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Estimation in a Semi-Markov Transformation
Model

Dorota M. Dabrowska

Abstract

Semi-Markov and modulated renewal processes provide a large class of multi-state models
which can be used for analysis of longitudinal failure time data. In biomedical applications,
models of this kind are often used to describe evolution of a disease and assume that patient may
move among a finite number of states representing different phases in the disease progression.
Several authors proposed extensions of the proportional hazard model for regression analysis
of these processes. In this paper, we consider a general class of censored semi-Markov and
modulated renewal processes and propose use of transformation models for their analysis. Special
cases include modulated renewal processes with interarrival times specified using transformation
models, and semi-Markov processes with with one-step transition probabilities defined using
copula-transformation models. We discuss estimation of finite and infinite dimensional parameters
and develop an extension of the Gaussian multiplier method for setting confidence bands for
transition probabilities and related parameters. A transplant outcome data set from the Center for
International Blood and Marrow Transplant Research is used for illustrative purposes.
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1 Introduction

We consider estimation in a semi-Markov regression model with a finite state space
7 ={1,...,r}. In the absence of covariates, the model can be described by a
sequencéT,J) = {(Tp,Jdn) : N> 0}, whereTp < T; < T»... are consecutive times

of entrances into the statdg, J1,J,...,Jh € _# = {1,...,r}. The sequencé =

{Jn: n > 0} of states visited forms a Markov chain and givkrhe sojourn times
T1,T, — Ty, ... are independent with distributions depending on the adjoining states
only. Alternatively, the distribution of the sojourn tim&s,; — T,,n > 0 satisfies

P(Tht1—Tn <X Iny1=j|Jo, To, 1, T1, ..., In, Tn)
- P(Tn+]_ - Tn S X Jn+1 — J|Jn) .

Properties of semi-Markov processes were discussed in some detail in classical pa-
pers of Pyke (1961,ab), Pyke and Schaufele (1964,1966), and textbooks of Cinlar
(1975), Daley and Vere-Jones (1988), Karr (1991), Last and Brandt (1995) and
Limnios and Oprisan (2001). Numerous examples of applications to areas such
as reliability, insurance and finance were provided by Janssen (1999), Janssen and
Manca (2006,2007) and Janssen and Limnios (2001), for instance. In such studies,
it is most common to consider estimation methods assuming that a single realiza-
tion of a semi-Markov process is observed over a finite time intéfval whose

length tends to infinity § 1 «). Greenwood and Wefelmeyer (1996) and Green-
wood, Muller and Wefelmeyer (2004) developed a general framework for analysis
of non- and semi-parametric semi-Markov processes in this setting. In particular,
they studied properties of classical estimators of the jump frequency and the propor-
tion of visits to a given state, as well as Moore and Pyke’s (1968) non-parametric
estimator of the kernel of the process. Estimation of transition intensities and tran-
sition probabilities was considered by Ouhbi and Limnios (1996,1999).

In survival analysis, it is more common to consider estimation based on a
large number of iid copies of a semi-Markov process observed over a deterministic
or random time intervals. Lagakos, Sommer and Zelen (1978), Gill (1980), Voelkel
and Crowley (1984) and Phelan (1999) developed nonparametric estimators of the
semi-Markov kernel of the process in the presence of random censoring. Exam-
ples of applications of these processes to analysis of survival data can be found in
Commenges (1986), Keiding (1986), Dabrowskal. (1994), Changt al. (1994,
1999,2000), Cook and Lawless (2007), among others.

In this paper, we assume that the evolution of the pro€&ssn)m=o0 de-
pends also on aR%-valued covariat€Zm)m>0, Zm = [Zjm: j € _#], which repre-
sents either a vector of time independent covariates, or a vector of time dependent
covariates changing at the successive renewal times. As an extension of the semi-
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Markov process to the regression setting, Cox (1973) praptzseonsider a pro-
portional hazards modulated renewal process. More precisely,#e{N;(t) : t >

0,j = (j1,J2) € Z x #} be the counting process registering transitions among
adjoining states of the model,

Nj (t) = Z 1T <t Jma = J2,dm= j1)-

m>0

Cox’s model assumes that the compensator of this process, relative to the self-
exciting filtration{.% }+>o, is given byA;(0) =0,

t— Tm
Aj(t) = A (Tr) + / j1)ef 2 (du)

fort € (Tm, Tmy1] @andj = (j1, j2) € # x 7. Heref is aregression coefficient and

I"j in an unknown cumulative hazard function. If covariates are time independent
andl j(x) = y;x, the process reduces to a Markov chain regression model. In the
general case, the modulated renewal process allows to incorporate dependence of
the history on the sequence of states visited and the length of time spent in each
state. As a result of this, it has a more flexible structure than Markov chains.

The purpose of this paper is to extend Cox’s modulated process to a class
of transformation models. In the case of single spell models, they provide a com-
mon alternative to the proportional hazard model. In particular, they may be more
appropriate than the proportional hazard model if relative differences between co-
variates dissipate or diverge over time. As an extension to multistate models, we
consider here a modulated renewal process assuming that the counting pocess
has compensator given ldy; (0) = 0,

t—Tm
Aj(t) = A (T) +/0 1(dn = 1) (T (1. (U), 8, Zjm)T(d) (1.1)

fort € (Tm, Tmy1] @andj = (j1,J2) € Z x #. For any such paij = (j1, j2), o

is a hazard function dependent on an unknown Euclidean paratheted a vec-

tor of unknown increasing functiors;, ) = [[j(x) = Ryiwdu:j=(j1,j2) €

S x #,x>0]. The components of ;, ) depend on all states which can be
reached from the statg in one step. If covariates are time independent, then
(1.1) includes as a special case renewal processes whose interarrival times satisfy
common transformation models. Other choices include semi-Markov models with
one-step transition probabilities defined using copula graphic models (e.g. Zheng
and Klein (1995), Rivest and Wells (2001), Lo and Wilke (2010)) or extensions of
the dynamic Cox-McFadden’s model (Chintagunta and Prasad (1998)) combining
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transformation models and multinomial regression. Thesdeatsoare defined in
more detail in Section 2, where covariates are also allowed to change at the renewal
times of the process.

For purposes of estimation, we consider a modification of procedures stud-
ied by Bagdonovicius and Nikulin (1999,2004) and Dabrowska (2006) in the case
of single spell transformation models. Section 3 provides properties of the estimates
as well as an extension of the Gaussian multiplier method ottLah. (1994) for
setting pointwise and simultaneous confidence bands for the unknown transforma-
tions and related parameters. In analogy to Cox’s model, the counting pfdcess
has a compensator depending on the backwards recurrence time and as a result
of this, it falls outside the class of multiplicative models studied by Andeesen
al. (1993), for instance. In the case of Cox’s modulated renewal process or non-
parametric semi-Markov models, estimation of the cumulative hazards of one-step
transitions leads to a time transformation which arranges observations according to
the length of time spent in each state rather than calendar time. As a result of the re-
arrangement of the time scale, usual counting process methods for analysis of large
sample properties of stochastic integrals do not apply (Gill (1980), Oakes (1981),
Oakes and Cui (1994)). To alleviate these problems, we use Hoeffding’s projection
method and empirical processes in Section 5.

In Section 4, we consider a transplant outcome data set from the Cen-
ter for International Blood and Marrow Transplant Research (CIBMTR). The ex-
ample data set consists of patients who received HLA-identical sibling transplant
from 1995 to 2004 for acute myelogenous leukemia (AML) or acute lymphoblas-
tic leukemia (ALL). Multistate models for analysis of the bone marrow transplant
recovery process have been proposed by several authors. The early work in this
area focused on competing risk models and goes back Prehtte(1978) who
discussed estimation of cause specific cumulative hazards in the proportional haz-
ard model. More recent approaches towards analysis of leukemia transplant data
are based on multistate models. They provide a convenient tool for evaluation of
the impact of intermediate events in the transplant recovery process on the main
outcome events corresponding to leukemia relapse and death in remission. How-
ever, analysis of multistate regression models leads to some difficulties in the in-
terpretation of the results because there is no one-to-one correspondence between
regression coefficients and transition probabilities. Each covariate may increase the
risk of transition among some states of the model and at the same time decrease
it among the others. Correspondingly, its overall impact on the outcome events is
often not clear. To obviate difficulties, Arjas and Eerola (1993) and Eerola (1994)
proposed a set of graphical tools which can be used for purposes of interpretation
of regression analyzes based on multistate models. These included graphs of in-
novation gains and plots of the transition probabilities evaluated by conditioning
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on the follow-up history of a patient. The approach was itatstd using a propor-
tional hazard model with time dependent covariates in Eerola (1994). Applications
of these methods to proportional hazard Markov chain models were given in Klein
et al. (1993) and Keidinget al. (2001) and Andersen and Parme (2008), and pro-
portional hazard semi-Markov models in Dabrowskal. (1993, 2006). Puttest

al. (2007) discussed special cases of both models.

In this paper, we consider a data set involving patients who received ei-
ther bone marrow (BMT) or peripheral blood stem cell transplant (PBSCT). Many
clinical studies have reported that PBSCT may be beneficial during the early post-
transplant period as it leads to faster engraftment and hematopoietic recovery than
BMT (e.g. Flowerset al. 2002, Ringderet al. 2002). Several studies have also
pointed out that differences between the two transplant types may dissipate over
time (e.g. Friedrichst al. 2010, Cutleret al. 2002ab). Such dissipating time ef-
fects are better captured by the proportional odds ratio model than the proportional
hazard model, and in Section 5 we discuss an extension of it to semi-Markov mod-
els. In this section we also propose pointwise and simultaneous confidence bands
for comparison of transition probabilities.

2 Themodéd

Throughout the paper we assume tffat.# , P) is a complete probability space and
(Tm,Vm)m>0 is @ marked point process defined on it with marks taking on values
in a separable measure spdée &) and enlarged by the empty matk Thus
To<T1 <...Ty... IS a sequence of random time points registering occurrence of
some events in time such thgg are almost surely distinct arigh 1 « P-a.s. Attime

Tm We observe a variabMy, such thawy, € E if Ty, < o0, andVi, = A if Ty, = .

For anyB € &, let N(t,B) = > m>01(Tmy1 < t,Vimy1 € B) be the process
counting observations falling into the g6tt] x B. The internal history of the pro-
cess{.ZN}i>0, represents information collected bhuntil timet, and is given by
FN =0(L(Tn<sVmEB):m>1s<t,Bc &) va\W). Let.F = 4 Vv.ZN be
the self-exciting filtration associated with the procBs®btained by adjoining the
P-null sets to the internal history of the process. The compensator of the picess

with respect ta%; is given by

o Pn(d(s,V))
A(t,B) = A\(Tm,B) + (Tmt] xB Pm([8,00); EUA)

for te (Tm, Tme1,

where Py(d(s,v)) is a version of a regular conditional distribution 0Ty,
V1) given.Zt, (Jacod (1975)).
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In this paper we assume that the ma¥kshave the formVin = (I, Zm),
wheredn € 7 ={1,...,r} is a discrete variable representing the type of the event
occurring at timelp, andZ, are covariates taking on value®d. The covariat&n,
may correspond to some measurements taken upon entrance into thig,siette

procesN = [N, j = (j1,J2) € Z x 7],

Nj (t,B)= Z LUTmi1 <t,Imp1=j2,Im= j1,Zmi1 € B),

m>0

has compensator given by

Nj(t,B) = A\j(Tm,B)

t—Tm ) )
+/0 HUmi1(B,U+Tm, ))1(Im= j1)aj(Ij,,)(U), 0,Zj;m)lj(du),

fort € (Tm, Tmy1]. Here tm1(B, Tmi1,Im, Ime1) is the conditional probability of
the evenf{Zn, 1 € B} giveno (71, Tmi1, Imi1)-

Further,Zj,m = gj1m<T|,J|,Z| :1=0,...,m) is a fixedR® valued function,
measurable with respect #t,,. Finally, a; denotes a hazard rate dependent on a
Euclidean paramete? and a vector of unknown monotone increasing functions
Ciy =M1 =(>1]2) € Z x _Z]. In particular, setting8 = R4 and using
s 1(RY T 1, Imy I 1)L (Tt < ) = 1 P-a.s., A(t,RY) reduces to (1.1) and
represents the compensator of the “marginal” counting process

Ni(®) =Nj(t, R) = 3 L(Tme1 <t,3mp2 = j2,9m= j1) (2.1)

m>0

registering transitions among the adjoining states of the model.

To give examples of the model, we assume first that the covariates are time
independent. If events are of a single typeZ | = 1), then (1.1) represents com-
pensator of a renewal regression model assuming that the interarrival times follow a
transformation model. Thus in this cage(u, 8,Z) : 8 € ©} is a parametric family
of hazard rates, and the model stipulates that conditionally,aie interarrival
times,Xm 1 are independent and their conditional survival function has cumulative
hazard functiorA(T (x), 0, Z).

Simple examples of multi-type processes are given by competing risk and
semi-Markov regression models. In particular, a semi-Markov regression model
assumes that one-step transition probabilities satisfy

P(Xmi1 < % Imr1 = j2|(T, I0)il0, Z) = P(Xmr1 < X, Jmer = j2|9m, Z).
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The matrix[Fj, j = (j1,j2) € Z x 7],
Fi(X|Z) = P(Xm+1 < X dme1 = j2|Im= j1,2),

forms the kernel of the process. One way to define it is to consider latent variable
models. Specifically, suppose that transitions originating from the gtéiave the
same conditional distribution as the péir,V), where

U = minUj:j=(j1,j2) € 7 x 7],
V = [1U=Uj):j=(i1]2) € 7 x F],

andUj : j = (j1,j2) € Z x Z] is a multivariate vector whose joint conditional
survival function giverz is

S, (U, 0,2) S(()11 j(uj) e‘ Hj=(nl2) € 2 x 7).

