only
events of one type (i.e.|J0| = 1) then the form ofϕθ corresponding to the effi-
cient estimate ofθ is similar to the single spell version of this model and can be
found in Bickel (1986) and Bickel and Ritov (1995) in the uncensored case, and
in Dabrowska (2007) in the censored case. The estimate of the functionϕθ can
be obtained in this case by inverting a simple tridiagonal band-symmetric matrix.
The form of the information bound and efficient score function for the general case
(|J0|> 1) is postponed to a separate paper, where we consider it under additional
compatibility conditions.

To set confidence bands for the baselineΓ vector and related parameters,
we consider Gaussian multiplier method of Lin, Fleming and Wei (1994). For this
purpose, we shall need some additional notation.

(i) Let G0 be a vector of independentN (0, Id×d) variables. and letGi = (Gmi :
m= 1, . . . ,Ki), i= 1, . . . ,n,Ki =Y..i(0) be standard normal variables, indepen-
dent ofG0 and mutually independent given the dataD1, . . . ,Dn.

(ii) For j ∈ J0, set

V̂ #
j (x) =

1√
n

n

∑
i=1

∑
m

Gmi

∫ x

0

N jmi(du)

S j(Γnθ̂ (u−), θ̂ ,u)
,

(iii) Put Ξ̂# = Ξ̂#
1− Ξ̂#

2, whereΞ̂#
1 = Σ̂−1

1 (θ̂)Σ̂0(θ̂)1/2G0 and

Ξ̂#
2 = Σ̂−1

1 (θ̂)∑
j

∫ τ

0
ρ̂ j,ϕn(u, θ̂)N j..(du)Ŵ #

0 (u)
T ,

Ŵ #
0 (x) =

∫ x

0
V̂ #(du)P̂θ̂ (u,x) = V̂ #(x)−

∫ x

0
Ŵ #

0 (u−)Q̂θ̂ (du).
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The estimateŝQθ̂ andP̂θ̂ are plug-in analogues of the matrices defined in (3.3)-
(3.5).

Proposition 3.2 Suppose that the conditions of Proposition 3.1 are satisfied. Then,
unconditionally,(Ξ̂#,Ŵ #

0 ), Ŵ #
0 = {[Ŵ #

j (x) : x ∈ [0,τ], j ∈ J0} converges weakly

in Rd × ℓ∞([0,τ]×J0) to a mean zero Gaussian process(Ξ#,W #
0 ) with the same

covariance function as(Ξ,W0). Moreover,(Ξ,W0) and(Ξ#,W #
0 ) are independent

while (Ξ̂,Ŵ0) and(Ξ̂#,Ŵ #
0 ) are asymptotically independent. Conditionally, the pro-

cess(Ξ̂#,Ŵ #
0 ) converges weakly to(Ξ#,W #

0 ), in probability.

As in van der Vaart and Wellner (1996, p. 181), conditional weak convergence
means that suph∈BL1

|EGh(Ξ̂#,Ŵ#
0 )−Eh(Ξ#,W #

0 )| →P∗ 0, whereEG denotes expec-
tation with respect to theG variables. Further,h varies over the class of bounded
Lipschitz functions, andBL1 is the set Lipschitz functions whose norm is bounded
by 1.

This proposition can be further extended to approximate the distribution of
functionalsΦ(θ ,Γ). In sufficiently simple cases, functional delta method can be
used for this purpose. In particular, we may consider estimation of the kernelF of a
semi-Markov processes with a state spaceJ = {1, . . . ,r}. In this case the covari-
ates are time independent, and the entries of the matrixF(x|z) = [Fj(x|z)] j∈J×J

are specified by (2.2)-(2.3). Under the assumed differentiability conditions on the
hazard functionsα j, the plug-in sample analoguêF of the matrixF has entries
satisfying

ŴF, j(x|z) =
√

n[F̂j −Fj](x|z) = (3.8)

= Ξ̂T
∫ x

0
ḟ j(Γ( j1.)(u),θ0,z)Γ j(du)+

∫ x

0
W̃( j1.)(u) f ′j(Γ( j1.)(u),θ ,z)Γ j(du)

+

∫ x

0
f j(Γ( j1.)(u),θ0,z)W̃0 j(du)+oP∗(1), j ∈ J0.

For any j = ( j1, j2) ∈ J0, Γ( j1,.) andW̃( j1,.) denote subvectorsΓ( j1,.) = {Γθ0 j : j =

( j1, ℓ) ∈ J0} andW̃( j1,.) = {W̃0 j : j = ( j1, ℓ) ∈ J0}, where

W̃0 = {
√

n[Γn jθ̂ −Γ jθ0] : j ∈ J0}= Ŵ0+ Ξ̂T Γ̇nθ̂ +oP∗(1). (3.9)

Denote byŴ #
F the matrix obtained by replacing in (3.8)-(3.9) the process(Ξ̂,Ŵ0)

by (Ξ̂#,Ŵ #
0 ) and the unknown parameters by their estimates(θ̂ ,Γnθ̂ ). Using in-

tegration by parts and Proposition 3.1 it is easy to verify that the processŴF =
[ŴF, j(x|z) : x ≤ τ, j ∈ J0] converges weakly to a mean zero Gaussian processWF
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in ℓ∞([0,τ])|J0|. In addition, the conclusions of Proposition 3.2 carry over to the
procesŝW #

F = [Ŵ #
F, j(x|z) : x≤ τ, j ∈J0], i.e. unconditionally,̂W #

F converges weakly
to a mean zero Gaussian processW #

F with the same covariance function as the pro-
cessWF and is independent of it. Conditionally, the processŴ #

F converges weakly
to W #

F in probability.
Another example of a functional may correspond to the cumulative residual

process arising in goodness-of-fit testing. In particular, suppose that covariates are
partitioned intok disjoint categories,I1, . . . , Ik. The cumulative residual process for
the one-step transition between statesj1 → j2 is given by

R̂ j(x, ℓ) =
1√
n

n

∑
i=1

∑
m

1(Z jmi ∈ Iℓ)M̂ jmi(x) =

1√
n

n

∑
i=1

∑
m

∫ x

0

[
1(Z jmi ∈ ℓ)− S jℓ

S j
(Γnθ̂ (u−), θ̂ ,u)

]
N jmi(du),

whereS jℓ(Γnθ̂ (u−), θ̂ ,u) = ∑n
i=1∑mYjmi(u)1(Z jmi ∈ Iℓ)α j(Γ̂nθ̂ (u−), θ̂ ,Z jmi) is the

risk process corresponding to subjects in the groupIℓ. Under the assumption that
residuals are consistent with the model, theR̂ = {R̂ j(t, ℓ) : t ∈ [0,τ], j ∈ J0, ℓ =
1, . . . ,k} converges weakly to a mean zero Gaussian process and the Gaussian mul-
tiplier approximation to its distribution is given by

R̂#
j(x, ℓ) =

1√
n

∫ x

0

[
1(Z jmi ∈ Iℓ)−

S jℓ

S j
(Γnθ̂ (u−), θ̂ ,u)

]
GmiN jmi(du)

−(Ξ̂#)T
∫ x

0

([
Ṡ jℓ

S jℓ
− Ṡ j

S j

]
S jℓ

S j

)
(Γnθ̂ , θ̂ ,u)N j..(du)

−
∫ x

0
W̃ #

( j1,.)
(u)

([
S′jℓ
S jℓ

−
S′j
S j

]
S jℓ

S j

)
(Γnθ̂ , θ̂ ,u)N j..(du).

In analogy to Martinussen and Scheike (2006), the performance of residuals can be
evaluated using Kolmogorov-Smirnov statistics such as supx∈[δ ,τ−δ ] |R̂ j(x, ℓ)| and
the Guassian multiplier method can be used to obtain critical levels of tests. Al-
ternate tests can be obtained by modifying chi-squared tests in Aalenet al (2008,
p.144) or tests based on Schoenfeld residuals.

4 Example

We consider a transplant outcome data set from the Center for International Blood
and Marrow Transplant Research (CIBMTR). The CIBMTR is comprised of clini-
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cal and basic scientists who confidentially share data on their blood and bone mar-
row transplant patients with CIBMTR Data Collection Center located at the Medical
College of Wisconsin. The CIBMTR is a repository of information about results
of transplants at more than 450 transplant centers worldwide. The example data
set consists of patients who received HLA-identical sibling transplant from 1995
to 2004 for acute myelogenous leukemia (AML) or acute lymphoblastic leukemia
(ALL) and transplanted in first remission. All patients received bone marrow trans-
plantation or peripheral blood stem cell transplantation. Children under age 16 and
all patients who received umbilical cord blood transplants were excluded as risk
factors are likely to vary in this group.

Allogeneic stem cell transplantation (ASCT) is an accepted treatment for
leukemia patients. Transplant candidates receive high doses of chemotherapy and
radiation which destroy malignant cells in the bone marrow and elsewhere. Because
stem cells in the normal bone marrow are destroyed in this process as well, patients
subsequently receive a transplant from a suitably matched donor. The transplant can
be followed by several complications. In this study, fatal complications correspond
to relapse of leukemia or death in remission (hereafter referred to as death). The
most important intermediate event in ASCT is graft-versus-host-disease (GVHD) in
which transplanted immune cells recognize the recipient’s body tissues as foreign.
Acute and chronic GVHD (AGVHD and CGVHD) are two forms of this disease.
AGVHD occurs during the early post-transplant period is defined here as moderate
to severe using clinically established criteria. CGVHD occurs later in time and may
be preceded by AGVHD.

The incidence of GVHD, leukemia relapse and death in remission depends
on a number of variables characterizing the recipient, the donor and the transplant.
The main variables considered in this paper include recipient’s age, donor-recipient
gender match, disease type and graft source. Bone marrow was the first source
of stems cells used in used ASCT. Since 90’ies, peripheral-blood stem cell trans-
plants have replaced bone marrow as the preferred source of stem cells because of a
quicker hematologic recovery and relative ease of collection. Patients may receive
also an infusion of both peripheral stem-cells and bone marrow. Several studies
have shown that PBSCT recipients may be at a higher risk of GVHD than BMT
patients. (e.g. Cutleret al. (2001), Flowerset al. (2002), Friedrichset al. (2010)).
A possible explanation of this phenomenon is that GVHD develops from the infu-
sion of donor T cells and PBSCT recipients receive a significantly higher dose of
T cells than BMT patients. As a result of the increased risk of GVHD, the patients
who experience it may be at a higher risk of death in remission than BMT patients.
GVHD is also more more common among older patients and among male recipients
receiving transplants from female donors (Galeet al. 1987).
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For purposes of modeling, we consider a five state modulated renewal model
proposed for analysis of the transplant recovery process in Dabrowskaet al. (1994).
Table 1 collects some information about the type and number of the observed tran-
sitions, their range and median. The model assumes that a patient remains in the
transplant state (tx, state 1) until the time of the first adverse event which may
correspond to AGVHD (state 2), CGVHD (state 3), relapse (state 4) or death in
remission (state 5). The model takes also in to the account that a patient who devel-
ops GVHD may subsequently relapse or die, and that CGVHD may be preceded by
AGVHD. The observed model has an extra absorbing state corresponding to cen-
soring (loss-to-follow-up). Further, age was categorized into 3 groups, each rep-
resenting approximately one third of the patients. The baseline group corresponds
to the age range[29.5,42.5]. Transitions were also adjusted for the waiting time
for transplant. Two continuous variables were used for this purpose: the length of
time between leukemia diagnosis and first remission (DxCr) and the length of time
between first remission and transplant (CrTx). Their medians and range were: me-
dian(DxCr)= 1.38, IQR(DxCr)=1.15, range(DxCr)=221.45 months and med(CrTx)
= 3.06, IQR(CrTx)=2.5, range(CrTx)=46.74 months. To obviate skewness of the
distribution, the log transformation of these variables is used in the regression anal-
ysis.

The modulated renewal process assumes that one-step transition probabil-
ities are specified by means of a proportional odds ratio model. More precisely,
hazard rates of one-step transitions originating from the transplant or AGVHD state
are of the form

α j(Γ( j1,.)(x),θ ,Z)γ j(x) = eθ T
j Z j [1+

5

∑
k= j1+1

1(ℓ= ( j1,k))Γℓ(x)e
θ T
ℓ Zℓ]−1γ j(x),

for j = ( j1, j2) such thatj1 = 1 or j1 = 2 and j1+1≤ j2 ≤ 5, Γ j(x) =
∫ x

0 γ j(u)du.
In the case of transition rates originating from the CGVHD state, we use covariate
ZC = (Z,ZA), whereZA is a binary variable indicating by 1 whether AGVHD pre-
ceded onset of chronic graft versus host disease. The corresponding transition rates
into the relapse and death states are given by

α j(Γ(3,.)(x),θ ,ZC)γ j(x) = eθ T
j Z jC [1+

5

∑
k=4

1(ℓ= (3,k))Γℓ(x)e
θ T
ℓ Z jC ]−1γ j(x)

for j = (3, j2) and j2 = 4,5. HereZ j andZ jC, j = ( j1, j2), represent transition spe-
cific covariates, which correspond to subvectors ofZ andZC, respectively. Table
4 provides their entries as well as the estimates of the regression coefficients and
standard errors. The estimates were obtained using Fisher scoring algorithm ap-
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Table 1: Observed one-step transitions

n median range
(in months) (in months)

TX → AGVHD 491 .7 4.3
TX → CGVHD 372 5.5 106.4
TX → relapse 106 5.6 59.4
TX → death 179 2.9 131.9
TX → censoring 506 56.9 143.8

AGVHD → CGVHD 202 4.8 57.4
AGVHD → relapse 33 5.2 23.7
AGVHD → death 141 2.9 80.3
AGVHD → censoring 115 45.7 133.0

CGVHD → relapse 27 8.3 98.3
CGVHD → death 79 9.8 124.4
CGVHD → censoring 266 51.1 144.3

A+CGVHD → relapse 25 3.5 53.3
A+CGVHD → death 65 5.6 109.3
A+CGVHD → censoring 112 56.3 145.2

Table 2: Summary of covariates

Age n Graft source n Disease n

< 30 (young) 550 [BMT] 842 [AML] 1168
[30,42.5] 534 PB/PB+BMT 803 ALL 477
> 42.5 (old) 561

Donor’s Gender n Gender-Match n

F 890 FM 441
[M] 755 [not FM] 1224

Baseline groups are marked in brackets.
FM represents a female to male transplant

plied to the score process (3.6) withϕnθ =−Γ̇nθ . Variable selection was based on
backwards elimination and Wald testing. To asses adequacy of the model, we have
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used Kolmogorov-Smirnov tests described in Section 3. The results are summarized
below and at in Table 5.