Hereu=[uj,j = (j1,j2) € Z x Z] and S(()jl,.) is a known multivariate survival
function with a density with respect to Lebesgue measure supported on the entire
upper orthant oR%i1, qj, = |{j2: (j1,]2) € # x #}|. The functionsa;j in (1.1)

are equal to

IogS?Jl yie® %= (i j2) € 7 x 7))

With this choice the cumulative intensity (1.1) corresponds to a semi-Markov model
whose kernel is given by

Fi(X|Z) = P(Xmi1 <X, Imr1 = j2|Im= j1,2) (2.2)
X_
= [ F ) W2)0 (T (1), 0,207 (e,

wherej = (j1, j2) € Z x # andFj, (X2 is the survival function of the sojourn
time in statej,

F i) (X12) = P(Xmi1 > XIm = j1,2) = 2.3)
= expl- Z / 01 (T . (1). 6,2)7 ()]
1112
S(Jl 92)
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If the state space of the process consists of one ephemear(Jta- 1, say) and

g— 1 absorbing stateg,> 3, then the semi-Markov process reduces to a competing
risk model. In this case transition probabilities (2.2) provide a regression analogue
of copula-graphic models proposed for analysis of competing risks by Zhang and
Klein (1995) and Rivest and Wells (2001). The special case of Archimedean copula

models corresponds to the choEBi% .)(y(jl,.)> = X1Y(j,,)ll1), whereSis a known

survival function with a density supported on the positive half-line fanh is the
/1-norm of a vector.

Another example of a semi-Markov model is provided by the dynamic Cox-
McFadden model (Chintagunta and Prasad, 1998). In this case, the distribution
of the sojourn time in statg¢; € ¢ is specified by means of a transformation
model for univariate failure time data, i.e. the survival function (2.3) is of the form
F(j,,)(X2) = exg— Ajl( 1(X), 61,2)] for some univariate cumulative hazard func-

t|on A,l. The kernel of the process is given by

X
FX2) = [ (1.2 8)F, (dul2)
whereFj, y(-|2) = 1—Fj, y(:|2) and forj = (ju, j2),

T (Xmi1,,Z,62) = P(Imi1 = j2[Xmi1,Im= j1,2) (2.4)

are the one-step state transition probabilities. The state transition probabilities can
be specified using multinomial regression models such as the logistic or probit
model. If the state transition probabilities (2.4) do not depend on the length of
the sojourn timeXy, 1, the model reduces to a stationary process, i.e. conditionally
onZ, the transition probabilities do not dependran

In practice, the assumptions of the semi-Markov process may be violated if
transitions from a statg to a statej, depend on the sequence or the time spent in
states visited prior to the entrance into the sfateBoth models can accommodate
this problem by allowing the covariates to depend on the internal history of the
process. The time dependent covariates may represent for instance the total number
of events occurring prior to the entrance into the sfater the length of time spent
in states preceding entrance into the stateThe time dependent covariates may
also represent changing treatment types or levels of drugs.

We further assume that the process is subject to censoring and times at which
the process is observed is determined by a praCé9s= 3 ;>1 1(Cm-1 <t < Cpy),
where 0<Cp <Cj <...<Cp...is anincreasing sequence such ®at [Tm, Tm+1]
are stopping times with respect to a larger filtrat{o#? }1>0, %t C J4. If Tn=Cn
then no information is available on either the sojourn tiag 1 = Tni1 — Tm Or the
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marks(Vm,Vim+1)- If Cm = Tit1 then the sojourn tim&y 1 = Tne1 — Tm and the
marks(Vm,Vin+1) are observable. Finally, if, < Cy < Ty1 then the markyy, is
visible while the sojourn timé&, 1 is only known to excee@, — Ty,. Following
Anderseret al. (1993), we assume that the compensatdr, of the marked point
processN, relative to the filtration{.7 1>, satisfies\”” = A, P-a.s. and that the
censoring process and the compensAtdepend on parameters which do not share
components in common. We also make the assumption that the censoring process
is monotone so that with probability Ty, < Cy < Ty 1= Cyy = Ty forall m' > m.
This condition stipulates that the process terminates once censoring takes place.
These conditions are satisfied in two common applications. The first as-
sumes that the process is subject to censoring by a univariate failurd tisueh
thatT’ is independent of the the sequeri@g, Vin), conditionally on the initial state
of the processyp. In this caseCny = T+ min(T’ — T, Xme1)L(T’ > Tn) and the
augmented filtration is given by% = .Z; vV o(T').
The second example assumes that the state space of the process has an ex-
tra absorbing state corresponding censoring,{€dywhich can be reached in one
step from each transient stgtec _#. TimeT till entrance into the censoring state
forms then stopping time with respect to the filtratiefi = .%;. Consequently,
there exist nonnegative variablelg, such that on the everdflT > T}, we have
T ATm+1 = (Tm+Um) A Te1, andUp, is measurable with respect #8t,,. Corre-
spondingly,Cm = Tm+ min(Um, Xm1)1(T > Ty). In this setting, the assumption
of non-informative censoring means that the compensators of one-step transitions
into the the censoring state depend on different parameters than the compensator of
transitions among the remaining states of the model.
Let %o C # x ¢ Dbe the set of pairs of adjacent states in the model, i.e.
i = (j1,j2) € o iff the subject may progress from stateto statej in one step.
Forj = (j1,]2) € Zoandm> 0, [etNjm(X) = 1(Xm1 <X, Im= j1,dmt1= j2, Tm=
Cm+1), Yim(V) = 1(Xm+1 > X,Cn— Tm > X, Jm = j1) and set

Mjm(X,e) = ij(X>—/\jm(X,6),
Aim(%8) = [ ¥im(W)a} (T, (). Zim, O)F ()

The aggregate procesds,Y;. andM;j. are defined ablj. = 5 Njm, Yj. = S Yjm
andM;j. = 5 ,Mjm, respectively.

Note that the model depends on two parametérgndl", however, we
suppress the dependencelom the notation. In analogy to single spell models in
Bagdonovicius and Nikulin (1999,2004) and Dabrowska (2006), under regularity
conditions stated in Section 5, we can associate, withGagy®, a vectorl g of
locally bounded increasing functions. For this purpose, we shall require only that
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the processel; andY;. have a finite expectation. To show asymptotic normality
of estimates we shall require existence of the second moments of these processes.
More precisely, we assume the following conditions.

Condition 2.1 Forallj € #o

() The functionsEY;.(x) have at most a finite number of discontinuity points
andEY; (0)? < c.
(i) The functionsEN; (x) are continuousEN; (7)2 < o and the point satisfies
inf{x: EN;j.(x) > 0} < T < Tjo, WhereTjo = sup{x: EYj (x) > 0}.
(i) We have P(|ZJ(tf)Nu(tf)| < C) =1, whereC is a finite constant)(t) is the

state occupied by the process at tinedN_(t) = Z;N; (t) is the total num-
ber of events observed in the interyalt].

Under the added assumption that the model corresponds to the censored
modulated renewal process, aBdepresents the true parameter, we have the fol-
lowing moment identities.

Lemma2.l LetlL(t)=t— TR ) be the backwards time of the procéésnd let

{¢m(X),m > 0,x > 0} be a sequence of random functions such that the process
pol, polL(t) = ¢N..(t—)(t — TN,,(t—))’ is predictable with respect to the filtration

{ =0 andE [3[¢ o L]2(S)Aj(ds, 8) < . Then

ES [ dn(Nin(@w) =E Y [ dn(u)Ain(u.0),
Z/ Bm(U)M (U, 6)]2 EZ/ H2(WAjm(du, 6).
In addition, if {1, : m> 0} and{dom : m> O} are two such sequences, then
ELY [ oan(u)Mim(@8)][3 [ fom(u)Mm(cu.6)] = O

forpairsj #j',j,j’ € Yo.

Similarly to Gill (1980), this lemma follows from the dominated conver-
gence theorem, martingale properties of the procd\ﬂs;esN (t) —A; j(t), and the
identities

f, 1ooukecoN@s = 5 [ ghuNm(cy),

Published by De Gruyter, 2012 9
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f; 0oL ICEA @) = 5 [T HAm(Gu0)

The identities hold almost surely fér= 1,2. We omit the details.

3 Estimation

Throughout the remainder of this paper, we assume that we have an iid sample of
sizen of the censored modulated renewal process and covariates. The subscript

"i" refers to the-th subject under study arigy represents the associated vector of

observations. It corresponds to the sequence of states visited, duration of the time
spent in each state, the initial covariate and its updates occurring at uncensored

renewal times.
Further, letq = |_#o| be the total number of possible one-step transitions in
the model. For eachh=1,...,q, we let(r(j),c(j)) = (j1,]j2) if the pairj € #o
corresponds to the one-step transition from sfat the statej,. For any such
] € Yo, the covariat&j,m is denoted aZj,. We shall also find it convenient to
write [ = [I'y,...,[¢]" for the vector obtained by stacking the columns of the matrix

I =[Ijlje #x s on the top of each other and deleting all entries corresponding to

the pairs(j1,j2) € _Zo. For the sake of convenience, we shall writgy, 6,z)
for eachj € _#oandy= (y1,...,¥q)",¥j € R, = 1,...,0. However, it is tacitly
assumed here that fgr= (j1, j2) € %o, the functiona;(y, 8,z) may depend only
onyy’s such tha(r (k),c(k)) = (j1,¢) for some(j1,¢) € _%o.

Under assumptions stated in section 5, the paranfetaries over a bound-
ed open subse® of R4 and the functiongj(y, 8,2) = loga;j(y,8,2), y € RY are
twice continuously differentiable with respect(tp6). We let¢; = (Zgl), e ,KEO'))T
be a vector whosk-th component is equal to the partial derivative @y, 6, z) with
respect to/, k= 1,...,q. Likewise,/; denotes the (column) vector of lengtitor-
responding to the derivative df with respect tof. We further setS(y, 8,x) =
N3t S mYimi(X)aj(y,8,Zjm), y € R* and denote b, S the derivatives of these
processes with respect tg, 6). Here,Sis ad x g matrix, whosej-th column is
given byS;(y, 8, ), the derivative of; with respect td. FurtherS = [S}k)] i k=1..q

is aqg x q matrix, whosek, j) entry is equal to the partial derivati\iﬁr\k) (y, 0,x) of
Si(y, 8,x) with respect toyi,k =1,...,0. Letsand lets;s be the matrices of ex-
pected S and S processes. Finally, for each € ¢, we let Nj (x) =

N1 SmNjm(X) be the averaged process counting transitions from the state

j1 =r(]j) to the statej, = c(j) and whose sojourn time in the stajte does not
exceed.

10
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As an estimate of the unknown transformatidns: [['1,..., 4T, we con-
sider a vector valued analogue of the estimator proposed by Bagdonovicius and
Nikulin (1999,2004) for analysis of single spell models. The estimator is given by

N;i du
r / ‘ 3.1

ang(o ):0, QEG,XZO,jE/o.

For fixed8, (3.1) forms a sample analogue of the non-linear vector-valued Volterra
equation

ENJ*-(‘;“ re(0-)=0x>0je %. (32

X )
Mo = /o sj(Fg(u—),6,u)’

Using arguments similar to Dabrowska (2006), we can show that under the reg-
ularity conditions stated in Section 5, the equation (3.2) has a unique solution
Mg = [rlg,...,rqg]T and its estimator (3.1) is uniformly consistent. Further, the
function® > 0 — {Ig(x) : x€ [0, 1]} € C(]0, 7])% is Frechet differentiable with re-
spect tof. The derivative is @l x g matrix of continuous functions satisfying the
matrix-valued linear Volterra equation

Fa(x) = = [ 8(To(w-),0,wCo(dw) — [ Fo(w-)Qo(aw), (3.3

whereCq(x) is the diagonab x q matrix Cq(x) = diag[Cig(X),...,Cqe(X)] with

entries EN
J
CioX) / (T )

Qw0 = [ Xd<r<w—>,e,w>ce<dw>.

The solution to the Volterra equation is given by

and

Fo(x) = —/OXS(FQ(W—),G,W)Cg(dw)g%(w,x). (3.4)

whereZg(w,Xx), 0 < w < x is the Peano series (Gill and Johansen, 1990)

00

Po(Uu,X) =1 +

m=1

(=1)™Qp(dw1) -...- Qp(dwm).  (3.5)

/u<w1<...<wm<x
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Herel is theq x q identity matrix. A uniformly consistent estimate {ffg(x_) X E
[0,1],0 € ©} can be obtained by substituting the procedsgsand S,-,S’j,S,- into
the preceding expressions.

To define the score equation for estimation of the Euclidean parameter, let

ESmYjmi(UW[fjaj](Te(u), 0, Zjm)
EYmYimi(uaj(Fe(u),0,Zjm) ’

&j[fj](u,8)

where fj(y, 8,Zjm) is a function of covariates, jointly continuous with respect to
(y,8) and bounded on every compact seR8fx ©. Likewise, for any two vectors
f1j and fy; of such functions, define

covj[f1j, f2i](u, 8) = (ej[(frj ® f25)] — (g [faj] @ &) [f2])) (u, )
and set val fj](u, 8) = cov;[fj, fj](u,0).

To estimate the paramet@rwe use a solution to the score equatiyif) =
Ung, (8) = 0p(n~1/2), where

Ung,, (8) = %;;;/OTBW(rne(u% 6, u)Nji (du), (3.6)

Bjmi(Mne(U), U, 8) = bjmai (Mna (u), u, 8) — Pne(U)bjmai (Mne(u), u, ) and

bjmai (Y, 0,1) = 4i(y,6,Zjmi) — [Si/Si](y, 6,u),
bjmai(y,0,u) = £(y,0,Zjmi) — [S;/S](y. 6,u).