Table 3: One-step transition probability matrix

tx AGVH CGVH A+CGVH rel death

tx 0 F12 F13 0 F14 F15
AGVHD 0 0 0 F23 F24 F25
CGVHD 0 0 0 0 F34 F35
A+CGVHD 0 0 0 0 F34 F35
rel 0 0 0 0 1 0
death 0 0 0 0 0 1

We note here that the transitions originating from the CGVHD state depend
on whether or AGVHD was experienced prior to the entrance to the CGVHD state.
This dependence violates the assumption that the sequence of states visited forms a
Markov chain. However, this problem disappears if the state space of the process is
enlarged to include an extra state A+CGVHD. This extra state is here denoted by3.
Conditionally on the time independent covariates, the resulting model has structure
of a semi-Markov process with kernelF(x|z) = [Fj(x|z)] specified in Table 3. The
entries of the kernel matrix have a fairly explicit form. For transitions originating
from the transplant (tx) or AGVHD state, we have

Fj(x|z) =
∫ x

0
eθ T

j Z j [1+
5

∑
k= j1+1

1(ℓ= ( j1,k))Γℓ(u)e
θ T
ℓ Zℓ]−2Γ j(du)

for j = ( j1, j2), j1 = 1,2 and j2 = j1+1≤ j2 ≤ 5. One-step transition probabilities
originating from the CGVHD state are given by

Fj(x|z) = 1(ZA = 0)
∫ x

0
[1+

5

∑
k=4

1(ℓ= (3,k))Γℓ(u)e
θ T
ℓ Z jC ]−2eθ T

j Z jC Γ j(du)

for j = (3, j2) and j2 = 4,5. One-step transition probabilities originating from the
state A+CGVHD (labeled as “3”) have a similar form, with covariate covariate
ZA = 1.

We also consider multi-step probabilities of transitions into the absorbing
states, i.e. probabilities of transition into the relapse and death states along any
possible path of the model. LetJ(t) be the state occupied by the process at time
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t and let e denote either relapse or death in remission. By noting that a patient
may move into an absorbing state by first passing through the GVHD states, these
probabilities are given by

He(t|z) = P(J(t) = e|z) =
4

∑
k=1

H(k)
e (t|z),

where

H(1)
e (t|z) = P({J(t) = e}∩Ac ∩Cc|z),

H(2)
e (t|z) = P({J(t) = e}∩A∩Cc|z), (4.1)

H(3)
e (t|z) = P({J(t) = e}∩Ac ∩C|z),

H(4)
e (t|z) = P({J(t) = e}∩A∩C|z),

and the eventsA andC represent

A = {AGVHD occurs prior to the event e},
C = {CGVHD occurs prior to the event e}.

The first of these probabilities corresponds to a move from the transplant to the

statee in one step so thatH(1)
e (t|z) = F1e(t|z) for e = 4,5. The termsH(2)

e andH(3)
e

provide the probabilities of transitions along the paths “tx→ AGVHD → e” (H(2)
e )

and “tx→ CGVHD→ e” (H(3)
e ) and are given byH(k)

e (t|z) = (F1k ⋆Fke)(t|z), k = 2
or 3,e = 4 or 5. Here for any two subdistribution functionsF andF ′ on the positive
half-line,F ⋆F ′ is their convolution

(F ⋆F ′)(t) =
∫ x

0
F(t −u)F ′(du) =

∫ x

0
F(du)F ′(t −u).

Lastly, transition along the path “tx→ AGVHD → A+CGVHD → e” (H(4)
e ) con-

tributes to the sumH(4)
e (t|z) = (F12⋆F23⋆F3e)(t|z).

The multi-step transition probabilities can be estimated using plug-in
method. The estimates are consistent on time intervals[0,τ] strictly contained in
the support of all sojourn time distributions. As an example, Figure 1 compares
transition probabilities of hypothetical ALL patients receiving BMT and PBSCT
transplant. The remaining covariates correspond to the age range 16-29.5 years and
baseline subgroups specified in Table 2. The plots represent the four components
of the multistep transition probabilities defined in (4.1). PBSCT seems to reduce

one-step transition probabilities of both relapse and death (H(1)
e , black curves), and
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Figure 1: Transition probabilities of endpoint events of a young ALL patient re-
ceiving BMT (left panel) or PB (right panel). The remaining covariates correspond
to the baseline. The curves represent one-step transitions tx→ e (black), two-step
transitions tx→ AGVHD → e (red) and tx→ CGVHD → e (blue), and three-step
transitions tx→ AGVHD → CGVHD → e (green).

the effect is more pronounced in the case of the tx→ death transition. The graphs
suggest also that PBSCT associates with a reduced probability of relapse preceded

by AGVHD (H(2)
e , red curves). At the same time, however, the probability of death

in remission is higher than that of a BMT recipient. We also see an increase in the
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probability of relapse and death resulting from CGVHD without AGVHD (H(3)
e ,

blue curves) and CGVHD with AGVHD (H(4)
e , green curves).

To assess effects of covariates, we consider pointwise and simultaneous con-
fidence bands for pairwise differences of one-step and multi-step transition proba-
bilities. In the case of one-step transition probabilities, we consider functions

∆F
j (t|z1,z2) = Fj(t|z1)−Fj(t|z2), j ∈ J0,

wherez1 andz2 are two covariate levels. We denote by∆̂F
j the corresponding sam-

ple analogue of the function∆F
j . Results of Section 5 imply that the normalized

procesŝW F
j,∆ = {√n[∆̂F

j −∆F
j ](t|z1,z2) : t ∈ [0,τ]} converges weakly to a mean zero

Gaussian processW F
j∆ = {W F

j (t|z1)−W F
j (t|z2) : t ∈ [0,τ]}.

To construct confidence bands, we note that each∆ function forms a differ-
ence of two subdistributions functions. Correspondingly, it assumes values between
−1 and 1. Direct application of the Gaussian approximation to the limiting distri-
bution of the processW F

j∆ may result in confidence intervals and confidence bands
whose bounds may fall outside the interval(−1,1). To circumvent this problem,
we use transformation method.

Let Φ : R → (−1,1) be strictly increasing differentiable function derivative
ϕ satisfyingϕ(x)> 0 for all x ∈ R. By delta method,

√
n[Φ−1(∆̂F

j (t|z1,z2))−Φ−1(∆F
j (t|z1,z2))]⇒

ϕ(Φ−1(∆F
j (t|z1,z2)))

−1W F
j,∆(t|z1,z2), t ∈ [0,τ].

Let cα(t1, t2) be the upperα percentile of the distribution of

sup
t1≤t≤t2

[
|W F

j,∆|
σ̂∆F

j

]
(t|z1,z2),

whereσ̂∆F
j
(t|z1,z2) is an estimate if the standard deviation of∆F

j (t|z1,z2). Then, by

the continuous mapping theorem, the 100× (1−α)% asymptotic confidence band
for the∆ function has upper and lower bounds given by

Φ

(
Φ−1(∆̂F

j (t|z1,z2))± cα(t1, t2)
σ̂∆F

j
(t|z1,z2)

ϕ(Φ−1(∆̂F
j (t|z1,z2)))

)
. (4.2)

The corresponding pointwise confidence intervals can be obtained by replacing the
constantcα(t1, t2) by the upperα/2 percentile of the standard normal distribution.
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A possible choice of theΦ function may correspond toΦ(x) = 2G(x)−1,
whereG is a distribution function with densityg supported on the whole real line.
In analogy to the construction of the confidence bands for survival function in An-
dersenet al. (1993), we may consider the choice of the extreme value distribution
G(x) = 1−exp[−ex]. In this caseΦ−1(u) = log[− log[(1−u)/2]] and the bounds
are given by

1−2

[
1− ∆̂F

j (t|z1,z2)

2

]exp[±cα (t1,t2)[hσ̂∆F
j
](t|z1,z2)]

, (4.3)

h(t|z1,z2) = [| log[(1− ∆̂F
j (t|z1,z2))/2|](1− ∆̂F

J (t|z1,z2))]
−1.

Another possible choice may correspond to the logistic distribution,G(x) = ex/[1+
ex]. We haveΦ−1(u) = log([1+u]/[1−u]), and the bounds assume form

1−2

(
1+

1+ ∆̂F
j (t|z1,z2)

1− ∆̂F
J (t|z1,z2)

exp[±cα(t1, t2)[hσ̂∆F
J
](t|z1,z2)]

)−1

, (4.4)

h(t|z1,z2) = 2[(∆̂F
j (t|z1,z2)+1)(1− ∆̂F

j (t|z1,z2))]
−1.

A similar approach can be applied towards comparison of multi-step transi-
tion probabilities. For any two covariate levels,z1 andz2, we set

∆H
j (t|z1,z2) = H j(t|z1)−H j(t|z2), j = 4,5.

The corresponding sample analogue is denoted by∆̂H
j . It is easy to see that

{Ŵ H
j,∆(t|z1,z2) =

√
n[∆̂H

j −∆H
j ](t|z1,z2) : t ∈ [0,τ]} converges weakly to a Gaussian

processW H
j∆(t|z1,z2) =W H

j (t|z1)−W H
j (t|z2), where

W H
j (t|z) =W F

1 j(t|z)+
3

∑
i=2

[W F
1i ⋆Fi j +F1i ⋆Wi j](t|z)

+[W F
12⋆F23⋆F3 j +F12⋆W F

23⋆F3 j +F12⋆F23⋆W F
3 j](t|z).

and the integrals are defined by means of the convolution formula.
In Figures 2-5, we compare one-step and multi-step transition probabilities

of relapse and death in remission for patients with selected covariate profiles. To
obtain the bands, we first used Gaussian multiplier method to estimate the approx-
imate variance of the∆ function: the Monte Carlo variance of the∆ function was
computed based on 5000 Monte Carlo experiments. A second application of the
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Gaussian multiplier method was then used to obtain an approximation of the criti-
cal levelcα(t1, t2) based on 5000 Monte Carlo trials. The interval[t1, t2] was chosen
to correspond tot1 = 1.5 andt2 = 60 months. The bounds (4.2) and (4.3) showed a
close numerical agreement and the resolution of the graphs does not allow to show
the difference between the two choices. The difference between the upper/lower
bounds did not exceed .07%, and the bands obtained using the logistic transforma-
tion were narrower.
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Figure 2: Pointwise and simultaneous confidence bands for theone-step and multi-
step∆ functions of ALL patients receiving BMT. Covariates: agez1 ≤ 29.5 and
z2 = baseline age. The remaining covariates correspond to the baseline.
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Younger age associated with reduced probabilities of relapse and death of
both AML and ALL patients. In Figure 2, we use∆ function to compare transition
probabilities of hypothetical younger (z1) and baseline age (z2) ALL bone marrow
transplant recipients. The remaining covariates correspond to baseline groups spec-
ified in Table 2 and median waiting times variables DxCr and CrTx. The plots show
that younger age has “concordant” effect on endpoint probabilities, i.e. younger age
associated with reduced probability of both relapse and death. In the case of one-
step tx→ relapse transitions, the pointwise bands suggest that the differences are
significant but the wider simultaneous bands show that this is not the case. Exam-
ination of the four possible paths leading to the relapse state showed that although
younger patients have lower one-step relapse transition probabilities, they are at a
higher risk of relapse preceded by AGVHD than patients in the baseline age group.
This accounts for marginal differences in the multistep relapse transition probabil-
ities. Figure 2 shows also that multi-step transitions into the death state are signif-
icantly lower for a younger patient since the upper bounds of both pointwise and
simultaneous bands are below the horizontal line passing through 0. While in the
case of one-step transition probabilities there is a marginal difference during the
early post-transplant period, patients in the baseline age group had higher probabil-
ities death preceded by GVHD.