Here ¢ng(X) is an estimate of @ x q matrix of bounded functiongg(x), whose
j-th column is absolutely continuous with respecf{g.
We further define matrices

20 = 3 [ vis(.0)EN;. (@),
51(0) = zo(e)+Z/Orp,-(p(u,e)EN,-__(du>['r9(u)+¢e(u)]T,
J

22(6) = Zo(6)+ [ Dy(u,6) Co(du)Ds(u.6),

12
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wherevj ¢ (u, ) _var,[ — ¢olj](u,0), pjp(u, 6) _cov,[ — ¢ol,¢j](u,6) and

D4(6,6) =5 [ Fo(uWEN;. (Wpjp(w ).
J

Proposition 3.1 Let &, | 0 be a sequence such tR@he, — c and let#(6o, &) =
{6:16 — 6| < &} be the ball of radius,, centered afy. Suppose that the matrix
20(6p) is positive definite and the matrk; (6p) is non-singular. Under conditions
stated in Section 5, the score equatibig, (8) = op-(n~/2) has a solutiord in the
ball @(Go,en) with (inner) probablllty tending to 1. Further, lat= f(@ )
andWp = V[T 5 — Mgo)T —(6-— BO)TI' gl- Then [=,Wo] converges weakly in
R x £°([0, T] x /o) to a tight mean zero Gaussian procEss\p| with covariance

cov= = 31 H(60)Z2(60)[Z1 1 (60)] ",
cov(Wo(x), Wo(X)) = Kgy (%, X),

T
COUZ o)) = ~Z;(B0) Y [ .o (u B)EN;. (d)Key (1),
]
whereKg, 6 € © is aq x g matrix
XAX
Ko(xx) = [ 2§ (ux0Co(du) Zo(uX). (3.7)

Here 21 = (*([0,7] x _#p) denotes the space of bounded functions map-
ping the sef0, 7] x _#g into Rand equipped with uniform metric and Boreifield.
The Borelo-field 2" = RY x 27 is generated by open sets in the product topol-
ogy of the Euclidean spad@ and the space?;. It is equal toZ(RY) @ B(%Z)
becauseR’ is a complete separable metric space. The pro¥ess(=,Wp) has a
version whose almost all paths are in the separable subspageanfrresponding
to RY x Cy([0, 7] x _#o), whereCy([0,T] x _#) is the space functions continuous
with respect to the variance pseudo-metric. Weak convergence of the sequence
Xn = [Z,We] to (Z,Wp) means that for all bounded continuous functidnsn .2,
we haveE™ f (Xn) —Ef(X) — 0, whereE* is the outer expectation. This implies that
X is asymptotically measurable. In particular, we h&vé (X,) — E. f (Xn) — O for
all bounded continuous functiorfson 2", whereE, f (X,) = —E*(—f(Xn)) is the
inner expected (van der Vaart and Wellner (1996), Dudley (1999)). We also note
that the space&?1 = (*(.7 x _#p) is isometric to the product spaéé = ¢* ([0, 7])4
equipped with uniform metridy (X, y) = max; sug |x;(t) —y;(t)| and product topol-
ogy of # coincides with the topology induced by metdg. Under assumptions
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of section 5, the spadg, ([0, 7] x _#o) is isometric to the spadg([0, 7]) andWp
is a linear transformation of a vector gindependent time-transformed Brownian
motions. R

The M-estimator® depends on the specification of the matgix and its
estimatorg,g. Depending on the measurability properties of the estimaigrthe
solution to the score equation exists either with probability tending to 1, or with
inner probability tending to 1 (Section 5). Two simple choices of the funapign
correspond tapg = 0 andgg = —Ig. In particular, with the latter choice, the es-
timate @ is an analogue of the pseudo- maximum likelihood estimators considered
by Bagdonovicius and Nikulin (1999,2004) in the case of single spell models. Un-
der regularity conditions, the optimal choice of this function corresponds to solu-
tion of a system of Sturm-Liouville equations and yields an asymptotically efficient
estimate of the Euclidean component of the model. If the process registers only
events of one type (i.e|_#o| = 1) then the form ofpg corresponding to the effi-
cient estimate oB is similar to the single spell version of this model and can be
found in Bickel (1986) and Bickel and Ritov (1995) in the uncensored case, and
in Dabrowska (2007) in the censored case. The estimate of the furfgi@an
be obtained in this case by inverting a simple tridiagonal band-symmetric matrix.
The form of the information bound and efficient score function for the general case
(| ol > 1) is postponed to a separate paper, where we consider it under additional
compatibility conditions.

To set confidence bands for the baselingector and related parameters,
we consider Gaussian multiplier method of Lin, Fleming and Wei (1994). For this
purpose, we shall need some additional notation.

(i) Let Gg be a vector of independent” (0, l4.q) variables. and leG; = (Gp; :
m=1...,Kj),i=1,...,n,Ki =Y (0) be standard normal variables, indepen-

dent of Gg and mutually independent given the d&ta .. ., Dy.
(i) Forje 2o, set

(iii) Put=# = =% — =% where=¥ = 37%(8)%0(6)Y/?Gp and

14
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The estimateég andg/i@ are plug-in analogues of the matrices defined in (3.3)-
(3.5).

Proposition 3.2 Suppose that the conditions of Proposition 3.1 are satisfied. Then,
unconditionally,(=* W), W§ = {W#(x) : x € [0,7],j € #o} converges weakly

in RY x ([0, 7] x o) to a mean zero Gaussian proc¢sé W) with the same
covariance function aé=,W). Moreover,(=,Wp) and (=* W) are independent
while (_,V\/o) and(= = W#) are asymptotically independent. Conditionally, the pro-
cess(=*, W) converges weakly t6=* W), in probability.

As in van der Vaart and Wellner (1996, p. 181), conditional weak convergence
means that sypg, , |[Ech(=* W) — Eh(=*,Wg)| —p- 0, whereEg denotes expec-
tation with respect to th& variables. Furtherh varies over the class of bounded
Lipschitz functions, an@L; is the set Lipschitz functions whose norm is bounded
by 1.

This proposition can be further extended to approximate the distribution of
functionals®(8,I"). In sufficiently simple cases, functional delta method can be
used for this purpose. In particular, we may consider estimation of the Kewfed
semi-Markov processes with a state spg€e= {1,...,r}. In this case the covari-
ates are time independent, and the entries of the miafile) = [Fj(X|2)]jc s«
are specified by (2.2)-(2.3). Under the assumed differentiability conditions on the
hazard functionsrj, the plug-in sample analogfe of the matrixF has entries
satisfying

2) = Vn[F; ~ R (x12) = (38)
(T (00,8027 j(00)+ | W) (T (1,0, 6,207 ()

[ 800,80,V (00) + 091, € S

_|_

For anyj = (j1,]j2) € /o, andV\/( ) denote subvectorsj, ) ={Tgj: ] =
(j1,0) € Fo} andW;, {VVOj j = (j1,£) € %o}, where

Wo = {ﬁ[rnjg— [igo):§ € Fo} =Wo+="T 5-+0p(1). (3.9)

Denote by\/A\/F the matrix obtained by replacing in (3.8)-(3. 9) the proc(e:s,NA\/o)
by (=* W#) and the unknown parameters by their estlm&ths' g)- Using in-

tegration by parts and Proposition 3.1 it is easy to verify that the prdEEss
W j(X|2) : x < 1,j € Zo| converges weakly to a mean zero Gaussian prosess
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in £*([0, r])‘/o‘. In addition, the conclusions of Proposition 3.2 carry over to the
procesVi¥ = W¥ (x|2) :x< 1, j € #{], i.e. unconditionally\j¥ converges weakly

to a mean zero Gaussian procegéwith the same covariance function as the pro-
cessWk and is independent of it. Conditionally, the proc@@converges weakly
toWZ in probability.

Another example of a functional may correspond to the cumulative residual
process arising in goodness-of-fit testing. In particular, suppose that covariates are
partitioned intdk disjoint categoriedy, .. ., k. The cumulative residual process for
the one-step transition between staes> j» is given by

ﬁj(x7£) = %iz 1(iji S |g)|\//|\jm'(x) =
ZZ/ { (Zim €0) — SSJ (T 5(u=),8,u) | Njmi(du),

whereS;, (I 5(U—),0,u) = 311 5 Yjm (W1(Zjm € 1) aj(T 5(u—),8,Zjm) is the
risk process corresponding to subjects in the grigupJnder the assumption that
residuals are consistent with the model, Re- {R;(t,/) :t € [0,T],] € fo,{ =

.,k} converges weakly to a mean zero Gaussian process and the Gaussian mul-
tiplier approximation to its distribution is given by

S/ ~
Ri(x,0) = f/ [ Z,melg) S’J (T 5(u—),6,u) | GiNjmi(du)

X S¢S si |
—/OVV<J'17~>(”><[S_,-[§,- 3 (T, 5,8, u)Nj_ (du).

In analogy to Martinussen and Scheike (2006), the performance of residuals can be
evaluated using Kolmogorov-Smirnov statistics such agssip_ |§j (x,¢)| and

the Guassian multiplier method can be used to obtain critical levels of tests. Al-
ternate tests can be obtained by modifying chi-squared tests in Aa#r{2008,
p.144) or tests based on Schoenfeld residuals.

4 Example

We consider a transplant outcome data set from the Center for International Blood
and Marrow Transplant Research (CIBMTR). The CIBMTR is comprised of clini-
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cal and basic scientists who confidentially share data on hedd and bone mar-

row transplant patients with CIBMTR Data Collection Center located at the Medical
College of Wisconsin. The CIBMTR is a repository of information about results
of transplants at more than 450 transplant centers worldwide. The example data
set consists of patients who received HLA-identical sibling transplant from 1995
to 2004 for acute myelogenous leukemia (AML) or acute lymphoblastic leukemia
(ALL) and transplanted in first remission. All patients received bone marrow trans-
plantation or peripheral blood stem cell transplantation. Children under age 16 and
all patients who received umbilical cord blood transplants were excluded as risk
factors are likely to vary in this group.

Allogeneic stem cell transplantation (ASCT) is an accepted treatment for
leukemia patients. Transplant candidates receive high doses of chemotherapy and
radiation which destroy malignant cells in the bone marrow and elsewhere. Because
stem cells in the normal bone marrow are destroyed in this process as well, patients
subsequently receive a transplant from a suitably matched donor. The transplant can
be followed by several complications. In this study, fatal complications correspond
to relapse of leukemia or death in remission (hereafter referred to as death). The
most important intermediate eventin ASCT is graft-versus-host-disease (GVHD) in
which transplanted immune cells recognize the recipient’s body tissues as foreign.
Acute and chronic GVHD (AGVHD and CGVHD) are two forms of this disease.
AGVHD occurs during the early post-transplant period is defined here as moderate
to severe using clinically established criteria. CGVHD occurs later in time and may
be preceded by AGVHD.

The incidence of GVHD, leukemia relapse and death in remission depends
on a number of variables characterizing the recipient, the donor and the transplant.
The main variables considered in this paper include recipient’s age, donor-recipient
gender match, disease type and graft source. Bone marrow was the first source
of stems cells used in used ASCT. Since 90’ies, peripheral-blood stem cell trans-
plants have replaced bone marrow as the preferred source of stem cells because of a
quicker hematologic recovery and relative ease of collection. Patients may receive
also an infusion of both peripheral stem-cells and bone marrow. Several studies
have shown that PBSCT recipients may be at a higher risk of GVHD than BMT
patients. (e.g. Cutlest al. (2001), Flowerst al. (2002), Friedrich&t al. (2010)).

A possible explanation of this phenomenon is that GVHD develops from the infu-
sion of donor T cells and PBSCT recipients receive a significantly higher dose of
T cells than BMT patients. As a result of the increased risk of GVHD, the patients
who experience it may be at a higher risk of death in remission than BMT patients.
GVHD is also more more common among older patients and among male recipients
receiving transplants from female donors (Getlal. 1987).
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For purposes of modeling, we consider a five state modulateaved model
proposed for analysis of the transplant recovery process in Dabr@ivak®1994).

Table 1 collects some information about the type and number of the observed tran-
sitions, their range and median. The model assumes that a patient remains in the
transplant state (tx, state 1) until the time of the first adverse event which may
correspond to AGVHD (state 2), CGVHD (state 3), relapse (state 4) or death in
remission (state 5). The model takes also in to the account that a patient who devel-
ops GVHD may subsequently relapse or die, and that CGVHD may be preceded by
AGVHD. The observed model has an extra absorbing state corresponding to cen-
soring (loss-to-follow-up). Further, age was categorized into 3 groups, each rep-
resenting approximately one third of the patients. The baseline group corresponds
to the age rang€9.5,42.5|. Transitions were also adjusted for the waiting time

for transplant. Two continuous variables were used for this purpose: the length of
time between leukemia diagnosis and first remission (DxCr) and the length of time
between first remission and transplant (CrTx). Their medians and range were: me-
dian(DxCr)= 1.38, IQR(DxCr)=1.15, range(DxCr)=221.45 months and med(CrTx)

= 3.06, IQR(CrTx)=2.5, range(CrTx)=46.74 months. To obviate skewness of the
distribution, the log transformation of these variables is used in the regression anal-
ysis.

The modulated renewal process assumes that one-step transition probabil-
ities are specified by means of a proportional odds ratio model. More precisely,
hazard rates of one-step transitions originating from the transplant or AGVHD state
are of the form

T7. > T
aj(T (%), 8, Z)y;(x) = €% % 1+ 3 U= k)T e(x)e% %] 1y (x),
=J1+1

for j = (j1, j2) suchthati; =1 orj; =2andj1+1< j2<5,[j(x) = [3y;(u)du.