In Figure 3, we show the “discordant” effect of older age on the two end-
point probabilities. The graphs represent∆ function for hypothetical ALL patients
receiving peripheral blood stem cell transplant. The covariatez1 corresponds to the
older age andz2 to the baseline age group. The remaining covariates correspond
to baseline (Table 2). Older age associated with lower transition probabilities into
the relapse state. On the other hand, the role of the two covariates is reversed in the
case of transitions into the death state. Plots of the four paths leading to the endpoint
events showed that an older patient may have higher probabilities of death resulting
from CGVHD (with or without AGVHD) while probability of transition along the
path tx→ AGVHD → death is comparable to that of a patient in the baseline age
group.

In the next figure we show a “switching” treatment effect. Figure 4 com-
pares two hypothetical young AML patients receiving PBSCT(z1) and BMT(z2).
The one-step and multi-step relapse probabilities were lower in the case of the PB-
SCT but the differences were not significant. On the other hand, we see that PBSCT
associates with a lower probability of one-step transition into the death state, while
in the case of multi-step transitions the role of the two graft sources is reversed.
This pattern is also seen in the case ALL young patients in Figure 1, but in the case
of AML patients the differences in the multi-step transition probabilities were more
pronounced.
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Figure 3: Pointwise and simultaneous confidence bands for theone-step and multi-
step∆ functions of ALL patients receiving PBSCT.Covariates:z1 = age> 42.5
years,z2 = baseline age. The remaining covariates correspond to the baseline.

A similar approach can be applied to compare transition probabilities eval-
uated by conditioning on the follow-up history of a patient. In particular, Arjas and
Eerola (1993) and Eerola (1994) have suggested the use of graphs of the conditional
probabilities

P(J(t) = e|Hs), s < t (4.5)

whereHs represents patient’s history up-to times. Examples of these graphs spe-
cialized to Markov chains and semi-Markov models were given in Kleinet al.
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Figure 4: Pointwise and simultaneous confidence bands for theone-step and multi-
step∆ functions of young AML patients. Covariatesz1 = PBSCTz2 = BMT. The
remaining covariates correspond to the baseline.

(1993), Keidinget al. (2001), Dabrowskaet al. (1994) and Putteret al. (2007).
Here we note only that in the case of Markov chain regression models, the predic-
tions depend only on the state occupied by the patient at times and estimation of
(4.5) reduces to estimation of the transition probability matrix because

P(J(t) = e|Hs) = P(J(t) = e|J(s) = i,Z) for s < t. (4.6)
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In the case of semi-Markov model, the conditional probabilities P(J(t) = e|Hs)
are given by the transition probability matrix of a delayed Markov renewal process,
with delay determined by the length of time spent on the state occupied at times.
On the other hand, the right-hand side of (4.6) depends also on the the initial state
J0, and all possible transitions leading to the state e and passing through the state
i on or prior to times. The two models coincide only if the sojourn times in each
state are exponentially distributed.

In Table 5 we report results from analysis of residuals of the main variables
in the model. We considered Martinussen and Scheike’s Kolmogorov-Smirnov
statistics for transitions between adjacent states of the model from each state. The
test statistics were calculated in the ranget ∈ [1,90] months and the reported p-
values were obtained using Gaussian multiplier method based on 5000 Monte Carlo
samples. The results were also compared with a larger model, which included
length of time spent in the transplant and AGVHD states as time dependent co-
variates. The dependence on length of time spent in these states appeared to have
marginal effect. In the case of the transitions originating from the CGVHD state,
the latter may stem from a relatively small number of failures (relapse or death).
On the other hand, AGVHD can occur only during the first 4 months and the state
space of the process partially captures the dependence on the length of time spent
in the transplant state. Although Table 5 shows an acceptable fit, there are several
possible sources of departure from the model, In particular, they may be caused
by calendar and center effects. For example, grading of acute and chronic GVHD
is not uniform across centers. At the same time, the use of PBSCT in allogeneic
transplants might have been more frequent towards the end of the study period than
at its beginning. These factors were not taken into the account in this study as they
identify patients in the population. Further, transplant may result in many other
complications, including infections, pneumonia, as well secondary cancers, loss of
vision and damage of other organs. We have not taken them into the account due to
lack of data.

There has been very little work on variable and model selection problems in
multistate models. Commengeset al. (2007) considered a flexible class of multi-
state models which includes as special cases Markov chains and semi-Markov mod-
els. They extended the expected Kullback-Leibler (EKL) risk function to counting
process models coarsened at random and proposed a leave-one-out cross-validation
method for approximation of EKL based on penalized likelihoods. The approach
was illustrated using a three state additive illness process, though the methodology
applies to more complex situations as well. Another approach may be based on
focused information criteria and model averaging of Hjort and Cleaskens (2003,
2006). Their approach is tailored towards selection of a model for given parameters
of interest. In the case of single spell models, examples of such parameters include
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regression coefficients, quantiles, cumulative hazards or distribution functions eval-
uated at a fixed point or over a fixed interval. Extension of this method to multi-
state regression models may include one-step and multistep transition probabilities
or other parameters arising in prediction problems.

Table 4: Regression coefficients

1 2 3 4

ALL vs AML .07 (.25) 1.32 (.36) .50 (.23)
Age1 -.25 (.16) -.68 (.28) -.49 (.32) -.45 (.26)
Age2 .27 (.20)
FM -.20 (.28)
PBSCT vs BMT .09 (.22) .01 (.29)
ALLxPBSCT .46 (.23) .92 (.43)
AMLxPBSCT
AMLxBMT -.30 (.22)
DxCr .12 (.08) .45 (.16) .22 (.12)
CrTx -.21 (.07) -.26 (.09) -.33 (.15)
Age1xBMT -.57 (.33)
Age2xPBSCT -.28 (.25)
Age2xBMT -.37 (.24)
Age0xPBSCT -.27 (.26)
AMLxPBSCTxAge2 .25 (.22)
Age1xALL .61 (.27) -.87 (.48) -.60 (.42)
Age2xALL .57 (.30) -.97 (.47)
FMxALL .63 (.27)
FMxAML .64 (.17)
FMxPBSCT .42 (.18) .44 (.25)
FxALL -.25 (.19)
FxAML -.19 (.14)

Columns: 1 = Tx→ AGVHD; 2 = Tx→ CGVHD; 3 = Tx→ Relapse;
4 = Tx→ Death.

Rows: Age0: age in the(29.5,42,5] range, Age1 = age≤ 29.5 years,
Age2 = age> 42.5 years; F = female donor transplant;
FM = female donor to male recipient transplant.
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Table 4 (continued)

5 6 7 8 9

ALL vs AML .45 (.38) .12 (.30) .90 (.31) .58 (.22)
Age2 .33 (.23) .51 (.59) .01 (.24) .72 (.21)
FM -.57 (.39)
PBSCT vs BMT .28 (.30) -.12 (.66) -.17 (.38) .55 (.35)
AMLxPBSCT -.33 (.30)
AMLxBMT -.50 (.43)
DxCr .13 (.14)
CrTx -.24 (.17) -.10 (.12)
prioir AGVHD .72 (.30) .72 (.20)
Age1xPBSCT -.44 (.34)
Age1xBMT .70 (.60) -.88 (.35) -.64 (.34)
Age2xPBSCT .13 (.37)
Age2xBMT .60 (.88)
Age0xPBSCT .40 (.31)
FMxAML .81 (.45)

Columns: 5 = AGVHD→ CGVHD; 6 = AGVHD → Relapse;
7 = AGVHD → Death; 8 = CGVHD→ Relapse;
9 = CGVHD→ Death.

Rows: Age0: age in the(29.5,42,5] range, Age1 = age≤ 29.5 years,
Age2 = age> 42.5 years; F = female donor transplant;
FM = female donor to male recipient transplant.
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Table 5: Kolmogorov-Smirnov residual statistics

1 2 3 4

AML 8.51 (.97) 6.35 (.96) 7.88 (.69) 5.87 (.86)
ALL 10.22 (.89) 7.66 (.83) 7.65 (.69) 6.09 (.73)
Age0 12.99 (.81) 6.52 (.93) 3.30 (.95) 6.50 (.63)
Age1 6.42 (.98) 5.82 (.95) 3.20 (.94) 5.18 (.82)
Age2 10.56 (.90) 7.64 (.91) 6.40 (.60) 8.11 (.72)
BMT 7.84 (.97) 7.73 (.91) 7.16 (.69) 6.04 (.61)
PBSCT 9.44 (.95) 9.07 (.90) 7.49 (.73) 5.75 (.82)
non-FM 5.46 (.99) 7.84 (.94) 1.95 (.99) 9.82 (.66)
FM 6.83 (.96) 9.36 (.82) 2.32 (.96) 9.52 (.43)
M donor 5.48 (.99) 1.29 (.84) 2.96 (.98) 6.00 (.84)
F donor 6.84 (.98) 11.95 (.80) 2.61 (.99) 5.83 (.86)

5 6 7 8 9

AML 4.40 (.96) 2.75 (.86) 4.14 (.97) 4.42 (.73) 6.70 (.82)
ALL 4.34 (.94) 2.66 (.85) 4.23 (.95) 4.49 (.71) 6.46 (.75)
Age0 4.55 (.92) 2.79 (.51) 4.37 (.93) 2.03 (.94) 8.17 (.47)
Age1 4.96 (.87) 3.66 (.71) 2.66 (.98) 2.04 (.95) 3.53 (.87)
Age2 6.35 (.83) 2.44 (.87) 2.92 (.99) 1.51 (.99) 8.07 (.76)
BMT 5.96 (.81) 1.36 (.99) 5.11 (.90) 2.94 (.79) 9.67 (.57)
PBSCT 6.66 (.88) 1.27 (.99) 4.84 (.95) 2.91 (.91) 9.39 (.69)
non-FM 4.22 (.97) 1.50 (.97) 4.57 (.96) 3.97 (.80) 4.20 (.95)
FM 5.06 (.88) 1.33 (.96) 5.07 (.84) 3.91 (.60) 4.37 (.88)
M donor 1.42 (.58) 2.02 (.94) 3.93 (.98) 2.06 (.97) 3.50 (.98)
F donor 11.50 (.53) 1.93 (.93) 4.43 (.95) 2.08 (.97) 3.47 (.97)

Each column provides test statistics and p-values determined based on 5000 re-
sampling experiments.

Columns: 1 = Tx→ AGVHD; 2 = Tx → CGVHD; 3 = Tx→ Relapse;
4 = Tx→ Death; 5 = AGVHD→ CGVHD;
6 = AGVHD → Relapse; 7 = AGVHD→ Death;
8 = CGVHD→ Relapse ; 9 = CGVHD→ Death.

Rows: Age0: age in the(29.5,42,5] range, Age1 = age≤ 29.5 years,
Age2 = age> 42.5 years. F = female donor transplant;
FM = female donor to male recipient transplant.
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Table 5 (continued)

1 2 3 4

DxCr-1 9.73 (.86) 16.86 (.42) 5.67 (.56) 7.88 (.49)
DxCr-2 8.47 (.88) 11.67 (.59) 2.56 (.94) 2.86 (.98)
DxCr-3 4.03 (1.00) 12.92 (.48) 4.34 (.71) 5.03 (.71)
DxCr-4 11.80 (.83) 15.05 (.43) 4.01 (.89) 6.71 (.69)
CrTx-1 14.69 (.74) 11.23 (.52) 5.19 (.66) 5.21 (.74)
CrTx-2 9.92 (.85) 12.52 (.58) 3.96 (.81) 5.37 (.68)
CrTx-3 12.08 (.76) 5.86 (.94) 5.96 (.62) 8.34 (.46)
CrTx-4 8.84 (.87) 7.21 (.85) 2.94 (.92) 1.37 (.35)
AMLxBMT 5.38 (.99) 9.84 (.76) 5.15 (.70) 1.62 (.41)
AMLxPB 7.25 (.96) 6.30 (.97) 1.03 (.34) 5.04 (.80)
ALLxBMT 7.62 (.85) 2.92 (.99) 4.44 (.74) 7.03 (.42)
ALLxPBSCT 6.20 (.93) 6.39 (.69) 3.88 (.85) 3.01 (.86)

5 6 7 8 9

DxCr-1 4.92 (.85) 2.27 (.77) 5.17 (.81) 2.44 (.89) 5.34 (.74)
DxCr-2 6.80 (.61) 2.79 (.64) 5.93 (.73) 3.85 (.57) 4.72 (.74)
DxCr-3 9.88 (.33) 2.21 (.75) 4.27 (.88) 4.38 (.40) 11.23 (.30)
DxCr-4 6.15 (.71) 5.67 (.27) 12.11 (.43) 2.83 (.78) 3.52 (.94)
CrTx-1 6.53 (.74) 3.97 (.55) 7.24 (.76) 3.17 (.75) 2.43 (1.00)
CrTx-2 7.05 (.58) 2.61 (.66) 6.13 (.73) 3.49 (.67) 7.57 (.54)
CrTx-3 4.17 (.89) 2.52 (.67) 2.62 (.98) 2.34 (.86) 4.84 (.75)
CrTx-4 5.73 (.71) 4.21 (.37) 5.71 (.73) 3.59 (.57) 4.54 (.80)
AMLxBMT 5.12 (.82) 2.04 (.88) 5.46 (.78) 2.57 (.64) 7.96 (.50)
AMLxPBSCT 5.18 (.92) 1.84 (.87) 5.77 (.88) 3.18 (.84) 4.60 (.91)
ALLxBMT 2.44 (.97) 1.10 (.99) 2.79 (.95) 2.46 (.70) 3.22 (.85)
ALLxPB 4.62 (.82) 1.97 (.75) 3.24 (.95) 3.79 (.66) 5.92 (.62)

Each column provides test statistics and p-values determined based on 5000 re-
sampling experiments.

Columns: 1 = Tx→ AGVHD; 2 = Tx → CGVHD; 3 = Tx→ Relapse;
4 = Tx→ Death; 5 = AGVHD→ CGVHD;
6 = AGVHD → Relapse; 7 = AGVHD→ Death;
8 = CGVHD→ Relapse ; 9 = CGVHD→ Death.

Rows: DxCr-i and CrTX-i, i = 1,2,3,4: DxCr and CrTx variables
grouped according to quartiles.
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Table 5 (continued)

1 2 3 4

Age1xPB 14.92 (.71) 8.03 (.81) 6.58 (.63) 5.12 (.75)
Age1xBMT 6.45 (.93) 6.12 (.84) 3.11 (.88) 7.13 (.51)
Age2xPBSCT 7.31 (.94) 5.61 (.95) 7.69 (.34) 9.53 (.45)
Age2xBMT 5.46 (.87) 6.96 (.68) 4.02 (.41) 4.58 (.76)
Age0xPBSCT 4.29 (.98) 8.10 (.71) 4.73 (.67) 5.45 (.49)
Age0xBMT 9.73 (.73) 9.06 (.59) 3.97 (.76) 8.60 (.22)
Age1xAML 6.87 (.89) 5.47 (.87) 2.52 (.91) 2.49 (.98)
Age1xALL 4.51 (.97) 2.73 (.99) 2.70 (.89) 3.19 (.74)
Age2xAML 10.54 (.80) 7.95 (.83) 2.94 (.89) 3.69 (.88)
Age2xALL 8.57 (.65) 5.01 (.60) 4.60 (.74) 3.34 (.74)
Age0xAML 9.70 (.88) 9.63 (.80) 7.64 (.34) 8.95 (.58)
Age0xALL 3.75 (.95) 2.97 (.94) 3.75 (.52) 2.10 (.94)

5 6 7 8 9

Age1xPBSCT 7.56 (.58) 1.63 (.84) 5.31 (.86) 3.28 (.71) 6.58 (.57)
Age1xBMT 4.22 (.78) 2.49 (.80) 2.01 (.96) 2.94 (.56) 3.09 (.76)
Age2 x PBSCT 4.36 (.93) 1.28 (.96) 3.74 (.95) 1.26 (1.00) 9.60 (.57)
Age2xBMT 3.66 (.77) 1.95 (.78) 2.37 (.93) .93 (.91) 4.43 (.72)
Age0xPBSCT 5.34 (.74) 1.88 (.61) 2.46 (.98) 1.70 (.94) 3.58 (.75)
Age0xBMT 6.34 (.42) 1.76 (.58) 4.03 (.85) 3.31 (.24) 5.82 (.45)
Age1xAML 3.22 (.94) 3.98 (.34) 2.73 (.86) 2.39 (.59) 3.29 (.68)
Age1xALL 2.59 (.96) 2.18 (.82) 3.95 (.78) 3.88 (.50) 2.06 (.93)
Age2xAML 5.19 (.78) 3.98 (.17) 4.89 (.81) 1.78 (.92) 7.34 (.38)
Age2xALL 2.13 (.96) 1.74 (.29) 4.09 (.78) 1.94 (.67) 1.69 (.97)
Age0xAML 4.92 (.89) 3.30 (.63) 5.20 (.86) 3.54 (.67) 4.12 (.95)
Age0xALL 3.15 (.76) 1.27 (.86) 3.16 (.81) 2.32 (.67) 5.76 (.52)

Each column provides test statistics and p-values determined based on 5000 re-
sampling experiments.

Columns: 1 = Tx→ AGVHD; 2 = Tx → CGVHD; 3 = Tx→ Relapse;
4 = Tx→ Death; 5 = AGVHD→ CGVHD;
6 = AGVHD → Relapse; 7 = AGVHD→ Death;
8 = CGVHD→ Relapse ; 9 = CGVHD→ Death.

Rows: Age0: age in the(29.5,42,5] range, Age1 = age≤ 29.5 years,
Age2 = age> 42.5 years.
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5 Proofs

5.1 Assumptions and notation. We first recall that ifA = [akℓ] is a rectangular
d ×q matrix then itsℓ1 andℓ∞ norms are given by

‖A‖1 = max
ℓ

d

∑
k=1

|akℓ| and ‖A‖∞ = max
k

q

∑
ℓ=1

|akℓ|,

and we have‖A‖1 = sup{µT Aλ : ‖µ‖∞ ≤ 1,‖λ‖1 ≤ 1} = ‖AT‖∞, where µ =
(µ1, . . . ,µd)

T andλ = (λ1, . . . ,λq)
T . If A(s) = [ai j(s)],s = (x,θ) is a d × q ma-

trix of functions defined onT = [0,τ]×Θ then‖A‖ = sup{‖A(s)‖1 : s ∈ T } is
the corresponding supremum norm, and with some abuse of notations, we write
‖A‖ = sup{‖A(s)‖∞ : s ∈ T }. We also use‖ · ‖ to denote the supremum norm of
scalar or vector-valued functions on[0,τ].

We shall assume the following regularity conditions on the hazard rates
α j(y,θ ,z), y ∈ Rq, j ∈ J0.

Condition 5.1 (i) The parameter setΘ ⊂ Rd is bounded and open.
(ii) For fixedz ∈ Rd , the functionℓ j(y,θ ,z) = logα j(y,θ ,z), j ∈J0 is twice

continuously differentiable with respect to(y,θ). The derivatives with respect toy
(denoted by primes) and with respect toθ (denoted by dots) satisfy‖ℓ′j(y,θ ,z)‖1 ≤
ψ(‖y‖1), ‖ℓ′′j (y,θ ,z)‖1 ≤ ψ(‖y‖1) , ‖ℓ̇ j(y,θ ,z)‖1 ≤ ψ1(‖y‖1), ‖ℓ̈ j(y,θ ,z)‖1 ≤
ψ2(‖y‖1) and ‖g(y,θ ,z) − g(y′,θ ′,z)‖1 ≤ max(ψ3(‖y‖1),ψ3(‖y′‖1)) ×
× [‖y− y′‖1+ |θ −θ ′|], whereg = ℓ̈ j, ℓ̇

′
j andℓ′′j . Hereψ is a constant or a continu-

ous bounded decreasing function. The functionsψp, p = 1,2,3 satisfyψp(0)< ∞,
are continuous and locally bounded.

(iii) For fixed θ ∈ Θ andy ∈ Rq, the functionsα j(y,θ , ·) and their logarith-
mic derivatives in (ii) are measurable with respect to the Borelσ -field of Rd.

(iv) We have either a)m1 <α j(y,θ ,z)<m2 for some 0<m1 <m2 <∞ or b)
α j(y,θ ,z) is a bounded coordinate-wise decreasing function such that
α j(y1, . . . ,yk,θ ,z) ↓ 0 asyℓ ↑ ∞, ℓ= 1, . . . ,q, and

m1[1+ c1‖y‖1]
−e1 ≤ α j(y,θ ,z)< m2[1+ c2y j]

−e2, j = 1, . . . ,q

for somec1,c2 > 0, e1 ∈ (0,1], e2 ∈ [0,1] and 0< m1 < m2 < ∞.

The condition (ii) assumes that the functionα(y,θ ,z) and its derivatives
are jointly continuous in the arguments(y,θ). Together with the condition (iii),
this implies that they are measurable with respect to the Borelσ -field of B(Rq)⊗
B(Θ)⊗B(Rd). The condition 5.1 (iii) serves to ensure that for each statej1 ∈J ,
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the Volterra equation corresponding to the transitionsj ∈ J0 originating from the
statej1 has a non-explosive solution on the interval[0,τ j1] = sup{x : EYj(x)> 0}.

Let P be a distribution satisfying assumptions 2.1 of Section 2. For any
j ∈ J0 let

A jP(x) =
∫ x

0

EPN j.i(du)

EPYj.i(u)

and setA.P =Σ j∈J0A jP. In analogy to the single spell models in Dabrowska (2006),
we can show that the condition 5.1 (iii-a) implies that, the Volterra equation has a
unique solutionΓθ = [Γ1θ , . . . ,Γqθ ]

T such thatm−1
2 A jP(x) ≤ Γ jθ (x) ≤ m−1

1 A jP(x)
for x ∈ [0,τ], θ ∈ Θ. In addition, there exist positive constantsd1,d2,d3 such that

‖Γθ (x)−Γθ ′(x)‖1 ≤ |θ −θ ′|d1exp[d2A.P(x)], (5.1)

|Γ jθ (x)−Γ jθ (x
′)| ≤ d3EPN j.i((x∧ x′,x∨ x′]).

Similar inequalities hold also for the left continuous version ofΓ jθ . On the other
hand, under the condition 5.1.(iii-b), we haveΦ2(A jP(x)) ≤ Γ jθ (x) ≤ Φ1(A.P(x)),
whereΦq(u) = c−1

q ([1+ cqu/m′
q]

1/1−eq − 1) for q = 1,2 andm′
q = mq/(1− eq)

if eq 6= 1, andΦq(u) = c−1
q (ecqu/mq − 1) if eq = 1. The functionsΦq are inverse

cumulative hazards corresponding to the lower and upper bounds on hazard rates in
the condition 5.1 (iii). The inequality (5.1) is in this case satisfied with the function
A.P replaced byΦ1(A.P).

5.2 Some measurability issues. In section 2, we assumed that the obser-
vationsD1, . . . ,Dn of the censored modulated renewal process are defined on a
common complete probability space(Ω,F ,P) and take on values in a separable
measure space(S,S ). A measure space is here called separable if itsσ -field is
countably generated and contains all singletons. Any such space is measurably
isomorphic to a subspace of the real line equipped with its Borelσ -field (e.g.
Dellacherie-Meyer, 1975, p.15). Let(Sn,Sn) and(S∞,S∞) be the corresponding
n-fold and infinite product spaces and letPn andP∞ be the corresponding product
measures onSn andS∞ induced by(D1, . . . ,Dn) andD = (D1,D2, . . . ,Dn, . . .), re-
spectively. We denote byS P

n the sigma-field of subsetsA ⊂ Sn measurable in the
completion of the product probability measurePn and byS u

n the universal sigma-
field generated bySn, i.e. the sigma-field of subsets measurable in the completion
of any probability measureQ on Sn. We haveSn ⊆ S u

n ⊆ S P
n . WhereasSn

is not complete with respect to the product measurePn, any setA ∈ S P
n satisfies

P∗
n (A) = Pn,∗(A) and g−1

n (A) ∈ F for gn = (D1, . . . ,Dn). The sigma-fieldsS P
∞

andS u
∞ have similar property. Without much loss of generality, we can assume

therefore that(Ω,F ) = (S∞,S∞) and, when necessary, require measurability with
respect to these larger sigma-fields. With this choice the sequenceD is the iden-
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tity map onS∞ and (D1, . . . ,Dn) are the corresponding coordinate projections on
(Sn,Sn).

Further, let(Ω0,F0) be an arbitrary measure space letZ be a Polish space
or a Borel subset of it. For any setA ⊂ Ω0×Z , its projection onΩ0 is denoted
by projΩ0(A) = {ω0 : (ω0,z)∈ A for some z∈Z }. A multifunction (or correspon-
dence) is a set-valued function assigning to eachω0 ∈ Ω0 a subset ofZ . We shall
write H : Ω0 →֒ Z for such mappings to differentiate them from usual functions
assigning to eachω0 a single value (h : Ω0 → Z ). The domain and graph of a
multifuctionH are defined as

domH = {ω0 : H(ω0) 6= /0} and graphH = {(ω0,z) : z ∈ H(ω0)},

respectively. For any nonempty setB ⊆ Z , the inverse image ofH is given by

H−1(B) = {ω0 : H(ω0)∩B 6= /0}= {ω0 : z ∈ H(ω0) for somez ∈ B}

and the right side is equal to the projection projΩ0(graphH∩Ω0×B). Finally, by a
selector we mean a functionh : Ω0→Z ∪{z∗} such thath(ω0)∈H(ω0) if domH 6=
/0 andh(ω0) = z∗, otherwise. (Herez∗ is an extra point attached toZ ).

A set-valued mappingH is here called measurable if graphH is jointly mea-
surable with respect toF0⊗B(Z ). By measurable projection theorems (e.g. Del-
lacherie and Meyer, 1975, p.252, Pollard, 1984, p. 196-197 or Dudley, 1999, Chap-
ter 5), the joint measurability of graphH entails that the inverse imageH−1(B) of
any Borel setB ∈B(Z ) belongs to the universal sigma fieldF u

0 generated byF0.
Moreover,H admits at least oneF u

0 -measurable selector. IfF0 is complete with
respect to some probability measure thenF u

0 = F0. For alternative conditions for
this equality we refer to Wagner (1976).