In the case of transition rates originating from the CGVHD state, we use covariate
Zc = (Z,Zp), whereZa is a binary variable indicating by 1 whether AGVHD pre-
ceded onset of chronic graft versus host disease. The corresponding transition rates
into the relapse and death states are given by

T, S T
(T (a.)(9.0.Z0)y; (%) = €7 5°[L+ 5 10 = (BRI 4y (9
=4

for j =(3,j2) andj> = 4,5. HereZj andZjc, j = (j1, j2), represent transition spe-
cific covariates, which correspond to subvectorZ&nd Zc, respectively. Table
4 provides their entries as well as the estimates of the regression coefficients and
standard errors. The estimates were obtained using Fisher scoring algorithm ap-
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Table 1: Observed one-step transitions

n median range

(in months) (in months)

TX — AGVHD 491 v 4.3

TX — CGVHD 372 5.5 106.4

TX — relapse 106 5.6 59.4

TX — death 179 2.9 131.9
TX — censoring 506 56.9 143.8

AGVHD — CGVHD 202 4.8 57.4
AGVHD — relapse 33 5.2 23.7
AGVHD — death 141 2.9 80.3
AGVHD — censoring 115 45.7 133.0
CGVHD — relapse 27 8.3 98.3
CGVHD — death 79 9.8 124.4
CGVHD — censoring 266 51.1 144.3
A+CGVHD — relapse 25 3.5 53.3
A+CGVHD — death 65 5.6 109.3
A+CGVHD — censoring 112 56.3 145.2

Table 2: Summary of covariates

Age n | Graft source n | Disease n
<30 (young) 550 |[BMT] 842 |[AML] 1168
[30,42.5] 534 PB/PB+BMT 803 ALL 477
>425(old) 561

Donor's Gender  n | Gender-Match n |

F 890 FM 441

M] 755 | [not FM] 1224

Baseline groups are marked in brackets.
FM represents a female to male transplant

plied to the score process (3.6) withg = — . Variable selection was based on
backwards elimination and Wald testing. To asses adequacy of the model, we have
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used Kolmogorov-Smirnov tests described in Section 3. Thidteare summarized
below and at in Table 5.

Table 3: One-step transition probability matrix

‘tx AGVH CGVH A+CGVH rel death

tx 0 Fio Fi3 0 Fiu Fis
AGVHD 0 0 0 Fs Fos Fos
CGVHD 0 0 0 0 Fxs F3s
A+CGVHD | 0 0 0 0 Fy Fi
rel 0 0 0 0 1 0
death 0 0 0 0 0 1

We note here that the transitions originating from the CGVHesdepend
on whether or AGVHD was experienced prior to the entrance to the CGVHD state.
This dependence violates the assumption that the sequence of states visited forms a
Markov chain. However, this problem disappears if the state space of the process is
enlarged to include an extra state A+CGVHD. This extra state is here deno®d by
Conditionally on the time independent covariates, the resulting model has structure
of a semi-Markov process with kernélx|z) = [Fj(x|z)] specified in Table 3. The
entries of the kernel matrix have a fairly explicit form. For transitions originating
from the transplant (tx) or AGVHD state, we have

X a7 > T
Fi(x|2) :/0 e’ Zi[1+k > 11(€=(j1,k))rg(u)e9/ 21727 §(du)
=h+

for j=(j1,j2),j1=1,2andj, = j1+1< j» <5. One-step transition probabilities
originating from the CGVHD state are given by

Fi(x|2) = 1(Za = 0) /O "1+ kil(z (3,07 (u)e 2] 268 Zier (dlu)

for j = (3,]2) and j, = 4,5. One-step transition probabilities originating from the
state A+CGVHD (labeled as3*) have a similar form, with covariate covariate
Zpn=1

We also consider multi-step probabilities of transitions into the absorbing
states, i.e. probabilities of transition into the relapse and death states along any
possible path of the model. Ldtt) be the state occupied by the process at time

20



Dabrowska: A Semi-Markov Transformation Model

t and let e denote either relapse or death in remission. By noting that a patient
may move into an absorbing state by first passing through the GVHD states, these
probabilities are given by

4
He(tl2) = P(t) =elz) = T H(tz
=1
where
He'(tl) = P({I(1) = e} nA*NCEl2),
HP 2 = PH{I(t)=e}NANCE2), (4.1)
HO(tz) = P({I() =e}NANC|2),
HY(tz) = P({I(t)=enANC|2),

and the events andC represent

A = {AGVHD occurs prior to the eventle
C = {CGVHD occurs prior to the evente

The first of these probabilities corresponds to a move from the transplant to the

stateein one step so thatd® (tiz) Fie(t|2) for e=4,5. The termdH{? andH®

provide the probabilities of transitions along the paths“tAGVHD — e” (Héz))
and “tx— CGVHD — e” (HE¥) and are given bl (t|2) = (Fux Fee) (t|2), k= 2
or 3,e=4 or 5. Here for any two subdistribution functioRsandF’ on the positive
half-line, F x F’ is their convolution

(F*F))(t) = /OXF(t— U)F'(du) = /OXF(du)F’(t _u).

Lastly, transition along the path “t& AGVHD — A+CGVHD — e” (Hé4)) con-

tributes to the surﬁie ( 12) = (Frox Foax Fgp) (t]2).

The multi-step transition probabilities can be estimated using plug-in
method. The estimates are consistent on time intef@atg strictly contained in
the support of all sojourn time distributions. As an example, Figure 1 compares
transition probabilities of hypothetical ALL patients receiving BMT and PBSCT
transplant. The remaining covariates correspond to the age range 16-29.5 years and
baseline subgroups specified in Table 2. The plots represent the four components
of the multistep transition probabilities defined in (4.1). PBSCT seems to reduce

one-step transition probabilities of both relapse and déﬁ’r’i (black curves), and
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tx->relapse tx->relapse

transition probabilities
transition probabilities

-

time time

tx->death tx->death

transition probabilities
transition probabilities

-

3
time time

Figure 1: Transition probabilities of endpoint events of aiyg ALL patient re-
ceiving BMT (left panel) or PB (right panel). The remaining covariates correspond
to the baseline. The curves represent one-step transitionsdxblack), two-step
transitions tx—+» AGVHD — e (red) and tx» CGVHD — e (blue), and three-step
transitions tx—~ AGVHD — CGVHD — e (green).

the effect is more pronounced in the case of thestxeath transition. The graphs
suggest also that PBSCT associates with a reduced probability of relapse preceded

by AGVHD (Héz), red curves). At the same time, however, the probability of death
in remission is higher than that of a BMT recipient. We also see an increase in the
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probability of relapse and death resulting from CGVHD withéGVHD (Hés),

blue curves) and CGVHD with AGVHDI-(é“), green curves).

To assess effects of covariates, we consider pointwise and simultaneous con-
fidence bands for pairwise differences of one-step and multi-step transition proba-
bilities. In the case of one-step transition probabilities, we consider functions

Alj:<t|zl722):Fj(t‘zl)_Fj(HZZ)? J Ej()?

wherez; andz, are two covariate levels. We denotefv&the corresponding sam-
ple analogue of the functioﬁjF. Results of Section 5 imply that the normalized
procesﬁ/A\/jfA = {ﬁ[ﬁf —A%](t|z1,22) : t € [0, 7]} converges weakly to a mean zero
Gaussian proces#, = {WF (t|z1) —W (t|z) : t € [0,7]}.

To construct confidence bands, we note that éaftinction forms a differ-
ence of two subdistributions functions. Correspondingly, it assumes values between
—1 and 1. Direct application of the Gaussian approximation to the limiting distri-
bution of the proceswj':A may result in confidence intervals and confidence bands
whose bounds may fall outside the interyall,1). To circumvent this problem,
we use transformation method.

Let®: R— (—1,1) be strictly increasing differentiable function derivative
¢ satisfying¢ (x) > O for all x € R. By delta method,

VO AT (21, 22) - &1 (t]z1, 22))] =
¢ (@ (AT (t]z1,22)) " Wia(tz1,22),t € [0, T].

Letcq(t1,t2) be the uppen percentile of the distribution of

W, |
sup [ 2 (tz1, 22),

) <t<tp %JF

where&AjF (t|z1,2) is an estimate if the standard deviatiorﬂ?f(t|zl,zz). Then, by

the continuous mapping theorem, the 20 — o )% asymptotic confidence band
for the A function has upper and lower bounds given by

5AjF (t|z1,22) )
o (OLAF (t|z,22))) )

The corresponding pointwise confidence intervals can be obtained by replacing the
constanty (ty,t2) by the uppein /2 percentile of the standard normal distribution.

(4.2)

® (‘D_l(ﬁjF (t|1z1,22)) *Ca(t1,t2)
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A possible choice of thé function may correspond ®@(x) = 2G(x) — 1,
whereG is a distribution function with densitg supported on the whole real line.
In analogy to the construction of the confidence bands for survival function in An-
dersenret al. (1993), we may consider the choice of the extreme value distribution
G(x) = 1—expg—€¥. In this casebp~1(u) = log[—log[(1— u)/2]] and the bounds
are given by

exp[+Ca (t1,t2) [h&AjF |(t|z1.22)]
, (4.3)

2
h(t|z1, z2) = [|log[(1—AF (t|z1,22)) /2]](1 - AF (t|z2.22))]) ™.

~F
1.2 ll—Aj (t|21,22)

Another possible choice may correspond to the logistic distribu@ox), = €*/[1+
). We haved~1(u) = log([1+ u]/[1— u]), and the bounds assume form

1+AF(t|zy, 2

1-2(1+ A] ( ‘ 1 2)
l—A"]:(t|Z]_,22>

h(t|z1, 20) = 2[(&F (t|z1,2) + 1) (1 - B (t|z2,22))] L.

1
EXp[:lzCa (t]_,tz) [ha'A!]:] (t|Z]_, Zz)]) , (4.4

A similar approach can be applied towards comparison of multi-step transi-
tion probabilities. For any two covariate levets,andz,, we set

A'j*(t\zl,zz) = Hj(t|zr) —Hj(t|z2),j = 4,5.

The corresponding sample analogue is denoted’AATby It is easy to see that
{VA\/jf'A(t|zl,zz) = \/H[EJ-H —A"(t|z1,22) 1t € [0, 7]} converges weakly to a Gaussian
proces$VjA (t|z1,z2) = W[ (t|z1) — W[ (t|2), where

3
W (t]2) = Wi (t[2) +;[W1Fi *Fij 4 Fu W] (t[2)
1=
+ W, * Fag x g + Fio «Wog« Fg; + Flg*Fgg*V\%Fj](Hz).

and the integrals are defined by means of the convolution formula.

In Figures 2-5, we compare one-step and multi-step transition probabilities
of relapse and death in remission for patients with selected covariate profiles. To
obtain the bands, we first used Gaussian multiplier method to estimate the approx-
imate variance of thé function: the Monte Carlo variance of tliefunction was
computed based on 5000 Monte Carlo experiments. A second application of the
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Gaussian multiplier method was then used to obtain an appsdian of the criti-

cal levelcq (t1,t2) based on 5000 Monte Carlo trials. The interjgglty] was chosen

to correspond tt; = 1.5 andt, = 60 months. The bounds (4.2) and (4.3) showed a
close numerical agreement and the resolution of the graphs does not allow to show
the difference between the two choices. The difference between the upper/lower
bounds did not exceed .07%, and the bands obtained using the logistic transforma-
tion were narrower.

tx->relapse tx->relapse

0.0:
0.0.

-0.03
L

Delta function (one-step)
—0.07

Delta function (multi-step)

-0.11
)

2
time time

tx->death tx->death

Delta function (one—-step)
Delta function (multi-step)

Figure 2: Pointwise and simultaneous confidence bands fartketep and multi-
stepA functions of ALL patients receiving BMT. Covariates: age< 29.5 and
Z, = baseline age. The remaining covariates correspond to the baseline.
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Younger age associated with reduced probabilities of relapsl death of
both AML and ALL patients. In Figure 2, we ugefunction to compare transition
probabilities of hypothetical younger;§ and baseline aged) ALL bone marrow
transplant recipients. The remaining covariates correspond to baseline groups spec-
ified in Table 2 and median waiting times variables DxCr and CrTx. The plots show
that younger age has “concordant” effect on endpoint probabilities, i.e. younger age
associated with reduced probability of both relapse and death. In the case of one-
step tx— relapse transitions, the pointwise bands suggest that the differences are
significant but the wider simultaneous bands show that this is not the case. Exam-
ination of the four possible paths leading to the relapse state showed that although
younger patients have lower one-step relapse transition probabilities, they are at a
higher risk of relapse preceded by AGVHD than patients in the baseline age group.
This accounts for marginal differences in the multistep relapse transition probabil-
ities. Figure 2 shows also that multi-step transitions into the death state are signif-
icantly lower for a younger patient since the upper bounds of both pointwise and
simultaneous bands are below the horizontal line passing through 0. While in the
case of one-step transition probabilities there is a marginal difference during the
early post-transplant period, patients in the baseline age group had higher probabil-
ities death preceded by GVHD.

In Figure 3, we show the “discordant” effect of older age on the two end-
point probabilities. The graphs represénfunction for hypothetical ALL patients
receiving peripheral blood stem cell transplant. The covamaterresponds to the
older age and, to the baseline age group. The remaining covariates correspond
to baseline (Table 2). Older age associated with lower transition probabilities into
the relapse state. On the other hand, the role of the two covariates is reversed in the
case of transitions into the death state. Plots of the four paths leading to the endpoint
events showed that an older patient may have higher probabilities of death resulting
from CGVHD (with or without AGVHD) while probability of transition along the
path tx— AGVHD — death is comparable to that of a patient in the baseline age
group.

In the next figure we show a “switching” treatment effect. Figure 4 com-
pares two hypothetical young AML patients receiving PBS@l) and BMT (2).

The one-step and multi-step relapse probabilities were lower in the case of the PB-
SCT but the differences were not significant. On the other hand, we see that PBSCT
associates with a lower probability of one-step transition into the death state, while
in the case of multi-step transitions the role of the two graft sources is reversed.
This pattern is also seen in the case ALL young patients in Figure 1, but in the case
of AML patients the differences in the multi-step transition probabilities were more
pronounced.
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tx->relapse tx->relapse

Delta function (one—step)
Delta function (multi-step)

tx->death tx->death

Delta function (one—step)
Delta function (multi-step)

Figure 3: Pointwise and simultaneous confidence bands fartbestep and multi-
stepA functions of ALL patients receiving PBSCT.Covariateg:= age> 42.5
years,zp = baseline age. The remaining covariates correspond to the baseline.