Further, letT be a Polish space and let{Xt : t ∈ T } be anRk-valued ran-
dom element defined onΩ0. We refer to it as measurable if it forms a measurable
stochastic process, i.e. the mapΩ0×T ∋ (ω, t)→ X(ω, t) ∈ Rk is jointly measur-
able with respect to theσ -fieldsF0⊗B(T ) andB(Rk). Correspondingly, the set
valued functionH : Ω0 →֒ Z = T ×Rk given byH(ω0) = {(t,X(ω0, t) : t ∈ T }
has a measurable graph and for any Borel setsB ∈ B(Rk) andC ∈B(T ), we have
{ω0 : X(ω0, t) ∈ B for somet ∈C} ∈ F u

0 . In section 5.3, we use that anRk-valued
process is measurable iff each of its components is measurable. Moreover, sums
and products of such processes are measurable as well.

A class of scalar functionsG = {gt(s) : t ∈T } defined onSk,k ≤ n is called
here measurable if it forms a measurable process in the above sense. Following
Nolan and Pollard (1987) and Pollard (1990), a measurable class of functionsG is
called Euclidean for an envelopeG if |gt |(s) ≤ G(s) for all t ∈ T , and there exist

37

Dabrowska: A Semi-Markov Transformation Model

Published by De Gruyter, 2012



constantsA andV such thatN(ε‖G‖Q,r,G ,‖ · ‖Q,r) ≤ (A/ε)V for all ε ∈ (0,1) and
all probability measuresQ on Sk such that‖G‖Q,r < ∞. HereN(η,G ,‖ · ‖Q,r) is
the minimal number ofLr(Q)–balls of radiusη covering the classG and‖ · ‖Q,r is
theLr(Q) norm. We user = 1,2 in the sequel.

In our application the space(S,S ) can be taken as the complete separable
metric space(S,S ) = (E0,B(E0))× (E1×B(E0))

N, whereE0 = J ×Rd E1 =

(R
+× (J ×Rd)∪∆)N. HereE0 represents possible initial realizations of the mark

V0 = (J0,Z0) andE1 is the space of realizations of the censored modulated renewal
process(Xm,Vm = (Jm,Zm))m≥1. Further,T = [0,τ]×Θ, whereτ is a finite point
on the positive half-line andΘ is a bounded open subset of a Euclidean space. Here
T is a Polish space becauseT forms aGδ subset (a countable intersection of open
sets) of a Polish space and Polishness is hereditary with respect toGδ sets. Finally,
all classesG = {gt(s) : t = (x,θ) ∈ T } correspond to cádlág (or cáglád) functions
such that for 0≤ x < x′ ≤ τ andθ ,θ ′ ∈ Θ, we have

|gxθ (s)−gx′θ (s)| ≤C1[G̃(x′,s)− G̃(x,s)], (5.2)

|gxθ (s)−gxθ ′(s)| ≤C2|θ −θ ′|G̃(τ,s),

whereG̃(s,x) is a nonnegative monotone increasing cádlág (respectively cáglád)
function ofx such thatG̃(s,0) = 0 and‖G̃(τ, ·)‖Q,r < ∞. In this case, the Euclidean
property is satisfied with envelopeG(s) = [C1+C2diamΘ]G̃(τ,s)+gx0θ0(s), where
gx0θ0(s) is an arbitrary function from the classG .

To verify measurability of the estimates, we shall need some properties of
Carathéodory integrands and cádlág or cáglád functions. IfT andY are Polish
spaces then a functionf : Ω0×T → Y is called a Carathéodory integrand if for
fixed t ∈T , f (·, t) : Ω0 →Y is measurable, and for fixedω0 ∈ Ω0, f (ω0, ·) : T →
Y is continuous. Here(Ω0,F0) is an arbitrary measure space and we have

Lemma 5.1 Let f : Ω0×T → Y be a Carathéodory mapping. Then

(i) f is measurable with respect toF0×B(T ).
(ii) For any open setB of Y , let H(ω0) = {t : f (ω0, t)∈ B}. Then for any closed

or openC set ofT , we haveH−1(C) = {ω0 : f (ω0, t)∈ B for somet ∈C} ∈
F0.

(iii) If g : Ω0 → T is measurable, then the composite mappingf ◦ g : Ω0 → Y
given by( f ◦g)(ω0) = f (ω0,g(ω0)) is measurable.

(iv) Suppose thatY ′ is another Polish space andh : Ω0 ×T ×Y ′ → Y is a
Carathéodory integrand. Then the composite map(h ◦ f ) : Ω0×T → Y
given by(h◦ f )(ω0, t) = h(ω0, t, f (ω0, t) is a Carathéodory integrand.
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Part (i) remains valid even ifY is replaced by a nonseparable metric (Kuratowski
1966 p. 378 , or Himmelberg, 1975). In part (ii), ifC is a closed set then

H−1(C) =
⋃

q∈C

{ω0 : f (ω0,q) ∈ B},

where the union is over a dense subset ofC. If C is open then it can be represented
as a countable increasing union of closed sets and part (ii) follows by noting that
inverse images preserve unions of sets. Part (iii) follows from the definition of a
measurable function and continuity off with respect tot. Part (iv) follows from
part (i) and (iii) and definition of a continuous function.

Part (i) of the lemma extends to functionsf which are cádlág, cáglád, cád
and cág int ∈T , T = R+ or T = [0,τ] and take on values in a complete separable
metric space (e.g. Dellacherie and Meyer, 1975 p. 144). Any cádlág or cáglád
function is also a pointwise limit of Carathéodory integrands.

Finally, suppose thatT = [0,τ]×Θ and f is a function such that (i) for fixed
(x,θ) ∈ T , f (·,x,θ) is theF0 measurable and (ii) for fixedω0 ∈ Ω0, it is jointly
cádlág with respect to(x,θ) and continuous with respect toθ . To see thatf is
jointly measurable, let{qk : k ≥1} be a dense set inΘ and for given integerm≥1 let
Bmk be a balls of radius 1/m centered atqk coveringΘ. SetB′

mk = Bmk −
⋃k−1

r=1 Bmr

and

fm(ω0,x,θ) =
∞

∑
ℓ=1

∞

∑
k=1

f (ω,
ℓ

m
∧ τ,qk)1(

ℓ−1
m

≤ x <
ℓ

m
)1(θ ∈ B′

mk).

Then fm is joinly measurable and pointwise converges tof . Similarly, if f is jointly
cáglád rather than cádlág function in (ii) thenf is a jointly measurable with respect
to F0⊗B(T ). Similarly to the single parameter case, functions of this type are
pointwise limits of Carathéodory integrands. Part (ii) of the lemma remains valid
for sets of the formC = I ×C′, whereC′ is an open or closed subset ofΘ andI is
an interval contained in[0,τ]. In particular, if f is a real valued cádlág function of
this type then its supremum isF0 measurable.

5.3 Proof of Proposition 3.1. To show proposition 3.1, we shall first con-
sider the processΓnθ (x),(x,θ) ∈ [0,τ]×Θ = T .

Lemma 5.2 (i) The processŴ = {Ŵ (t) = [Ŵj(t) : t = (x,θ) ∈ T , j ∈ J0},
Ŵj(x,θ) =

√
n[Γn jθ −Γ jθ ](x), converges weakly inℓ∞(T ×J0) to

W (x,θ) =V (x,θ)−
∫

[0,x]
V (u−,θ)s′(Γθ (u−),θ ,u)Cθ(du)Pθ (u,x),
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where{V (t) = [Vj(t) : t = (x,θ) ∈ T , j ∈ J0} is a tight mean zero Gaussian pro-
cess. Its covariance function is given by

cov(Vj(x,θ),Vj′(x
′,θ ′)) = E ∑

m
∑
m′

∫ x

0

∫ x′

0

M jm(du,θ)M j′m′(dv,θ ′)

s j(Γθ (u),θ ,u)s j′(Γθ ′(v),θ ′,v)
.

In addition, under the assumption that observations correspond to a censored mod-
ulated renewal process andθ = θ0 is the true parameter, cov(Vj(x,θ),Vj′(x

′,θ)) =
1( j = j′)C jθ (x∧ x′).

(ii) Let θ0 be an arbitrary point inΘ. If θ̂ is a
√

n-consistent estimate of
it, then the procesŝW0 = {Ŵ0(x) : x ≤ τ}, Ŵ0 =

√
n[Γnθ̂ − Γθ0 − (θ̂ − θ0)

T Γ̇nθ̂ ]
converges weakly inℓ∞([0,τ]×J0) to W0 =W (·,θ0).

Here the spaceX = ℓ∞(T ×J0) is equipped with uniform metric,dX(x̃, ỹ)
= supt, j |x̃(t, j)− ỹ(t, j)| and is isometric to the spaceY = ℓ∞(T )q equipped with
metricdY (x,y) = maxj supt |x j(t)− y j(t)|. Apparently, the isometry is given by the
mappingΦ assigning to each̃x ∈ X the vector of coordinate functions,Φ(x̃) =
[x̃(·,1), . . . , x̃(·,q)]T . Open sets ofX can be represented as arbitrary unions of
ballsBX (x̃,ε) = {y : dX(x,y) < ε}. On the other hand, the product topology ofY
coincides with the topology induced by the metricdY so that any open set in the
product topology is an arbitrary union of ballsBY (x,ε), wherex = [x1, . . . ,xq].
Proof . To show part (i), defineVn = [Vjn : j ∈ J0], where

Vjn(x,θ) =
∫

(0,x]

N j..(du)

S j(Γθ (u−),θ ,u)
−
∫

(0,x]

EN j..(du)

s j(Γθ (u−),θ ,u)
.

ThenVjn =V1 jn + remj, where

V1 jn(x,θ) =
1
n

n

∑
i=1

∫

(0,x]

[
N j.i(du)

s(Γθ (u−),θ ,u)
− S ji

s2
j

(Γθ (u−),θ ,u)EN j..(du)

]

and remj(x,θ) is a remainder term. Lemma 5.3 gives its form and shows that
‖remj‖ = oP(n−1/2). Therefore the processV1n = [V1 jn : j ∈ J0] satisfies also
‖Vn −V1n‖= oP(n−1/2).

Using CLT and Cramer-Wold device, the finite dimensional distributions
of

√
nV1n converge in distribution to finite dimensional distributions ofV : for any

distinct t1, . . . , tk ∈ T and any numerical vectorλ of lengthkq, the random vari-
ableλ T vec[V1n(t1), . . . ,V1n(tk)] converges in distribution to the corresponding linear
combination of finite dimensional marginals ofV .
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For eachj ∈ J0, the processV1 jn can be represented asV1 jn(x,θ) = [Pn −
P]g, whereg varies over a classG j = {gt j : t = (x,θ) ∈ T } consisting of cádlág
functions such that eachgt j is a difference of two càdlàg functions, increasing
in x and Lipschitz continuous with respect toθ . SettingG̃ j(Di,x) = N j.i(x) +∫ x

0 Yj.i(u)A j(du), the condition (5.2) is satisfied with constantsC1 andC2 deter-
mined by the functionsψ,ψ1 of the condition 5.2 (ii) andgt0 ≡ gτ,θ0, say. Corre-
spondingly, the classG j is Euclidean for a square integrable envelopeG j. From
Pollard (1984,1990) it follows that the process

√
nV1 jn converges weakly inℓ∞(G j)

to Vj, the j-th component of the processV because the classG j is totally bounded
and asymptotically uniformly equicontinuous with respect to the variance pseudo-
metric d j(t, t ′) = sd(V1 jn(t)−V1 jn(t ′)), t, t ′ ∈ T . Joint weak convergence of the
process

√
nVn =

√
n(Pn−P)g, g ∈⋃ j G j follows from finite dimensional weak con-

vergence and by noting that union of a finite number Euclidean classes of functions
is also Euclidean (Pollard, 1990). In particular, the classG is totally bounded and
asymptotically equicontinuous with respect to the variance pseudo-metric
d((t, j),(t ′, j′)) = sd(V1n j(t)−V1n j′(t

′)). Denoting byV−
n the left-continuous pro-

cess (obtained by changing the integrals over(0,x] to integrals over intervals[0,x)),
the process

√
nV−

n converges weakly toV as well because the jumps of the process
Vn are of the orderOp(1/n) unifromly in t ∈T and the functionsEN j are continous.

Finally, to show weak convergence of the standardizedΓnθ process, we shall
need bounds on the supremum of the norm of the vectorVn. LetH denote the class
of functionsH = {h(λ , t) = ∑ j=1 λ jgt j : gt j ∈ G j, |λ j| ≤ 1, j = 1, . . . ,q}. ThenH
forms a Euclidean class for the envelopeH = ∑ j G j and we have

E sup
t∈T

‖
√

nV1n(t)‖1 = E sup
h∈H

√
n|Pn−P|h = O(1).

Similarly, E supt∈T ‖√nV1n(t)‖∞ = O(1) and the left-continuous versions of the
process satisfy similar bounds.

To show consistency of the estimateΓnθ , we first assume the condition 5.1.
(iii-a). Let A jn be the Aalen-Nelson estimator. LetAp jn = m−1

p A jn, p = 1,2. Then
A2 jn(x) ≤ Γn jθ (x) ≤ A1 jn(x) for all θ ∈ Θ and a similar algebra as in Dabrowska
(2006) shows that

|Γn jθ (x)−Γ jθ (x)| ≤ |Vjn(x,θ)|+
∫

(0,x]
‖Γnθ −Γθ‖1(u−)ρ jn(du),

whereρ jn = max(c j,1)A1 jn for some constantc j. Therefore‖Γnθ − Γθ‖1(x) ≤
‖Vn(x,θ)‖1 +

∫
(0,x] ‖Γnθ − Γθ‖1(u−)ρn(du), where ρn = ∑ j ρn j. Gronwall’s

inequality (Beesack, 1973, Dabrowska, 2006) implies that
supx,θ exp[−ρn(x)]‖Γnθ − Γθ‖1(x) → 0 a.s., where the supremum is overθ ∈ Θ
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andx ∈ [0,τ]. In the case of the condition 5.1.(iii-b), the proof is the same, ex-
cept that the functionρ jn is replaced byρ j = max(c j,1)Φ1(A.n), whereA.n = ΣA jn.
Note that Aalen-Nelson estimate is a measurable process, whereas measurability of
the processΓnθ is verified below.

The procesŝW (x,θ) =
√

n[Γnθ −Γθ ]
T (x) satisfies

Ŵ (x,θ) =
√

nVn(x,θ)−
∫

(0,x]
Ŵ (u−,θ)b̃nθ (u)N(du),

whereN(x) is the diagonal matrixN(x) = diag[N1..(x), . . . ,Nq..(x)], andb̃nθ (u) is a
q×q matrix with columns

b̃ jnθ (u) =

[∫ 1

0

(
S′j/S2

j

)
(θ ,Γθ (u−)+λ [Γnθ −Γθ ](u−),u)dλ

]
.

Let bθ (u) be aq × q matrix with columnsb jθ (u) = [s′j/s2
j ](Γθ (u),θ ,u).

Using consistency ofΓnθ and Lemma 5.3, we have[b̃nθ −bθ ](u)→ 0 a.s. uniformly
in (u,θ) ∈ T . Moreover, (5.1) and (5.2) imply also that‖R1n‖→ 0 a.s., where

R1n(x,θ) =
∫

(0,x]
bθ (u)[N−EN](du).

Define
W̃ (x,θ) =

√
nVn(x,θ)−

∫

(0,x]
W̃ (u−,θ)bθ (u)EN(du).

Then

W̃ (x,θ) =
√

nVn(x,θ)−
∫

(0,x]

√
nVn(u−,θ)bθ (u)EN(du)Pθ (u,x)

=

∫

(0,x]
Vn(du,θ)Pθ (u,x).

and

Ŵ (x,θ)−W̃ (x,θ) =−
∫

(0,x]
[Ŵ −W̃ ](u−,θ)b̃nθ (u)N(du)+ rem(x,θ),

where

rem(x,θ) =−
∫

(0,x]
W̃ (u−,θ)[b̃nθ (u)N(du)−bθ (u)EN(du)]. (5.3)
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Settingvn = max(‖√nVn‖1,‖
√

nV−
n ‖1) = OP(1), we have

max(‖W̃n‖,‖W̃−
n ‖)≤ vn expsup

θ

∫ τ

0
‖bθ (u)‖1EN...(u) = Op(1).

The process̃W is a sum of iid mean zero processes whose finite dimensional dis-
tributions are asymptotically normal and converge to the finite dimensional distri-
butions of the processW in the statement of the proposition. Moreover, its com-
ponents can be represented as empirical processes indexed by Euclidean classes of
functions satisfying the condition (5.2). Therefore a similar argument as in the case
of the process

√
nV1n, shows that̃W ⇒W . The remainder term (5.3) is bounded by

∑4
p=2 Rpn(x,θ), where

R2n(x,θ) =
∫

(0,x]

√
nVn(u−,θ)R1n(du,θ),

R3n(x,θ) =

∫

(0,x]

√
nVn(u−,θ)bθ (du)EN(du)Jn(u,x,θ),

R4n(x,θ) =

∫

(0,τ]
‖[b̃nθ −bθ ](u)‖1N...(du)‖W̃(u−,θ)‖1,

Jn(u,x,θ) =

∫

(u,x]
Pθ (u,w)R1n(dw,θ),

whereN... = ΣqNq,... We have‖R2n‖ = oP(1), by a similar V-process expansion
as in Lemma 5.4 below. Using Kolmogorov equations for matrix product integrals
(Gill and Johansen, 1990), we also have

Jn(u,x,θ) = R1n(x,θ)−R1n(u,θ)

−
∫

(u,x]
Pθ (u,s−)bθ (s)EN(ds)[R1n(x,θ)−R1n(s,θ)]

and

‖Jn(u,x,θ)‖1 ≤ 2‖R1n‖[1+
∫

(u,x]
‖Pθ (u,s−)‖1‖bθ (s)‖1EN...(ds)

≤ 2‖R1n‖exp
∫

(u,x]
‖bθ (s)‖1EN...(ds)≤ 2‖R1n‖exp

∫

(0,τ]
‖bθ (s)‖1EN...(ds).

From this we also get‖R3n‖ = oP(1), becausebθ (u) is uniformly bounded. Fi-
nally,‖R4n‖= oP(1). Combining, the right-hand side of (5.3) is of the orderoP(1),
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uniformly in (x,θ) ∈ T . For fixed(x,θ), we also have

‖Ŵ (x,θ)−W̃ (x,θ)‖1 ≤ ‖rem(x,θ)‖1+

∫

(0,x]
‖Ŵ −W̃‖1(u−,θ)ρn(du)

and by uniform Gronwall’s inequality (Beesack, 1993, Dabrowska, 2006), we have
Ŵ (x,θ) = W̃ (x,θ)+oP(1) uniformly in (x,θ) ∈ T .

To complete the argument, we note that the processesV1n Vn, W̃ and the re-
maindersRpn, p = 1, . . . ,3 satisfy measurability conditions of section 5.2, whereas
to show that̂W andR4n have this property, it is enough to show that the processΓnθ
is measurable. However, the aggregate processN...(x) =∑n

i=1∑m N jmi(x) is measur-
able since it is cádlág increasing with respect tox and measurable with respect toSn

for fixedx. For any integerk andω0 = (s1, . . . ,sn), Tk(ω0) = inf{x : N...(ω0,x)≥ k}
is a random variable because{ω0 : Tk(ω0) ≤ x} = {ω0 : N...(x,ω0) ≥ k} ∈ Sn.
Similarly, the censored data ranksRim = ∑k 1(Tk ≤ Xim) are measurable. Define set
valued mappingHn : Sn →֒ Rq by settingHn(ω0) = {(θ ,x) : Γnθ (ω0,x))∈ B} where
B is an open set ofRq. ThenHn(ω0) =

⋃
ℓ≥0 Hnℓ(ω0) where

Hnℓ(ω0) = {(θ ,x) : Γnθ (ω0,x) ∈ B and N...(ω0,∞) = ℓ}.

On the setAl = {ω : N...(ω0,τ) = ℓ} ∈ Sn, the processΓnθ is a weighted sum

Γnθ (x,ω0) =
ℓ

∑
k=1

1(Tk(ω0)≤ x)hnθ (·,k,ω0)

and the weights form a finite composition of Carathéodory integrands. Suppressing
dependence onω0, hnθ (·,k) is thek-th column of aq× ℓ matrixhn with entries

hnθ ( j,k) =
∑i ∑m 1(Rim = k)1((Jim,Jim+1) = j)

∑i ∑m 1(Rim ≥ k,Jim = j1)α j(gnθ (·,k−1),θ ,Zim)
,

where j = ( j1, j2) ∈ J0 andgnθ is aq× ℓ matrix with columns

gnθ (·,0) = 0 gnθ (·,k) = gnθ (·,k−1)+hnθ (·,k).

Alternatively,gnθ = g(ℓ)nθ , whereg(0)nθ ≡ 0 and forr = 1, . . . , ℓ

g(r)nθ (·,k) = ∑
p≤k

h(r)nθ (·, p),
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h(r)nθ ( j,k) =
∑i ∑m 1(Rim = k)1((Jim,Jim+1) = j)

∑i ∑m 1(Rim ≥ k,Jim = j1)α j(g
(r−1)
nθ (·,k−1,θ ,Zim)

for j = ( j1, j2) ∈J0. The indicators 1(Tk(ω0)≤ x) are jointly measurable with re-
spect toSn⊗B(T ) and by Lemma 5.1, so are the weightshnθ andgnθ . Therefore
the graph ofHnℓ is Sn ⊗B(T ) is measurable and

{(ω0,x,θ) : Γnθ (ω0,x) ∈ B}= graphHn =
⋃

l≥0

graph(Hnℓ) ∈ Sn ⊗B(T ).

A similar argument can be used to show measurability of the processΓ̇nθ
in part (ii). Using arguments analogous to Dabrowska (2006),‖Γnθ0+hn −Γnθ0 −
hnΓ̇nθ0‖=OP(‖hn‖2

1) and‖Γ̇nθ0+hn −Γ̇nθ0‖=OP(‖hn‖1)= oP(1) for any determin-
istic sequencehn → 0 or a randomS P

n - measurable sequencehn →P 0. Therefore if
θ̂ is anS P

n - measurable
√

n- consistent estimator ofθ0, then settinghn = θ̂ −θ0, we
haveŴ0(x) = Ŵ (x,θ0)+ remn(x), where remn =

√
n[Γnθ̂ −Γnθ0 − (θ̂ −θ0)Γ̇nθ̂ ] =

oP(1). For non-measurablehn andθ̂n, convergence is in outer probability.�
Let us assume now thatf j(y,θ ,z), j ∈ J0 is a scalar Carathéodory in-

tegrands such that| f j(y,θ ,z)| ≤ ψ̃(‖y‖1) and | f j(y,θ ′,z)− f j(y′,θ ′,z)| ≤ [|θ −
θ ′|+ ‖y− y′‖1]max(ψ̃ ′(‖y‖1), ψ̃ ′(‖y′‖1), whereψ̃ = ψ,ψ1,ψ2 and ψ̃ ′ = ψ3 sat-
isfy conditions 5.1. PutS j[ f j](u,θ) = n−1Σn

i=1S j.i[ f j](u,θ), whereS j.i[ f j](u,θ) =
∑mYjmi(u)( f jα j)(Γθ (u),θ ,Z jmi), and lets j[ f j] = ES j[ f j]. We writeS j[1] ands j[1]
when f j ≡ 1, and set̂e j[ f j] = S j[ f j]/S j[1] ande j[ f j] = s j[ f j]/s j[1].

Lemma 5.3 We have‖S j[ f j]/s j[1]− s j[ f j]/s j[1]‖→ 0 a.s. for allj ∈ J0.

Proof . We have([S j[ f j]/s j[1]])(x,θ) = Pngxθ , where

gxθ (Di) =
∑mYjmi(x)( f jα j)(Γθ (x),θ ,Z jmi)

E ∑mYjmi(x)α j(Γθ (x),θ ,Z jmi)
.

The conditions 5.1 imply that there exist constantsC1 andC2 (dependent on the
functionsψ̃, ψ̃ ′) such that

|gxθ (Di)−gx′θ (Di)| ≤C1[|Yj.i(x
′)−Yj.i(x)|+

Yj.i(0)(|EN j.i(x)−EN j.i(x
′)|+ |EYj.i(x)−EYj.i(x

′)|)],
|gxθ (Di)−gxθ ′(Di)| ≤ |θ −θ ′|C2Yj.i(0)[1+EN j.i(τ)+EYj.i(0)].
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DefineG(Di) =Yj.i(0)[C2diamΘ+C1][1+EN j.i(τ)+EYj.i(0)]+gx0θ0(Di), where
(x0,θ0) is an arbitrary point inΘ× [0,τ]. Let θp, p = 1, . . . , ℓ = O(diamΘ/ε)d

be centers of ballsB(θp,ε) of radiusε covering the setΘ. By noting thatEN j.i

is an increasing continuous function andEYj.i is a decreasing cáglád function, we
can construct a finite partition 0= x0 < x1 < .. . < xk = τ such that the intervals
Ir = [xr−1,xr],r = 1, . . . ,k satisfyEN j.i(Iq)≤ εEN j.i(τ) andE|Yj.i(Ir)| ≤ εEYj.i(0).
Let xq be the center of the intervalIr. Then for eachx ∈ Ir andθ ∈ B(θp,ε), we
have‖gxθ (Di)−gxrθp(Di)‖P,1 ≤ ε‖G(Di)‖P,1. It follows that the class of functions
G = {gxθ : x ∈ [0,τ],θ ∈ Θ} is Euclidean for the envelopeG(Di) and Glivenko-
Cantelli. �

Lemma 5.4 For j ∈ J0, define remj(x,θ) = [Vjn −V1 jn](x,θ) and

B j(x,θ) =
∫ x

0
[ê j[ f j]− e j[ f j]](u,θ)M j..(du,θ),

where f j satisfies assumptions of Lemma 5.3. Then‖√nremj‖ = oP(1) and
‖√nB j‖= oP(1).

Proof . For the sake of convenience write rem= remj andB = B j. Putη j(u,θ) =
[S j/s j](Γθ (u),θ ,u)−1. A little algebra shows that

rem(x,θ) =−
∫ x

0
η j(u,θ)

[N j..−EN j..](du)

s j[1](u,θ)
+
∫ x

0
η2

j (u,θ)
N j..(du)

S j[1](u,θ)
= rem1(x,θ)+ rem2(x,θ).

We have rem2(x,θ) = OP(1)rem3(τ,θ), where

rem3(x,θ) =
∫ x

0
η2

j (u,θ)
[N j..−EN j..](du)

s j[1](u,θ)
+

∫ x

0
η2

j (u,θ)
EN j..(du)

s j[1](u,θ)
.