A similar approach can be applied to compare transition probabilities eval-
uated by conditioning on the follow-up history of a patient. In particular, Arjas and
Eerola (1993) and Eerola (1994) have suggested the use of graphs of the conditional
probabilities

P(J(t) =€), s<t (4.5)

where.7; represents patient’s history up-to tirmeExamples of these graphs spe-
cialized to Markov chains and semi-Markov models were given in Kétial.
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tx->relapse

Delta function (one—step)

.......

tx->death

Delta function (one—step)

Delta function (multi-step)

Delta function (multi-step)

tx->relapse

..............

tx->death

Figure 4: Pointwise and simultaneous confidence bands fartbestep and multi-
stepA functions of young AML patients. Covariates= PBSCTz = BMT. The
remaining covariates correspond to the baseline.

(1993), Keidinget al. (2001), Dabrowskat al. (1994) and Putteet al. (2007).

Here we note only that in the case of Markov chain regression models, the predic-
tions depend only on the state occupied by the patient atgiamel estimation of
(4.5) reduces to estimation of the transition probability matrix because

PI(t) = el7t5) = PI(t) = €I(s) =1i,2Z) for s<t. (4.6)
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In the case of semi-Markov model, the conditional probabgiP(J(t) = e|.77%)

are given by the transition probability matrix of a delayed Markov renewal process,
with delay determined by the length of time spent on the state occupied as.time
On the other hand, the right-hand side of (4.6) depends also on the the initial state
Jo, and all possible transitions leading to the state e and passing through the state
i on or prior to times. The two models coincide only if the sojourn times in each
state are exponentially distributed.

In Table 5 we report results from analysis of residuals of the main variables
in the model. We considered Martinussen and Scheike’s Kolmogorov-Smirnov
statistics for transitions between adjacent states of the model from each state. The
test statistics were calculated in the range [1,90] months and the reported p-
values were obtained using Gaussian multiplier method based on 5000 Monte Carlo
samples. The results were also compared with a larger model, which included
length of time spent in the transplant and AGVHD states as time dependent co-
variates. The dependence on length of time spent in these states appeared to have
marginal effect. In the case of the transitions originating from the CGVHD state,
the latter may stem from a relatively small number of failures (relapse or death).
On the other hand, AGVHD can occur only during the first 4 months and the state
space of the process partially captures the dependence on the length of time spent
in the transplant state. Although Table 5 shows an acceptable fit, there are several
possible sources of departure from the model, In particular, they may be caused
by calendar and center effects. For example, grading of acute and chronic GVHD
is not uniform across centers. At the same time, the use of PBSCT in allogeneic
transplants might have been more frequent towards the end of the study period than
at its beginning. These factors were not taken into the account in this study as they
identify patients in the population. Further, transplant may result in many other
complications, including infections, pneumonia, as well secondary cancers, loss of
vision and damage of other organs. We have not taken them into the account due to
lack of data.

There has been very little work on variable and model selection problems in
multistate models. Commengeisal. (2007) considered a flexible class of multi-
state models which includes as special cases Markov chains and semi-Markov mod-
els. They extended the expected Kullback-Leibler (EKL) risk function to counting
process models coarsened at random and proposed a leave-one-out cross-validation
method for approximation of EKL based on penalized likelihoods. The approach
was illustrated using a three state additive illness process, though the methodology
applies to more complex situations as well. Another approach may be based on
focused information criteria and model averaging of Hjort and Cleaskens (2003,
2006). Their approach is tailored towards selection of a model for given parameters
of interest. In the case of single spell models, examples of such parameters include
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regression coefficients, quantiles, cumulative hazardssttlalition functions eval-
uated at a fixed point or over a fixed interval. Extension of this method to multi-
state regression models may include one-step and multistep transition probabilities
or other parameters arising in prediction problems.

Table 4: Regression coefficients

1 2 3 4
ALL vs AML .07 (.25) 1.32(.36) .50 (.23)
Agel -25(.16) -.68(.28) -.49(.32) -.45(.26)
Age2 27 (.20)
FM -.20 (.28)

PBSCT vs BMT .09(.22) .01(.29)
ALLXPBSCT 46 (.23) .92 (.43)
AMLXPBSCT

AMLXBMT -30 (.22)

DXCr .12 (.08) 45(.16) .22(.12)
CrTx -21(.07) -.26(.09) -.33(.15)
AgelxBMT -.57 (.33)

Age2xPBSCT -.28 (.25)

Age2xBMT -.37 (.24)

AgeOXPBSCT -.27 (.26)

AMLXPBSCTxAge2 25 (.22)

AgelxALL 61(.27) -.87(48) -.60(.42)
Age2xALL 57(.30) -.97 (.47)

FMXALL 63 (.27)

FMxAML 64 (.17)

FMxPBSCT 42 (.18) 44 (.25)
FXALL -.25(.19)

FXAML -19 (.14)

Columns: 1 =Tx— AGVHD; 2 =Tx— CGVHD; 3 = Tx— Relapse;
4 = Tx — Death.

Rows: Age0: age in thé29.5,42 5] range, Agel = age 29.5 years,
Age2 = age> 42.5 years; F = female donor transplant;
FM = female donor to male recipient transplant.
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Table 4 (continued)

5 6 7 8 9

ALL vs AML 45(.38) .12(.30) .90(.31) .58 (.22)
Age2 33(.23) .51(.59) .01(.24) 72 (.21)
FM -.57 (.39)
PBSCTvs BMT .28(.30) -.12(.66) -.17(.38) .55(.35)
AMLXPBSCT -.33(.30)
AMLXBMT -.50 (.43)
DxCr 13 (.14)
CrTx -24 (17) -10(.12)
prioir AGVHD 72 (.30) .72(.20)
AgelxPBSCT -.44 (.34)
AgelxBMT .70 (.60) -.88(.35) -.64 (.34)
Age2xPBSCT 13 (.37)
Age2xBMT .60 (.88)
AgeOXPBSCT 40 (.31)
FMxAML .81 (.45)

Columns: 5=AGVHD— CGVHD; 6 = AGVHD — Relapse;

7 = AGVHD — Death; 8 = CGVHD— Relapse;

9 = CGVHD — Death.

Age0: age in th€29.5,42 5| range, Agel = age 29.5 years,
Age2 = age> 425 years; F = female donor transplant;

FM = female donor to male recipient transplant.

Rows:
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Table 5: Kolmogorov-Smirnov residual statistics

1 2 3 4

AML 8.51(.97) 6.35(.96) 7.88(69) 5.87(.86)

ALL 10.22 (.89) 7.66 (.83) 7.65(.69) 6.09 (.73)

Age0  12.99(.81) 6.52(.93) 3.30(.95) 6.50(.63)

Agel 6.42(.98) 5.82(.95) 3.20(.94) 5.18(.82)

Age2  10.56(.90) 7.64(.91) 6.40(.60) 8.11(.72)

BMT 7.84(.97) 7.73(91) 7.16(.69) 6.04(.61)

PBSCT  9.44(95) 9.07(.90) 7.49(.73) 5.75(.82)

non-FM  5.46(.99) 7.84(.94) 1.95(.99) 9.82(.66)

FM 6.83(.96) 9.36(.82) 2.32(.96) 9.52(.43)

Mdonor 5.48(.99) 1.29(.84) 2.96(.98) 6.00 (.84)

Fdonor  6.84(98) 11.95(.80) 2.61(99) 5.83(.86)

5 6 7 8 9

AML 4.40 (96) 2.75(.86) 4.14(.97) 4.42(.73) 6.70(.82)
ALL 434 (94) 2.66(.85) 4.23(95) 4.49(71) 6.46 (.75)
Age0 4.55(.92) 2.79(51) 4.37(93) 2.03(.94) 8.17 (.47)
Agel 4.96 (.87) 3.66(.71) 2.66(.98) 2.04(.95) 3.53(.87)
Age2 6.35(.83) 2.44(.87) 2.92(99) 1.51(.99) 8.07(.76)
BMT 5.96(.81) 1.36(.99) 5.11(.90) 2.94(.79) 9.67 (.57)
PBSCT  6.66(88) 1.27(.99) 4.84(.95) 2.91(91) 9.39(.69)
non-FM  4.22(.97) 1.50(.97) 4.57(96) 3.97(.80) 4.20 (.95)
FM 5.06(.88) 1.33(.96) 5.07(.84) 3.91(.60) 4.37(.88)
Mdonor 1.42(58) 2.02(.94) 3.93(.98) 2.06(.97) 3.50(.98)
Fdonor 11.50(.53) 1.93(.93) 4.43(95) 2.08(.97) 3.47(.97)

Columns:

4 = Tx — Death; 5 = AGVHD— CGVHD;
6 = AGVHD — Relapse; 7 = AGVHD— Death;
8 = CGVHD — Relapse ; 9 = CGVHD- Death.

Rows:

1=Tx—> AGVHD; 2 = Tx —» CGVHD; 3 = Tx— Relapse;

Age0: age in thé29.5,42 5] range, Agel = age 29.5 years,

Age2 = age> 42.5 years. F = female donor transplant;
FM = female donor to male recipient transplant.

Each column provides test statistics and p-values detechiiased on 5000 re-
sampling experiments.
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Table 5 (continued)

1 2 3 4
DXCr-1 9.73(.86) 16.86(.42) 5.67(.56) 7.88 (.49)
DXCr-2 8.47(.88) 11.67 (59) 2.56(.94) 2.86 (.98)
DXCr-3 4.03 (1.00) 12.92(.48) 4.34(71) 5.03(.71)
DXCr-4 11.80 (.83) 15.05(.43) 4.01(.89) 6.71(.69)
CrTx-1 14.69 (.74) 11.23(.52) 5.19(.66) 5.21(.74)
CrTx-2 9.92(.85) 12.52(58) 3.96(.81) 5.37(.68)
CrTx-3 12.08 (.76) 5.86(.94) 5.96(.62) 8.34 (.46)
CrTx-4 8.84(.87) 7.21(.85) 2.94(92) 1.37(.35)
AMLXBMT  5.38(.99) 9.84(76) 5.15(.70) 1.62 (.41)
AMLXPB 7.25(.96) 6.30(.97) 1.03(.34) 5.04(.80)
ALLXBMT 7.62(.85) 2.92(.99) 4.44(.74) 7.03(42)
ALLXPBSCT  6.20(.93) 6.39(.69) 3.88(.85) 3.01(.86)
5 6 7 8 9
DxCr-1 4.92(.85) 2.27(77) 5.17(81) 2.44(.89) 5.34(.74)
DXCr-2 6.80 (61) 2.79(.64) 5.93(.73) 3.85(57) 4.72(.74)
DXCr-3 9.88(.33) 2.21(.75) 4.27(88) 4.38(40) 11.23(.30)
DXCr-4 6.15(.71) 5.67 (.27) 12.11(43) 2.83(.78) 3.52(.94)
CrTx-1 6.53(.74) 3.97(55) 7.24(76) 3.17(75) 2.43(1.00)
CrTx-2 7.05(58) 2.61(.66) 6.13(.73) 3.49(67) 7.57 (.54)
CrTx-3 417 (89) 2.52(67) 2.62(98) 2.34(.86) 4.84(.75)
CrTx-4 5.73(71) 4.21(.37) 5.71(73) 3.59(57) 4.54(.80)
AMLXBMT  5.12(.82) 2.04(88) 5.46(.78) 2.57(.64) 7.96(.50)
AMLXPBSCT 5.18(.92) 1.84(.87) 5.77(88) 3.18(.84) 4.60 (.91)
ALLXBMT 2.44(.97) 1.10(.99) 2.79(95) 2.46(70) 3.22(.85)
ALLXPB 4.62(.82) 1.97(75) 3.24(95) 3.79(.66) 5.92(.62)

Each column provides test statistics and p-values detedhinased on 5000 re-
sampling experiments.

Columns: 1=Tx— AGVHD; 2 =Tx — CGVHD; 3 = Tx— Relapse;
4 = Tx — Death; 5 = AGVHD— CGVHD;

6 = AGVHD — Relapse; 7 = AGVHD- Death;

8 = CGVHD — Relapse ; 9 = CGVHD- Death.

DxCr-i and CrTX-i, i =1,2,3,4: DxCr and CrTx variables

grouped according to quartiles.

Rows:
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Table 5 (continued)

1 2 3 4
AgelxPB 14.92 (.71) 8.03(.81) 6.58(.63) 5.12(.75)
AgelxBMT 6.45(.93) 6.12(.84) 3.11(.88) 7.13(51)
Age2xPBSCT  7.31(.94) 5.61(95) 7.69(.34) 9.53 (.45)
Age2xBMT 5.46 (.87) 6.96(.68) 4.02(41) 4.58(.76)
AgeOXPBSCT  4.29(.98) 8.10(.71) 4.73(.67) 5.45 (.49)
AgeOXBMT 9.73(.73) 9.06 (.59) 3.97(.76) 8.60(.22)
AgelxAML 6.87 (.89) 5.47(.87) 2.52(.91) 2.49 (.98)
AgelxALL 451(.97) 2.73(99) 2.70(.89) 3.19 (.74)
Age2xAML  10.54 (.80) 7.95(.83) 2.94(.89) 3.69 (.88)
Age2xALL 8.57 (.65) 5.01(.60) 4.60(.74) 3.34(.74)
AgeOxAML 9.70 (.88) 9.63(.80) 7.64(.34) 8.95(.58)
AgeOXALL 3.75(.95) 2.97(.94) 3.75(52) 2.10(.94)

5 6 7 8 9
AgelxPBSCT  7.56 (.58) 1.63(.84) 5.31(.86) 3.28(.71) 6.58)(.
AgelxBMT 422 (.78) 2.49(.80) 2.01(.96) 2.94(56) 3.09(.76)
Age2 x PBSCT  4.36(.93) 1.28(96) 3.74(.95) 1.26(1.00) 9.60 (.57)
Age2xBMT 3.66 (.77) 1.95(.78) 2.37(.93)  .93(.91) 4.43(.72)
AgeOXPBSCT  5.34(.74) 1.88(61) 2.46(98) 1.70(.94) 3.58 (.75)
AgeOXBMT 6.34 (.42) 1.76(.58) 4.03(.85) 3.31(24) 5.82(.45)
AgelxAML 3.22(.94) 3.98(.34) 2.73(.86) 2.39(59) 3.29 (.68)
AgelxALL 2.59(.96) 2.18(.82) 3.95(.78) 3.88(50) 2.06 (.93)
Age2xAML 5.19(.78) 3.98 (.17) 4.89(.81) 1.78(92) 7.34(.38)
Age2xALL 2.13(.96) 1.74(.29) 4.09(.78) 1.94(.67) 1.69(.97)
AgeOXAML 4.92 (.89) 3.30(.63) 5.20(.86) 3.54(.67) 4.12(.95)
AgeOxALL 3.15(.76) 1.27(.86) 3.16(.81) 2.32(.67) 5.76(.52)

Each column provides test statistics and p-values detedhinased on 5000 re-
sampling experiments.