In addition,

B(x,θ) =
∫ x

0

(
S j[ f j]−S j[1]e j[ f j]

s j[1]

)
(u,θ)[N j..−EN j..](du)

−
∫ x

0

[(
S j[ f j]− s j[ f j]

s j[1]

)
η j

]
(u,θ)[N j..−EN j..](du)

−
∫ x

0

[(
S j[ f j]− s j[ f j]

s j[1]

)
η j

]
(u,θ)EN j..(du)
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+
∫ x

0
S j[ f j](u,θ)rem2(du,θ) =

4

∑
p=1

Bp(x,θ).

We haveB4(x,θ) = OP(1)B5(θ),

B5(θ) =
∫ τ

0
(S j[| f j|]− s j[| f j|])(u,θ)rem3(du,θ)+

∫ τ

0
s j[| f j|](u,θ)rem3(du,θ).

These expressions can be rewritten asV processes of degreer+1, r ≤ 3

Vn,r+1(g) =
1

nr+1 ∑
ir+1

g(Dir+1),g ∈ G ,

where the sum extends over sequencesr+1-tupletsDir+1 = (Di1, . . . ,Dir+1) ir+1 =
(ir1, . . . , ir+1), i j ∈ 1, . . . ,n. The kernelsg vary over the classG = {gt : t ∈ T },
where fort = (x,θ) we have

gt(Dir+1) = (5.4)

=

∫ x

0

r

∏
ℓ=1

[hℓ(Diℓ,θ ,u)−Ehℓ(Diℓ,θ ,u)][N j.ir+1−EN j.ir+1](du)

or

gt(Dir+1) =

∫ x

0

r+1

∏
ℓ=1

[hℓ(Diℓ,θ ,u)−Ehℓ(Diℓ,θ ,u)]EN j.(du). (5.5)

Here hℓ(Diℓ) are functions of the form S j[ f j]/s j[1], S j[1]/s[1] and
(
√

s j[| f j|])S j[1]/s[1]. In all cases, there exists a constantC such thathℓ(Di,θ ,u)
≤ CYji(u) and |hℓ(Di,θ ,u)− hℓ(Di,θ ′,u)| ≤ |θ − θ ′|CYj.i(u). Therefore, for any
sequenceDir+1 = (Di1, . . . ,Dir+1), we also have

|gxθ −gx′θ |(Dir+1)≤ |G(Dir+1,x)−G(Dir+1,x
′)|,

|gxθ −gxθ ′|(Dir+1)≤ |θ −θ ′|G(Dir+1,τ),

where

G(Dir+1,x) =
∫ x

0

r

∏
ℓ=1

[Hℓ(Diℓ,u)+EHℓ(Diℓ,u)][N j.ir+1 +EN j.ir+1](du)

andHℓ(Di,u) =CYj.iℓ(u), ℓ= 1, . . . ,r for some constantC.
Let {Ur+1,n(gt) : t ∈ T } denote theU process associated with the ker-

nels (5.4-5.5). It is easy to see thatUr+1,n(gt) forms a canonical process. For
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Dr+1 = (D1, . . . ,Dr+1), we haveEGp(Dr+1)<∞ for p= 1+1/(2r+1). Therefore,
by Marcinkiewicz-Zygmund law in Teicher (1998) and Lemma A.1 in Dabrowska
(2009),

√
nsupt |Ur+1,n(gt)| →P 0. By Marcinkiewicz-Zygmund theorem in de la

Peña and Giné (1999), we also have
√

nsupt |Vr+1,n(gt)−Ur+1,n(gt)| → 0 a.s. be-
cause

EG(Dir+1)
2d(ir+1)/(2r+1) < ∞,

whereir+1 = (i1, . . . , ir+1) andd = d(ir+1) is the number of distinct coefficients
among{i1, . . . , ir+1}, d = 1, . . . ,r,r ≤ 3. �

We denote now by‖B‖v the variation norm of ad × q-matrix of functions
B(x) = [bkl(x)],x ∈ [0,τ]. For any intervalI ⊆ [0,τ], ‖B‖v(I) = sup∑m

i=1‖B(x j)−
B(x j−1)‖1, where the supremum is taken over finite partitions ofI such thatxi < x j.

Further, letB(θ0,εn) be a ball centered atθ0 of radiusεn,εn ↓ 0,
√

nεn ↑
∞. Suppose thatϕθ (x) is a d × q matrix of functions, with columns of the form∫ x

0 g jθ dΓθ , j such that‖ϕθ0‖v = O(1). Let ϕnθ be a sequence of consistent estima-
tors such that

(i) ϕnθ (x) is a càdlàg or càglàd function (jointly in(x,θ)), continuous with re-
spect toθ ;

(ii) limsupn sup{‖ϕnθ‖v : θ ∈ B(θ0,εn)}= OP(1);
(iii) sup{‖ϕnθ −ϕθ0‖∞ : θ ∈ B(θ0,εn)}= oP(1) or

(iii’) ϕnθ −ϕnθ ′ =(θ −θ ′)ψnθ ,θ ′ where limsupn sup{‖ψnθθ ′‖v : θ ,θ ′ ∈B(θ0,εn)}
= OP(1).

If ϕnθ is a jointly S P
n ⊗B(T ) measurable estimator then conditions (ii)-(iii) are

assumed to hold in probability. If this is not the case then the conditions (ii)-(iii)
are taken to hold in outer probability.

Lemma 5.5 (i) If ϕnθ (x) is a measurable process satisfying (i)-(ii) and (iii) or
(iii’) then with probability tending to 1, the equationUnϕn(θ) = 0 has a con-
sistent root̂θ in the ballB(θ0,εn). In addition, under the condition (iii’), the
score equation has a unique root inB(θ0,εn), with probability tending to 1.

(ii) If ϕnθ is not measurable, then statements in part (1) hold with inner probabil-
ity tending to 1.

(iii) If θ̃ is an arbitrary consistent estimator ofθ0, then the equationUnϕ̃n
(θ) =

0, whereϕ̃n(x) = ϕnθ̃ (x) has a unique solution̂θ , with (inner) probability

tending to 1, andUnϕn(θ̂) = op∗(n−1/2).
In all three cases,̂Ξ =

√
n(θ̂ − θ0) and the procesŝW0 = {√n[Γnθ̂ −Γθ0 − (θ̂ −

θ0)
T Γ̇nθ̂ ](x) : x ≤ τ} converge weakly inRd ×ℓ∞([0,τ]×J0) to a mean zero Gaus-

sian process defined in the statement of Proposition 3.1.
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Proof . Case (1). WriteUn(θ) = Unϕn(θ) for short. Set̃b jmi(Γθ (u),θ ,u) =
= b̃ jmi1(Γθ (u),θ ,u)−ϕθ0(u)b̃ jmi2(Γθ (u),θ ,u) where

b̃ jmi1(Γθ (u),θ ,u) = ℓ̇ j(Γθ (u),θ ,Z jmi)− e j[ℓ̇ j](u,θ),
b̃ jmi2(Γθ (u),θ ,u) = ℓ′j(Γθ (u),θ ,Z jmi)− e j[ℓ

′
j](u,θ).

Defineb jmi(Γθ (u),θ ,u),b jmi1(Γθ (u)θ ,u) andb jmi2(Γθ (u),θ ,u) using similar ex-
pressions withe j[ℓ̇ j] and e j[ℓ

′
j] replaced bŷe j[ℓ̇ j] and ê j[ℓ

′
j]. We haveUn(θ) =

∑4
p=1Unp(θ), where

U1n(θ) =
1
n

n

∑
i=1

∑
j
∑
m

∫ x

0
b̃ jmi(Γθ (u),θ ,u)M jmi(du,θ),

U2n(θ) =
2

∑
q=1

∫ τ

0
rnq(du,θ)[Γnθ −Γθ ]

T (u) =
2

∑
q=1

U2n;q(θ),

U3n(θ) =

−∑
j

∫ τ

0

[
(ê j[ℓ̇ j]− e j[ℓ̇ j])(u,θ)−ϕθ0(u)(ê j[ℓ

′
j]− e j[ℓ

′
j])(u,θ)

]
M j..(du,θ),

U4n(θ) =−1
n

n

∑
i=1

∑
j
∑
m

∫ τ

0
[ϕnθ −ϕθ0](u)]b̂ jmi2(Γnθ (u),θ ,u)N jmi(du),

and

rn1(x,θ) =
1
n

n

∑
i=1

∑
j
∑
m

∫ x

0
b
′
jmi(Γθ (u),θ ,u)N jmi(du),

rn2(x,θ) =
1
n

n

∑
i=1

∑
j
∑
m

∫ 1

0

∫ x

0
[b

′
jmi(Γ

λ
nθ (u),θ ,u)N jmi(du)dλ − rn1(x,θ).

HereΓλ
nθ = Γθ +λ (Γnθ −Γθ ) for λ ∈ (0,1). We haveU2n;2(θ0) =

∫ τ
0 OP(‖Γnθ0 −

Γθ0‖2)∑ j N j..(du) = oP(n−1/2). Moreover,r1n(x,θ0) converges almost surely to

r(x,θ0) = ∑
j

∫ x

0
[covj(ℓ

′
j, ℓ̇ j)(u,θ0)−ϕθ0(u)covj(ℓ

′
j, ℓ

′
j)(u,θ0)]EN j..(du)

uniformly in x,x ≤ τ. Lemma 5.2 and integration by parts imply that the terms
[
√

nU1n(θ0),
√

nU2n;1(θ0)] converge weakly to a pair of independent normal vari-
ables with mean zero and covariancesΣ0(θ0) and Σ2(θ0)−Σ0(θ0), respectively.
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By Lemma 5.3-4, we also haveU3n(θ0) = oP(n−1/2). Finally,

U4n(θ) =−
3

∑
p=1

∫ τ

0
[ϕnθ −ϕθ0](u)]Bpn(du,θ) =

3

∑
p=1

U4n;p(θ),

where

B1n(x,θ) =
1
n

n

∑
i=1

∑
j
∑
m

∫ x

0
[b̂2 jmi(Γnθ (u),θ ,u)− b̂2 jmi(Γθ (u),θ ,u)]N jmi(du),

B2n(x,θ) =−∑
j

∫ x

0
(ê j[ℓ

′
j]− e j[ℓ

′
j])(u,θ)M j..(du,θ),

B3n(x,θ) =
1
n

n

∑
i=1

∑
j
∑
m

∫ x

0
b̃2 jmi(Γθ (u),θ ,u)M jmi(du,θ).

By Lemmas 5.2-5.4, we have
√

nU4n;2(θ) = oP(1) and
√

nU4n;1(θ) =

∑ j
∫ τ

0 OP(
√

n‖Γnθ − Γθ‖1(u)‖ϕnθ −ϕθ0‖1(u)N j..(du) = oP(1), uniformly in θ ∈
B(θ0,εn). On the other hand, atθ = θ0, {√nB3n(x,θ0) : x ≤ τ} is a sum of iid
mean zero processes. The finite dimensional distributions are mean zero variables
with finite variance-covariance matrix and converge weakly to mean zero Gaussian
variables. Each component ofB3n(x,θ0) is a measurable process which can be rep-
resented as a finite linear combination of càdlàg monotone functions ofx with a
square integrable envelope satisfying (5.2). The same argument as in Lemma 5.2
implies that the process is

√
nB3n(x,θ0) converges weakly to a mean zero Gaussian

process with sample paths continuous with respect to the variance semi-metric. The
space of functions continuous with respect to the variance semi-metric is isometric
to the spaceC([0,τ])q. By almost sure representation theorem and a similar inte-
gration by parts argument as in Bilias et al (1997) we have

√
nU4n;3(θ0) = oP(1).

Set Ûn(θ) = ∑3
j=1U jn(θ). Some elementary algebra shows that forθ ,

θ ′ ∈ B(θ0,εn), we haveÛn(θ) = Ûn(θ ′)+(Σn(θ0)+ rem0n(θ ,θ ′))(θ −θ ′), where
Σn(θ0) is a matrix which converges in probability−Σ1(θ0). The matrixΣ1(θ) is
defined in Section 3 and is non-singular. Further,U4n(θ)−U4n(θ ′) = rem2n(θ ,θ ′)
(θ −θ ′)+ rem3n(θ ,θ ′) +O(|θ −θ0|∨ |θ ′−θ0|)rem4n(θ ,θ ′). Setting rem1n(θ ,θ ′)
= I + Σ−1

1 (θ0)[Σn(θ0) + rem0n(θ ,θ ′)], and bqn = sup{|remqn(θ ,θ ′)| : θ ,
θ ′ ∈ B(θ0,εn)}, q = 1, . . . ,4, we haveb1n = oP(1), b2n = oP(1). Under the condi-
tion (iii’), remnq ≡ 0≡ bqn,q= 3,4, while under the condition (iii),b3n = oP(n−1/2)
andb4n = oP(1).