1 =Tx—> AGVHD; 2 = Tx —» CGVHD; 3 = Tx— Relapse;
4 = Tx — Death; 5 = AGVHD— CGVHD;

6 = AGVHD — Relapse; 7 = AGVHD— Death;

8 = CGVHD — Relapse ; 9 = CGVHD- Death.

Age0: age in thé29.5,42 5] range, Agel = age 29.5 years,
Age2 = age> 425 years.

Columns:

Rows:
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5 Proofs

5.1 Assumptions and notation. We first recall that ifA = [ay] is a rectangular
d x g matrix then its/; and/,, norms are given by

d q
All1 = max and ||A|le = max
A2 ; k;lake\ [[Al]eo : :l\akzl,

and we havelAlly = sup{uTAA : [[ufle < 1[|A[l2 < 1} = [|AT]l, wherep =
(U1, Hg)T andA = (Aq,...,Aq)T. If A(s) = [aij(s)],s= (x,0) is ad x g ma-
trix of functions defined on7 = [0, 7] x © then||A|| = sup{||A(s)|l1:s€ T} is
the corresponding supremum norm, and with some abuse of notations, we write
|All = sup{||A(S)||« : S€ 7 }. We also use| - || to denote the supremum norm of
scalar or vector-valued functions ¢ 7].

We shall assume the following regularity conditions on the hazard rates

aj(y,0,2),ye R4, j € 2.

Condition 5.1 (i) The parameter s&@ c RY is bounded and open.

(ii) For fixedz € RY, the functior¥;(y, 8,2) =logaj(y, 8,2), j € _#o s twice
continuously differentiable with respect tg 6). The derivatives with respect o
(denoted by primes) and with respecitgdenoted by dots) satisM’j (y,0,2)]|1 <

Wliyll), 1€5(y, 8,2l < wlliylly) » 165y, 8,212 < Ya(lIylla), [1€;(y;0,2)][1 <
w(lyly) and 9(v,6,2) — oy.8 .9l < maxys(lylly),gs(lYl) x
x [ly=yll1+6—8'|], whereg = ¢}, ¢; and/{. Herey is a constant or a continu-
ous bounded decreasing function. The functigRsp = 1,2, 3 satisfy,(0) < o,
are continuous and locally bounded.

(iii) For fixed 6 € © andy € RY, the functionsx|(y, 8, -) and their logarith-
mic derivatives in (ii) are measurable with respect to the Baréield of RY.

(iv) We have either a)y < aj(y, 8,z) < mp for some 0< my < mp < o or b)
aj(y,0,z) is a bounded coordinate-wise decreasing function such that
aj(Ylw--ka,e,Z) io aSWTW, = 17"'7q! and

my[1+caflylla)~® < aj(y,0,2) <mp[l+cyj] %, j=1,...,q

for somecy,c; > 0,e1 € (0,1], & € [0,1] and 0< my < mp < oo,

The condition (ii) assumes that the functioriy, 8,z) and its derivatives
are jointly continuous in the argumentg 6). Together with the condition (jii),
this implies that they are measurable with respect to the Bofedld of Z(RY) ®
P(0) ® Z(RY). The condition 5.1 (iii) serves to ensure that for each state 7,
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the Volterra equation corresponding to the transitipas_#q originating from the
statej; has a non-explosive solution on the interj@lrj,] = sup{x: EYj(x) > 0}.

Let P be a distribution satisfying assumptions 2.1 of Section 2. For any
j € _Zolet
X EpNjj (du)
o EpYj.i(u)
andsetAp =Zjc sAjp. Inanalogy to the single spell models in Dabrowska (2006),
we can show that the condition 5.1 (iii-a) implies that, the Volterra equation has a
unique solutior g = [T'1g, ..., qe]T such thatm, *Ajp(x) < [je(X) < M *Ajp(X)
for x € [0, 1], 8 € ©. In addition, there exist positive constadisd,, dz such that

Ajp(X) =

ITe(X) — g (X)]]1 < |6 — 6'|ch expld2A p(X)], (5.1)
IFjo(X) =T ja(X)| < dsEpN;.i((XAX,xVX]).

Similar inequalities hold also for the left continuous versiori ¢f. On the other

hand, under the condition 5.1.(jii-b), we ha®g(Ajp(X)) < Ijg(X) < P1(Ap(X)),

where ®q(u) = c;([1+ cqu/m]¥1~% — 1) for g = 1,2 andnmy, = my/(1 - &)

if eg # 1, and®q(u) = cal(ecqu/mq —1) if &g =1. The functiongp, are inverse
cumulative hazards corresponding to the lower and upper bounds on hazard rates in
the condition 5.1 (iii). The inequality (5.1) is in this case satisfied with the function
Ap replaced byb; (Ap).

5.2 Some measur ability issues. In section 2, we assumed that the obser-
vationsDq,...,Dy, of the censored modulated renewal process are defined on a
common complete probability spa¢®,.#,P) and take on values in a separable
measure spaces,.”’). A measure space is here called separable ififgeld is
countably generated and contains all singletons. Any such space is measurably
isomorphic to a subspace of the real line equipped with its Borékld (e.g.
Dellacherie-Meyer, 1975, p.15). L&y, .7) and (S«,-%) be the corresponding
n-fold and infinite product spaces and BtandP, be the corresponding product
measures o}, and.% induced by(Dy,...,D,) andD = (D1,D»,...,Dp,...), re-
spectively. We denote by the sigma-field of subsefs C S, measurable in the
completion of the product probability measueand by.#;! the universal sigma-
field generated by, i.e. the sigma-field of subsets measurable in the completion
of any probability measur® on .,. We have./, C .7\ C .#F. Whereas#;,
is not complete with respect to the product measeany setA c .F satisfies
Pi(A) = Pn.(A) andg,1(A) € Z for gn = (Dy,...,Dn). The sigma-fields7F
and .74 have similar property. Without much loss of generality, we can assume
therefore thafQ,.#) = (S,-%«) and, when necessary, require measurability with
respect to these larger sigma-fields. With this choice the sequ2ms¢he iden-
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tity map onS. and (D1,...,Dy) are the corresponding coordinate projections on
(Sn,n)-

Further, let(Qo, %p) be an arbitrary measure space4étbe a Polish space
or a Borel subset of it. For any s&tC Qg x 2, its projection onQq is denoted
by projo,(A) = {an : (ap,z) € A for some ze Z'}. A multifunction (or correspon-
dence) is a set-valued function assigning to eagkt Qg a subset ofZ”. We shall
write H : Q¢ — £ for such mappings to differentiate them from usual functions
assigning to eaclwy a single valuelf: Qo — %). The domain and graph of a
multifuctionH are defined as

domH = {wp:H(wp) #0} and graph ={(wn,2):z€ H(w)},
respectively. For any nonempty €&tC %, the inverse image dfl is given by
H 1(B) = {an : H(wn) NB# 0} = {ap : z€ H(wp) for somez € B}

and the right side is equal to the projection gggpraphH1 Qg x B). Finally, by a
selector we mean a functidn Qo — 2 U{z"} such that(wy) € H () if domH #
0 andh(wy) = Z*, otherwise. (Here" is an extra point attached t#).

A set-valued mappin#l is here called measurable if graglis jointly mea-
surable with respect &y ® B(2"). By measurable projection theorems (e.g. Del-
lacherie and Meyer, 1975, p.252, Pollard, 1984, p. 196-197 or Dudley, 1999, Chap-
ter 5), the joint measurability of graphentails that the inverse imag¢*(B) of
any Borel seB € #(Z) belongs to the universal sigma fief#ly' generated by%o.
Moreover,H admits at least ong”§-measurable selector. ##g is complete with
respect to some probability measure th&fl = .%o. For alternative conditions for
this equality we refer to Wagner (1976).

Further, let7 be a Polish space and IgX; : t € .7} be anR-valued ran-
dom element defined oRg. We refer to it as measurable if it forms a measurable
stochastic process, i.e. the m@px .7 > (w,t) — X(w,t) € R¥is jointly measur-
able with respect to the-fields.%y® %(.7) and 2 (R¥). Correspondingly, the set
valued functiorH : Qo — 2 = .7 x R¢ given byH (ap) = {(t,X(wo,t) :t € T}
has a measurable graph and for any Borel BetsZ(R¥) andC € %4(.7), we have
{on : X(an,t) € Bfor somet € C} € .ZY. In section 5.3, we use that &f-valued
process is measurable iff each of its components is measurable. Moreover, sums
and products of such processes are measurable as well.

A class of scalar functiong = {gi(s) : t € .7} defined orx,k < nis called
here measurable if it forms a measurable process in the above sense. Following
Nolan and Pollard (1987) and Pollard (1990), a measurable class of fun¢tiens
called Euclidean for an envelogif |g:|(s) < G(s) for all t € .7, and there exist
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all probability measure® on .% such that||G||qr < . HereN(n,¥,|| - ||qr) is
the minimal number ok, (Q)—balls of radiug) covering the clas¥ and|| - ||q, is
theL,(Q) norm. We use = 1,2 in the sequel.

In our application the spad§,.”) can be taken as the complete separable
metric spacds,.”’) = (Eo, #(Eo)) x (E1 x %(Eo))N, whereEg = ¢ xRIE; =
(R x (_Z x R UA)N. HereEy represents possible initial realizations of the mark
Vo = (Jo, Zo) andE; is the space of realizations of the censored modulated renewal
process Xm,Vim = (Jm, Zm))m>1. Further,.7 = [0, 7] x ©, whereT is a finite point
on the positive half-line an® is a bounded open subset of a Euclidean space. Here
7 is a Polish space becauseforms aG;s subset (a countable intersection of open
sets) of a Polish space and Polishness is hereditary with respgggtdets. Finally,
all classes/ = {gi(s) :t = (x,0) € .77} correspond to cadlag (or caglad) functions
such that for KX x < X < rand#@, 8’ € ©, we have

constants andV such thalN(e||Gllor, 9, || - lor) < (A/€)Y for all € € (0,1) and

[Ox6(S) — Gva(S)| < Cl[é(X’,S): G(x,9)], (5.2)
|9xe(S) — Oxer(5)] < C2|8 — 0'|G(T,8),

whereé(s,x) is a nonnegative monotone increasing cadlag (respectively caglad)
function ofx such thats(s,0) = 0 and||G(T, -) || or < . In this case, the Euclidean
property is satisfied with envelog&(s) = [C; +C,diam©]G(1,s) + Ox,6,(S), Where
Ox,6,(S) is an arbitrary function from the clagé

To verify measurability of the estimates, we shall need some properties of
Carathéodory integrands and cadlag or caglad functions” €nd%  are Polish
spaces then a functioh: Qo x .7 — % is called a Carathéodory integrand if for
fixedt € 7, f(-,1): Qo — % is measurable, and for fixady € Qo, f(w, ) : T —
% is continuous. HeréQo,.%p) is an arbitrary measure space and we have

Lemmab.1 Let f : Qo x 7 — % be a Carathéodory mapping. Then

(i) fis measurable with respect 8y x B(.7).

(i) For any open seB of #, letH (wp) = {t: f(wp,t) € B}. Then for any closed
or openC set of.7, we haveH ~1(C) = {wp : f(wp,t) € Bfor somet € C} €
Fo.

(i) If g: Qo — .7 is measurable, then the composite mapping : Qo — %
given by (f og)(wp) = f(wo,9(wyp)) is measurable.

(iv) Suppose that”’ is another Polish space amd Qg x 7 x %’ — % is a
Carathéodory integrand. Then the composite rftapf) : Qo x T — ¥
given by (ho f)(wn,t) = h(wo,t, f(wp,t) is a Carathéodory integrand.
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Part (i) remains valid even # is replaced by a nonseparable metric (Kuratowski
1966 p. 378, or Himmelberg, 1975). In part (ii)dfis a closed set then

H™3C) = | J{awo: f(an,q) € B},
geC

where the union is over a dense subsetoff C is open then it can be represented
as a countable increasing union of closed sets and part (ii) follows by noting that
inverse images preserve unions of sets. Part (iii) follows from the definition of a
measurable function and continuity é6fwith respect ta. Part (iv) follows from

part (i) and (iii) and definition of a continuous function.

Part (i) of the lemma extends to functiohsvhich are cadlag, caglad, cad
andcéagin e .7, 7 =R, or7 = [0, 7] and take on values in a complete separable
metric space (e.g. Dellacherie and Meyer, 1975 p. 144). Any cadlag or caglad
function is also a pointwise limit of Carathéodory integrands.

Finally, suppose tha? = [0, 7] x © andf is a function such that (i) for fixed
(x,0) € 7, f(-,x,0) is the.Zp measurable and (ii) for fixedy € Qo, it is jointly
cadlag with respect t¢x, ) and continuous with respect . To see thaff is
jointly measurable, lefqx : k> 1} be a dense set i@ and for given integem > 1 let
Bk be a balls of radius /in centered aty, covering®. SetB/, = By — Uf;% Brr
and

fm(ao, X, 6) /ZZ /\r ,Ok) L( )1(6 € By ).

Thenfp, is joinly measurable and pointwise converges t&imilarly, if f is jointly
caglad rather than cadlag function in (ii) théms a jointly measurable with respect
to .%o ® %A(7). Similarly to the single parameter case, functions of this type are
pointwise limits of Carathéodory integrands. Part (ii) of the lemma remains valid
for sets of the fornC = | x C’, whereC’ is an open or closed subset®fandl is
an interval contained if0, T]. In particular, if f is a real valued cédlag function of
this type then its supremum iy measurable.

5.3 Proof of Proposition 3.1. To show proposition 3.1, we shall first con-
sider the procesSyg(x), (x,0) € [0,T| x O = 7.

Lemmab5.2 (i) The processW = {W(t) = Wi(t) : t = (x,0) € 7,j € %o},
Wi (x,8) = /N[ nje — o] (X), converges weakly if°(F x _#o) to

W(x,0) =V(x,0)— /[o X}V(u—, 0)s(Mg(u—),0,u)Cqy(du) Pg(u,x),
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where{V(t) = [Vj(t) :t=(x,0) € 7,j € o} is a tight mean zero Gaussian pro-
cess. Its covariance function is given by

, M; m '/m'(dV 6/>
cov(Vj(x,0),V; (X, 8)) EZ;/ / G ' s, CRONETE

In addition, under the assumption that observations correspond to a censored mod-
ulated renewal process afid= 6y is the true parameter, co¥(x, 8),Vj (X, 0)) =
1(j = ")Cje(xAX). ~

(i) Let 6 be an arbitrary point if®. If 6 is a/n-consistent estimate of
it, then the proces®h = {Wh(X) : X < T}, Wo = /N[l 5 — g — (6 — 60)TT 5]
converges weakly ii”([0, 7] x _#o) toWp =W(+, ).

Here the spac&™ = (*(.7 x _#o) is equipped with uniform metrid (X,y)
=sup; [X(t, j) —¥(t, j)| and is isometric to the spa¢¥ = ¢ (.7 )9 equipped with
metricdy (X,y) = max; sup |Xj(t) —y;(t)|. Apparently, the isometry is given by the
mapping® assigning to eack € 2" the vector of coordinate function®(X) =
[X(-,1),...,%(-,q)]". Open sets of2" can be represented as arbitrary unions of
balls #x (X,€) = {y: dx(x,y) < £€}. On the other hand, the product topologyf
coincides with the topology induced by the metdic so that any open set in the
product topology is an arbitrary union of balléy (x, €), wherex = [Xg, ..., Xq].

Proof . To show part (i), defin®, = |Vjn: j € Zo|, where

o N (dw) EN. (du)
Vin(x, ) —/(va} Si(Fg(u—),6,u) /(Qx] sj(Fe(u—),6,u)

ThenVj, = Vijn+rem;, where

N; | Sii
Viin(x, 0) = / ‘ — 2 (Fg(u—),H,u)EN; (du
1jn (0x [ ) 312( 9( ) ) J~-( )
and rem(x, 0) is a remainder term. Lemma 5.3 gives its form and shows that
[rem;|| = op(n~%/2). Therefore the proceséi, = [Vijn : j € _#o] satisfies also
IV = Vin|| = 0p(n~1/2).

Using CLT and Cramer-Wold device, the finite dimensional distributions
of /nVin converge in distribution to finite dimensional distributionsvaffor any
distinctty, ..., tx € 7 and any numerical vector of lengthkg, the random vari-
ableA Tvec[Van(ty1), . .., Van(tk)] converges in distribution to the corresponding linear
combination of finite dimensional marginals\of
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For eachj € _#o, the proces¥j, can be represented ¥gin(x, 8) = [Ph—
P]g, whereg varies over a clas%j = {gj : t = (x,0) € .7} consisting of cadlag
functions such that eactyj is a difference of two cadlag functions, increasing
in x and Lipschitz continuous with respect & Setting 6j(Di,X) = N;j.i(x) +
13Y;.i(uAj(du), the condition (5.2) is satisfied with constai@s andC, deter-
mined by the functiong), Y of the condition 5.2 (ii) andy, = g; g,, Say. Corre-
spondingly, the clas¥j is Euclidean for a square integrable envelépe From
Pollard (1984,1990) it follows that the procegsV j, converges weakly id* ()
to Vj, the j-th component of the proce¥sbecause the clag§ is totally bounded
and asymptotically uniformly equicontinuous with respect to the variance pseudo-
metricd;(t,t") = sd(Vijn(t) —Vajn(t)), t,t" € 7. Joint weak convergence of the
process/nVh = /n(Ph—P)g, g € U; Gj follows from finite dimensional weak con-
vergence and by noting that union of a finite number Euclidean classes of functions
is also Euclidean (Pollard, 1990). In particular, the clgss totally bounded and
asymptotically equicontinuous with respect to the variance pseudo-metric
d((t,]),(t, ")) = sd(Vanj(t) — Vanj(t')). Denoting byV, the left-continuous pro-
cess (obtained by changing the integrals ¢@ex| to integrals over interval®, x)),
the process/nV,; converges weakly t¥ as well because the jumps of the process
Vi are of the ordeDp(1/n) unifromly int € .7 and the function&N;j are continous.
Finally, to show weak convergence of the standardizgdorocess, we shall
need bounds on the supremum of the norm of the v&gtdret.7# denote the class
of functions s = {h(A,t) = 3 ;_1Aj%j : &j €%, |1Aj| < 1, j=1,...,q}. Theno#
forms a Euclidean class for the enveldpe- y ; G; and we have

E sup||v/nVin(t)||1 = E sup v/n|Pp— Plh=0O(1).
teT hes7

Similarly, Esugc & |[v/NVin(t)]|e = O(1) and the left-continuous versions of the
process satisfy similar bounds.

To show consistency of the estimditgy, we first assume the condition 5.1.
(iii-a). Let Aj be the Aalen-Nelson estimator. L&pjn = m,*Ajn, p=1,2. Then
Aojn(X) < Thnje(X) < Agjn(x) for all 8 € © and a similar algebra as in Dabrowska
(2006) shows that

oio() ~Tjo(9] < Vin(x8)|+ [ P~ Tell(u-)pin(au),
where pj, = max(cj, 1)Aijn for some constantj. Therefore|[lng — Ng||1(X) <
[IVa(X,0) 2 + Jiox ITne — Foll1(u—)pn(du), where pn = 3;pnj. Gronwall’s
inequality  (Beesack, 1973, Dabrowska, 2006) implies that

sup g exp—pPn(X)][[Tne — Mell1(X) — O a.s., where the supremum is ov&E ©
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andx € [0,1]. In the case of the condition 5.1.(jii-b), the proof is the same, ex-
cept that the functiopj, is replaced by = max(cj,1)®1(An), whereA , = ZAjn.
Note that Aalen-Nelson estimate is a measurable process, whereas measurability of
the process§ g is verified below.

The proces8V(x, 8) = /N[l g — g7 (x) satisfies

W(x, 8) = v/IVa(x,8) — o X]vAvw—, 6)bng (U)N(du),

whereN(x) is the diagonal matrik(x) = diag[Ny. (X), ..., Ng.(x)], andbng(u) is a
g x g matrix with columns

Bino(U) = [ [ (8/9) (0.Fou=) +A1s ol u),u)etr |

Let bg(u) be aqgx g matrix with columnsbjg(u) = [s’j/sjz](l'g(u),e,u).
Using consistency df,,g and Lemma 5.3, we ha\J(Eng —bg](u) — 0 a.s. uniformly
in (u,0) € .7. Moreover, (5.1) and (5.2) imply also thig®,|| — 0 a.s., where

Run(0) = [ bo(u)N-ENJ(du)
Define
W(x, 8) = vVa(x, 8) — /(0 ]W(u—, 6)bg (U)EN(du).
Then
W(x, 8) = /iVa(x, 8) — /( o0 VMU= 8)bo WEN(du) 251, )
= Vn(du, 8) Zg(u,X).
(0
and

W(x, 8) —W(x, ) = — /( o W — W] (U=, 8)bng (U)N(du) + rem(x, 6),

where

remx,0) = — o X}V~\/(u—, 6)[bng (U)N(du) — bg (U)EN(du)]. (5.3)
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Settingvn = max(||/iVal1, AV [l1) = Op(1), we have

~ ~ T
max(|Whl|, [[Wa[[) < vn eXDSGUIO/O b (U)[l2EN._(u) = Op(1).

The processV is a sum of iid mean zero processes whose finite dimensional dis-
tributions are asymptotically normal and converge to the finite dimensional distri-
butions of the proces#/ in the statement of the proposition. Moreover, its com-
ponents can be represented as empirical processes indexed by Euclidean classes of
functions satisfying the condition (5.2). Therefore a similar argument as in the case

of the process/nVin, shows thaWWw = W. The remainder term (5.3) is bounded by

S p—2Rpn(x, 6), where

RZI’\(X79) = (0 \/ﬁvn(u_79)Rlﬂ(du79)7

Ran(x,0) — /(O.X]\/ﬁvn(u—,G)be(du)EN(du)Jn(u,x,G),
Rin(.0) = [ Bro Dol W), (A)W(u— 6)]s,

In(u,x,8) = P9 (U,W)Ryn(dw, 0),

(ux

whereN = 23Ny .. We have||Ran| = op(1), by a similar V-process expansion
as in Lemma 5.4 below. Using Kolmogorov equations for matrix product integrals
(Gill and Johansen, 1990), we also have

Jn(u,x,8) = Rin(x,0) — Rin(u, 8)
— Py(u,5—)bg(S)EN(dS)[Rin(X, 0) — Rin(s, 0)]

(ux

and
[9n(u,x,0)[[1 < 2||R1n||[1+/(u ; | Z6(u,s—)]1/|be(s)[[2EN...(ds)

< 2Ryl exp [ [bo(S)I4EN. (d5) < 2Rl exp [ [bo(S)HEN. (3

From this we also getRsn|| = op(1), becausdy(u) is uniformly bounded. Fi-
nally, || Rsan|| = 0op(1). Combining, the right-hand side of (5.3) is of the ordgf1),
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uniformly in (x,0) € .7. For fixed(x, 8), we also have
V() ~W(x )] < rem(x 8)a+ [ N~ Wia(u- 6)pn(cu

and by uniform Gronwall’s inequality (Beesack, 1993, Dabrowska, 2006), we have
W(x, 8) = W(x, 8) 4+ 0p(1) uniformly in (x, 8) € 7.

To complete the argument, we note that the proceéseé,, W and the re-
maindersRpn, p=1,...,3 satisfy measurability conditions of section 5.2, whereas
to show thatW andRu, have this property, it is enough to show that the pro€ggs
is measurable. However, the aggregate probess) =51 ; 5, Njmi(x) is measur-
able since itis cadlag increasing with respectémd measurable with respect 6,
for fixedx. For any integek andwy = (Sq, ..., 5), Tk(ap) = inf{x: N_(wp,X) >k}
is a random variable becaugex : Ty(wp) < X} = {ap : N_(X,an) > K} € .
Similarly, the censored data ranRs, = 3 1(Tk < Xim) are measurable. Define set
valued mapping, : S, — RY by settingHn(wn) = {(6,X) : g (wo,X)) € B} where
B is an open set dR%. ThenHn(wo) = Uy Hne(awo) where

Hne(awo) = {(8,%) : Tng(wo,X) €Band N, (awp,) = ¢}
Onthese® = {w:N_(wn, 1) =/} € 7, the proces§ g is a weighted sum
¢
Fno (X, an) = 3 1(T(awn) < X)hne (-, K, o)
K=1

and the weights form a finite composition of Carathéodory integrands. Suppressing
dependence oy, hyg (-, K) is thek-th column of ag x ¢ matrix h, with entries

Zi Zml(Rim: k)l((Jim,Jierl) - J)
SiSml(Rm>K Im=j1)aj(Gne (-, k—1),0,Zim)’

wherej = (j1, j2) € _Zo andgpg is aq x ¢ matrix with columns
gne('70> =0 gne('7k) = gne(‘7k— l) + hne('v k)

Alternatively,gng = ggfg, wheregg,oe) =0andforr=1,....7¢

g (-, k) = pgkhﬁgc,p),

hn9<j7k) =

44



Dabrowska: A Semi-Markov Transformation Model

hg’e)(J,k)_ 2i2m (Rim: ) ((Jim7\]im+l):j>
Si>ml(R m>lem—J1)aJ(9,(19 )(‘7k—179,zim>

for j = (j1,J2) € #o. Theindicators (Ti(wp) < x) are jointly measurable with re-
spectto/, ® #(7) and by Lemma 5.1, so are the weightg andgng. Therefore
the graph oH,y is .7, ® #(.7) is measurable and

{(a0,x, 0) : Tng(an,x) € B} = graptHy = | graph{Hy) € %0 ® 2(7).
1>0

A similar argument can be used to show measurability of the prdeess
in part (ii). Using arguments analogous to Dabrowska (20(06)g,+h, — ng, —
hal gy || = Op(||hn1) @nd| T ny 1, — iy | = O ([[nl|2) = 0p(2) for any determin-
istic sequench, — 0 ora randomS”P- measurable sequenbg—p 0. Therefore if
is an.# - measurablg/n- consistent estimator &, then settindn, = 0 6o, we
haveWs(x) = W(X, 6) + remy(x), where rem = \/A[l" 5 —ng, — (6 — 60)1 5] =
op(1). For non-measurabla, and@n, convergence is in outer probabilit{z]

Let us assume now thdli(y,8,2),j € #o is a scalar Caratheodory in-
tegrands such thatf(y,6,2)| < ¢(|lyll.) and|[fj(y,8",2) — fj(y,0",2)| < [|6 —
0| + [ly — Y[l 1) max( @' ([lyll1), @' (Y ]l2), Whereiﬁ W, yn,Yp and @’ = Y3 sat-
isfy conditions 5.1. Pus§j[fj](u,0) = n~1z" ,S;i[f;](u,0), whereS;[fj](u,6) =
SmYimi(U)(fjaj)(Te(u),0,Zjm), and letsj[f;] = ESj[f;j]. We write§j[1] ands;[1]
whenf; =1, and se®;[f;j] = §[f;]/S;[1] ande;[f;] = s{[fj] /sj[1].

Lemma 5.3 We have||S;[fj]/sj[1] —sj[fj]/sj[1]|| = 0 a.s. for allj € _#o.