Putan = b1n+b2n+b4n andAn = b5n+b3n, whereb5n = |Σ(θ0)
−1Ûn(θ0)|=

OP(n−1/2). Let 0< η < 1/2 and 0< η ′ < 1 be given. By asymptotic tightness
of An, we can find a compact setK = K(η) andn0 such that for alln ≥ n0 and
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all open setsG containingK, we havePn(
√

nAn 6∈ G) < η and Pn(an > η ′) <
η. Therefore, we also havePn(

√
nAn > M(1− η ′)) < η for all finite M ≥ M0,

whereM0 = M0(η) is a large enough finite nonnegative constant. Since
√

nεn ↑
∞ and εn ↓ 0, by eventually increasingn0, we can assume that forn ≥ n0, we
haveB(θ0,εn) ⊂ Θ and M <

√
nεn. Consequently, the setEn ⊂ Sn given by

En = {ω0 : An(ω0)/(1− an(ω0) < εn,an(ω0) ≤ η ′} satisfiesPn(En) ≥ 1−2η for
all n ≥ n0.

For n ≥ n0, consider the set-valued mappingHn : Sn →֒ Rd given by

Hn(ω0) = B(θ0,
An(ω0)

1−an(ω0)
) = {θ : |θ −θ0| ≤

An(ω0)

1−an(ω0
} if ω0 ∈ En,

= /0 if ω0 6∈ En.

The graph ofHn, graphHn = {(ω0,θ) : θ ∈ Hn(ω0)} is S P
n ⊗B(Θ)-measurable

and domHn = En ∈ S P
n . Further, letgn(ω0,θ) = θ +Σ−1

1 (θ0)Un(ω0,θ). Thengn

is S P
n ⊗B(Θ) measurable, because it is continuous with respect toθ for fixed ω0

andS P
n -measurable for fixedθ . It follows that the set valued mapping

Cn(ω0) = {θ : gn(ω0,θ) = 0 and θ ∈ Hn(ω0)} for ω0 ∈ En,

= /0 for ω0 6∈ En

is closed-valued and has anS P
n ⊗B(Θ)- measurable graph. We have domCn = En:

for fixedω0 ∈En, Hn(ω0) is a closed ball,gn(ω0,θ) is continuous and mapsHn(ω0)
into itself. By Brouwer’s fixed point theorem,Cn(ω0) 6= /0. ThusEn ⊆ domCn, while
the reversed inclusion is obvious.

Further, for any root̂θ in domCn, we have|√n(θ̂ −θ0)|∗ ≤ An/(1−an) =

OP(1), and
√

n(θ̂ −θ0) = Σ(θ0)
−1√nÛn(θ0)+oP∗(n−1/2) so that

√
n(θ̂ −θ0) con-

verges in law to the normal distribution given in Section 3. An argument similar to
Bickel et al. (1993, p.517) shows also that under the condition (iii’),gn(ω0,θ) is a
contraction onHn(ω0),ω0 ∈ En, with contraction coefficientan(ω0). Thus in this
case, the root is unique:Cn(ω0) = {θ̂(ω0)} for ω0 ∈ En andn ≥ n0.

Case (2). Ifϕnθ estimators are notS P
n ⊗B(T ) measurable, then the score

function splits into two parts:Un(θ) = Ûn(θ)+U4n(θ). The termÛn(θ) remains
S P

n ⊗B(Θ) measurable, while the second term is not. However,b3n = op∗(n−1/2),
an = oP∗(1) while b5n = |Σ(θ0)

−1Ûn(θ0)| = Op(n−1/2). In this case, the setEn

satisfies liminfn Pn,∗(En)≥ 1−2η and the closed ballB(θ0,An/1−an) is contained
in B(θ0,εn) with inner probability tending to 1.

Case (3). We writẽUn(θ) for the modified score function obtained by sub-
stituting in ϕ̃n(x) = ϕnθ̃ (x) in place ofϕnθ . Suppose that̃θ is S P

n -measurable and
ϕnθ (x) is S P

n ⊗B(T ) measurable. Then the plug-in estimatorϕnθ̃ (x) is S P
n ⊗
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B([0,τ]) measurable and the modified score processŨn(θ) is S P
n ⊗B(Θ) mea-

surable. Moreover, we havẽUn(θ) = Ûn(θ)+Ũn4(θ), where the remainder̃U4n(θ)
satisfies

√
n[Un4(θ)− Ũn4(θ)] = oP(1+

√
n|θ − θ0|), uniformly in θ ∈ B(θ0,ε0).

We also havẽU4n(θ)−Ũ4n(θ ′) = (θ −θ ′)r̃em2n(θ ,θ ′), sup{r̃em2n(θ ,θ ′) : θ ,θ ′ ∈
B(θ0,εn)} = oP(1). With probability tending to 1, the modified equation has
a unique rootθ̂ in a compact random ball contained inB(θ0,εn) andUn(θ̂) =
oP∗(n−1/2). On the other hand, if either̃θ or ϕnθ are not measurable, then this
remains to hold, except that the modified equation has a unique solution with inner
probability tending to one.�

Under assumptions of part (1), measurable selection theorems (Wagner,

1976) ensure that there exists at least one function̂̂θ : Sn → Rd such that̂̂θ(ω0) ∈
Cn(ω0) wheneverω0 ∈ En and ̂̂θ is measurable with respect toS p

n . This also ap-
plies to part (3), provided̃θ andϕnθ areS P

n - measurable.
5.4 Proof of Proposition 3.2. With some abuse of notation, setV = [Vj, j ∈

J0] whereV (x) =V (x,θ0) andV (x,θ) is the Gaussian process of Lemma 5.1. Un-
der the assumption thatθ0 is the true parameter of the modulated renewal process,
the processV corresponds to a vector of independent time-transformed Brownian
motions with covariance

cov(Vj(x),Vj(y)) =C j(x∧ y) and cov(Vj(x),Vℓ(y)) = 0 if j 6= ℓ.

Similarly, letV̌ = [V̌j : j ∈ J0] be equal toV̌ (x) =
√

nV1n(x,θ0) whereV1n(x,θ) is
defined as in Lemma 5.1. Thus thej-th component of̆V is

V̌j(x) =
1√
n

n

∑
i=1

∑
m

∫ x

0

M jmi(du)

s j(Γθ0(u−),θ0,u)
.

PutV̌ # = [V̌ #
j : j = 1, . . . ,q],

V̌ #
j (x) =

1√
n

n

∑
i=1

∑
m

Gmi

∫ x

0

N jmi(du)

s j(Γθ0(u−),θ0,u)
.

Finally, let G0 be a N (0, Id×d) variable, independent of(Di,Gi)’s. Set
Ξ#

1 = Σ−1
1 (θ0)Σ0(θ0)

1/2G0 andΞ̂#
1 = Σ̂−1

1 (θ̂)Σ̂0(θ̂)1/2G0. We haveEV̌ #
j (x) = 0 =

EV̌j(x),

cov(V̌ #
j (x),V̌

#
ℓ (x

′)) = cov(V̌j(x),V̌ℓ(x
′)) = δ jlC jθ0(x∧ x′), (5.6)

cov(V̌ #
j (x),V̌ℓ(x

′)) = 0.
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Moreover,Ξ#
1 is independent ofD1, . . . ,Dn. This also means that it is independent

of (V̌ #,V̌ ).
We consider first unconditional weak convergence. By central limit theo-

rem and strong law of large numbers, the finite dimensional distributions of the
processes(V̌ ,V̌ #) converge weakly to finite dimensional distributions of(V,V #),
two independent vectors of Brownian motions with variance functionsC j,θ0, j =
1, . . . ,q.

For each j = 1, . . . ,q, the processV̌ #
j can be represented ašV #

j (x) =

n−1/2Σn
i=1 f ( j)

x (Gi,Di), where

f ( j)
x (Gi,Di) = ∑

m
Gmi

∫ x

0

N jmi(du)

s j(Γθ0(u−),θ0,u)
.

The class of functionsF j = { f ( j)
x (Gi,Di) : x ∈ [0,τ]} has a square integrable enve-

lope

Fj(Gi,Di) = ∑
m=1

|Gmi|
∫ τ

0

N jmi(du)

s j(Γθ0(u−),θ0,u)

and is Euclidean for this envelope because eachf ( j)
x ∈ F j is a difference of two

functions increasing inx and bounded byFj(Gi,Di). ThusF j forms a Donsker
class of functions. The union of these classes,F =

⋃
j F j is Donsker as well.

From Lemma 1, the processV̌ = {V̌j(x) : x ∈ [0,τ], j ∈J } can be also represented
as an empirical process over a Euclidean class of functionsG and the unionF ∪G
forms a Donsker class. Using consistency of the estimates(θ̂ ,Γnθ̂ ), Lemma 5.5

and a couple of lines integration by parts yields also‖V̂ #− V̌ #‖ = oP(1) in outer
probability.

Write V̌ # as the empirical procesšV # = Pn f , f ∈ F . Further, letBL1 be the
collection of Lipschitz functionsh from Rd × ℓ∞(F ) into [0,1], such that|h(r,w)−
h(r′,w′)| ≤ |r−r′|+‖w−w′‖ for r,r′ ∈ Rd andw,w′ ∈ ℓ∞(F ). The setF is totally
bounded with respect to the variance pseudo-metricd. Therefore, for fixedδ > 0, it
can be covered by a finite number ofd-balls of radiusδ , sayB( fl,δ ) ℓ= 1, . . . ,k =
k(δ ). SetV # ◦πδ = Pnπδ ( f ), whereπδ ( f ) = fℓ for f ∈ B( fℓ,δ ) (pick one fℓ for
eachf ∈ F ). By triangular inequality, we have

sup
h∈BL1

|EGh(Ξ̂#
1,V̂

#)−Eh(Ξ#
1,V

#)| ≤
4

∑
r=1

I4(δ ),
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I1(δ ) = sup
h∈BL1

|Eh(Ξ#
1,V

#◦πδ )−Eh(Ξ#
1,V

#)|,

I2(δ ) = sup
h∈BL1

|Eh(Ξ#
1,V

#◦πδ )−EGh(Ξ#
1,V̌

#◦πδ )|,

I3(δ ) = sup
h∈BL1

|EGh(Ξ#
1,V̌

#◦πδ )−EGh(Ξ#
1,V̌

#)|,

I4(δ ) = sup
h∈BL1

|EGh(Ξ̂#
1,V̂

#)−EGh(Ξ#
1,V̌

#)|.

For givenε > 0, we can chooseδ0 so thatI1(δ )< ε for all δ < δ0. The second term
converges in outer probability to 0, for anyδ . This follows from weak convergence
of finite dimensional distributions of̌V # and the same argument as in Van der Vaart
and Wellner (1996, p. 182), except that in our setting, the Lindeberg condition of
their Lemma 2.9.5 is not needed to verify conditional weak convergence of finite di-
mensional distributions. We also haveI3(δ )≤ E∗

G‖V̌ #◦πδ −V̌ #‖Fδ ≤ ΣE∗
G‖V̌ #‖Fδ

whereFδ = { f − f ′ : f , f ′ ∈F : d( f − f ′)< δ}. SinceF forms a Euclidean class
of functions with a square integrable envelope, we have limδ↓0 limsupn E∗I3(δ ) ≤
limδ↓0 limsupn E∗E∗

G‖V̌ #‖Fδ = 0. Finally, the termI4(δ ) does not depend onδ ,

and we haveI4(δ ) ≤ 2P∗
G(|Ξ̂1−Ξ1|+‖V̂ #− V̌ #‖> ε)+ ε. By unconditional con-

vergence, we haveI4(δ )→ 0 in outer probability.
Finally, setΨ(Ξ̂#

1,V̂
#) = [Ξ̌#,W̌ #

0 ], where

Ξ̌# = Ξ̂#
1−Σ−1

1 (θ0)∑
j

∫ τ

0
ρ j,ϕ(u,θ0)EN j..(du)W̌#

0 (u)
T ,

W̌ #
0 (x) =

∫ x

0
V̂ #(du)Pθ0(u,x)

= V̂ #(x)−
∫ x

0
V̂ #(u−)Qθ0(du)Pθ0(u,x).

The estimates[Ξ̂#,Ŵ #
0 ] defined in Section 4 are[Ξ̂#,Ŵ #

0 ] = Ψ̂(Ξ̂#
1,V̂

#), whereΨ̂ is

the sample analogue ofΨ obtained by plugging in the estimateŝPθ̂ , Q̂θ̂ ,

ρ j,ϕn(·, θ̂0). By the continuous mapping theorem, unconditionally,Ψ(Ξ̂#
1,V̂

#) ⇒
Ψ(Ξ#

1,V
#) = (Ξ#,W #

0 ). By triangular inequality one more time, we have
suph∈BL1

|EGh(Ξ̂#,Ŵ #
0 )−Eh(Ξ#,W #

0 )| ≤ J1+ J2, where

J1 = sup
h∈BL1

|EGh(Ξ̂#,Ŵ #
0 )−EGh(Ξ̌#,W̌ #

0 )|,
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J2 = sup
h∈BL1

|EGh(Ξ̌#,W̌ #
0 )−Eh(Ξ#,W #

0 )|.

For any Lipschitz continuous functionh ∈ BL1, h ◦Ψ ∈ BLc for some constantc.
Therefore the preceding implies thatJ2 tends to 0 in outer probability. This also
holds for the termJ1, because‖Ξ̌#− Ξ̂#‖ →P∗ 0 and‖Ŵ #

0 −W̌ #
0 ‖1 →P∗ 0, by con-

sistency of the estimates(θ̂ ,Γnθ̂ ) and integration by parts.�
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