Proof . We have([S;j[f;]/sj[1]])(X, 8) = PnOxe, Where

SmYimi (X) (fjaj)(Te(X), 6,Zjmi)
ESmYim(X)aj(Te(X),0,Zjm)

The conditions 5.1 imply that there exist constai{sandC, (dependent on the
functionsy, ') such that

ng(Dl)

|90 (Di) — gea(Di)] < Ca[]Yji(X) = Yii(x)| +
Y1.i(0) (JEN;.i () — ENji (X)[ +EYj.i(X) — EYji(X)])],
|9x0(Di) — gxer (Di)| < [6 — 6'|C2Y;i(0)[1+ ENy.i(T) + EY;i(0)].
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DefineG(Dj) =Y;j.i(0)[Codiam©® +Cy][1+ EN;ji(1) + EY;.i(0)] + 9x,6,(Di), where
(X0, 60) is an arbitrary point i@ x [0,7]. Let By, p=1,...,¢ = O(diamO/¢)?
be centers of ballB(6p, <) of radiuse covering the se®©. By noting thatEN; ;

is an increasing continuous function aldj; is a decreasing caglad function, we
can construct a finite partition 8 Xg < X3 < ... < X = T such that the intervals
Iy =X —1,%],r =1,... ksatisfyENji(lq) < €EN;i(1) andE|Yji(l)| < €EY;.i(0).
Let X4 be the center of the intervaél. Then for eachx € I, and6 € B(6p,¢), we
have||gxe(Di) — 9x 6,(Di)[lp1 < €[|G(Di)|[p1. It follows that the class of functions
4 ={0xp : x€ [0,7],0 € O} is Euclidean for the envelop8(D;) and Glivenko-
Cantelli. OJ

Lemma5.4 Forj € ¢, define rem(x, 8) = [Vjn—Vajn](x,8) and

B,(¢8) = [ &[]~ &i[F}(u OM;.(du6),

where f; satisfies assumptions of Lemma 5.3. Thgginrem;|| = op(1) and

Iv/nBj| = op(1).

Proof . For the sake of convenience write rearem; andB = B;. Putn;(u,0) =
1Sj/sjl(Te(u),8,u) — 1. Alittle algebra shows that

i —ENj.J( u)
rem(x, 0) = /n,u@ s, ) +/n1u9811] 0
= remy(x, 8) +remp(x, 9).

We have rem(x, 08) = Op(1)rems(1, 6), where

rerrg(x,@):/oxnjz(Uﬂ)[ . Eﬁjg /’7, Y 6 de))

In addition,

Bx0) = [ (AT Wy N, Jiaw

—/OX K&[ﬁiﬁﬁﬂﬁ]) ’71} (u,8)[N;.. — ENj.](du)
- () 0 ] oren
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X 4
Si[fj](u,6 du,8) =y Bp(x,0).
+ , St Oremdu6) = 5 Byix.6)
We haveBy4(x, 8) = Op(1)Bs(0),

B5(6) = [ (Sil1fll— sl (u. B)remy(du. ) + [ 5[y (u. 6)rems(cu. 6).

These expressions can be rewritteigsrocesses of degree+ 1,r < 3
Vnre1(9) = nr+1 Z g D|r+l ,0€Y,
irs1

where the sum extends over sequenced.-tupletsD; ., = (Dj;,...,Dj, ;) iry1=
(irgs---,ir41),ij € 1,...,n. The kernelsy vary over the clas¢/ = {g: :t € 7},
where fort = (x, 8) we have

D.M) (5.4)
/ J_l Ih(D,, 8,u) — Ehy(Di,, 8,u)][Nji.., — ENj.i..,](du)
1

or
xr+1
(D) = /0 J‘| [he(Di,, 8, ) — Ehy(D;,, 6, u)|ENj.(cu). (5.5)
=1

Here hy(Dij;) are functions of the form §j[fj]/sj[1], Sj[1]/s[1] and
(v/sillfjl))Sj[1]/[1]. In all cases, there exists a const@nsuch thath,(D;j, 8, u)
< CY;ji(u) and |hy(Dj, 8,u) — hy(D;, 8’,u)| < |6 — @'|CYj.i(u). Therefore, for any
sequenc®; ., = (Di,,...,Dj.,), we also have

|gxe — 9x6l(Di, ) <|G(D;,.,,X) —G(Dj,, 1, X)],

|gX9 - gX9’|(Dir+1> < |6 - 6/|G(Dir+17 T>7

where
G0y 1) = ) [ (D1 )+ EHDL ][N+ EN )

andH,(Dj,u) =CYj,(u),/ =1,...,r for some constar@.
Let {Ur+1n(at) : t € 7} denote theJ process associated with the ker-
nels (5.4-5.5). It is easy to see tHdt,1n(g) forms a canonical process. For
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Dry1=(D1,...,Dry1), we haveEGP(Dy ;1) < o for p=1+41/(2r 4+ 1). Therefore,
by Marcinkiewicz-Zygmund law in Teicher (1998) and Lemma A.1 in Dabrowska
(2009), v/nsup, |Ur41.n(at)| —p 0. By Marcinkiewicz-Zygmund theorem in de la
Pefia and Giné (1999), we also hayasup [Vy+1n(0t) — Urs1n(0)| — O a.s. be-
cause

EG(DiHl)Zd(iwl)/(errl) < oo,

wherei; 1 = (i1,...,ir+1) andd = d(i; 1) is the number of distinct coefficients
among{iy,...,ir+1},d=21,...,rnr<3. O
We denote now byiB||y the variation norm of & x g-matrix of functions
B(x) = [bu (X)],x € [0,T]. For any interval C [0,1], ||B||v(l) =supy ™, |IB(xj) —
B(Xj—1)|/1, where the supremum is taken over finite partitionsstdich that; < x;.
Further, let#(6y, €n) be a ball centered &y of radiusey, &, | 0,1/ngy 1
. Suppose thapg(x) is ad x g matrix of functions, with columns of the form
Jogjedlg j such that|dg,|lv = O(1). Let ¢ng be a sequence of consistent estima-
tors such that

(i) ¢no(X) is a cadlag or caglad function (jointly ifx, 6)), continuous with re-
spect tog;
(if) limsup,sup{||¢ne|lv: 6 € Z(6o,n)} = Op(1);
(ili) sup{||¢ne — bg,ll= : 6 € H(60,n)} = 0p(1) OF
(i) ¢no _(¢r)19’ = (6 —6")Yng,o Where limsugsup{||Ynoe[lv: 6,6" € B(6o, &n) }
=0p(1).

If ¢ne is a jointly.#F © 2(.7) measurable estimator then conditions (ii)-(iii) are
assumed to hold in probability. If this is not the case then the conditions (ii)-(iii)
are taken to hold in outer probability.

Lemmab.5 (i) If ¢ng(X) is @ measurable process satisfying (i)-(ii) and (iii) or
(i) then with probability tending to 1, the equatidshg,(6) = 0 has a con-
sistent roo® in the ball (6o, €n). In addition, under the condition (jii’), the
score equation has a unique root#{ 6y, €,), with probability tending to 1.

(ii) If ¢ng is not measurable, then statements in part (1) hold with inner probabil-
ity tending to 1.

(iii) If 6 is an arbitrary consistent estimator &, then the equatiol) 5 (6) =
0, wheregn(x) = ¢ 5(x) has a unique solutio, with (inner) probability

tending to 1, antlng, (8) = op: (n~/2).
In all three casess = \/n(8 — 6) and the procesgl = VNl g—Te — (6 -
60)'T 5](X) : X< 1} converge weakly iR x £([0, 7] x _#p) to a mean zero Gaus-

sian process defined in the statement of Proposition 3.1.
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Proof . Case (1). WriteUn(8) = Ung,(6) for short. Setbjmi(Tg(u),8,u) =
= bjmia(Me(u),0,uU) — Pgy(U)bjmiz(Ig(u), 6,u) where

bimiz(Ta(u),8,u) = £(Te(u),8,Zjm) —e[¢;)(u,8),
bjmi2(Tg(u), 8,u) = £{(Tg(u), 0, Zjm) — &j[£;)(u, 6).

Definebjmi(Mg(u), 8,u),bjmi1(Te(u)6,u) andbjmiz(Ig(u), 8,u) using similar ex-
pressions withej[¢j] and e;j[¢}] replaced bygj[¢;] and &j[¢j]. We haveU,(6) =
5 5—1Unp(8), where

U]_n ZZ/ b]m| rg 6 U)M]m|(du 9)
2
Usn

(6) =
- / " [(@116] — 11)(1.0) — 06, ) & [£]] & [4])(u.6) M. (. 6),
Uan(6) = %ZJ > [ 1006~ 66 BimalToo(1).B.)Nys ().

and

X

;;/0 B (Mo (U), 8, )Ny (du),
1

ol 6) = 22%/ / i (Mo (U), 8, WNjmi(dU)dA — g (x, 6).

Herel g =g+ A (Mg —Tg) for A € (0,1). We havelan2(6o) = [g Op([|Mng, —
g% yiN;j.(du) = op(n~1/2). Moreoverrin(x, 8p) converges almost surely to

DIH

rnlxe

r(x,60) = Z/OX[COV]' (E’j,éj)(u, 6o) — de,(u)cov; (£}, £;)(u, B)|EN;..(du)
]

uniformly in x,x < 7. Lemma 5.2 and integration by parts imply that the terms
[v/NU1n(6b),/NU2n:1(6p)] converge weakly to a pair of independent normal vari-
ables with mean zero and covarianégg6y) and Zz(6p) — Zo(6p), respectively.

Published by De Gruyter, 2012 49



The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 15

By Lemma 5.3-4, we also hau#y,(6) = op(n~/2). Finally,

3 T 3
V() =~ 5 /o 400~ 0] (0)]Ba(1.6) = 5 Ua(©)

where
B0) = 1333 [ Bom(Tra(1). 0.0 ~Baim(To (4. 8.0 Ny ()
Ban(x.0) = - 3. [ (@16) 66 0. (e 6)
Ban(X, 6) %iz;/ Baiimi (T o (U), 6, U)Mjmi(dlU, 6).

By Lemmas 5.2-5.4, we have/NUsn2(0) = op(1l) and /NUgn1(0) =
5 i Jg Op(VAlIMne — Toll2(u)l| e — Py ll2(WN;..(du) = 0p(1), uniformly in 6 €
P (6o, €n). On the other hand, & = 6y, {\/NBan(X,6) : X < T} is a sum of iid
mean zero processes. The finite dimensional distributions are mean zero variables
with finite variance-covariance matrix and converge weakly to mean zero Gaussian
variables. Each componentBf,(x, 6p) is a measurable process which can be rep-
resented as a finite linear combination of cadlag monotone functiorsvith a
square integrable envelope satisfying (5.2). The same argument as in Lemma 5.2
implies that the process ighBzn (X, 6p) converges weakly to a mean zero Gaussian
process with sample paths continuous with respect to the variance semi-metric. The
space of functions continuous with respect to the variance semi-metric is isometric
to the spac€([0, 7])%. By almost sure representation theorem and a similar inte-
gration by parts argument as in Bilias et al (1997) we hgnes,.3(6p) = op(1).
SetUn(0) = 21-3:1an(9>. Some elementary algebra shows that €or
0’ € B(6p, &), we havedn(0) =Un(8') + (Zn(6o) +remun(6, 6'))(6 — 6), where
2n(6p) is a matrix which converges in probability>;(6p). The matrixX,(6) is
defined in Section 3 and is non-singular. Furthip(6) —Uan(6') = rempn (6, 6’)
(8 —0')+rem,(8,0') +0O(|8 — 6o| \V|8" — Bo|)remun(6,8"). Setting remn(8,6")
= | + Z;}(60)[Zn(60) + remon(6,0")], and bgn = sup{|remy(6,6")| : 6,
0 € B(60,6n)},q=1,...,4, we havey, = op(1), bon = op(1). Under the condi-
tion (jii’), rempq = 0 = bgn, g = 3,4, while under the condition (jiifaz, = op(n~/2)
andbg, = 0p(1).
Putap = by + bon + ban andA, = b5n+b3n, wherebs, = |Z(6) " Un(6p)| =
Op(n~1/2). Let 0< n < 1/2 and 0< ' < 1 be given. By asymptotic tightness
of A,, we can find a compact s&t = K(n) andng such that for allh > ng and
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all open setsG containingK, we haveP,(v/nA, € G) < n andPy(an > ') <
n. Therefore, we also havé,(/nA, > M(1—n')) < n for all finite M > Mo,
whereMo = Mo(n) is a large enough finite nonnegative constant. Sipioe,
o and e, | 0, by eventually increasingyg, we can assume that far > ng, we
have #(6p,6n) C © and M < /ngy. Consequently, the sdét, C S, given by
En = {0 : An(wo)/(1— an(wo) < &n,an(wn) < n'} satisfiesPy(En) > 1—2n for
alln> ng.
Forn > ng, consider the set-valued mappidg: S, < RY given by

o) = (6 1 h ) = (8:16 - < D} if a ey
— 0 if oy En.

The graph ofHp, graptH, = {(w,8) : 8 € Hn(ap)} is .7F ® %(©)-measurable
and donin, = E, € .. Further, letgn(an, 8) = 8 + 2 1(60)Un(w, 8). Theng,
is .7 © %(©) measurable, because it is continuous with respe6tfty fixed wy
and.#P-measurable for fixed. It follows that the set valued mapping

Ch(aw) = {0:0n(twn,8)=0 and 6 cHp(wp)} for wpe€ En,
= 0 for wy ¢ Ep

is closed-valued and has & ® %(©)- measurable graph. We have doss= Ep:
for fixed ap € Ep, Hn(w) is a closed ballgn(ap, 6) is continuous and mapé, ()
into itself. By Brouwer’s fixed point theorer@,(wy) # 0. Thusk, C donC,, while
the reversed inclusion is obvious. R

Further, for any roo8 in dontC,,, we have|,/n(60 — 6y)|* < An/(1—an) =
Op(1), andy/n(8 — B) = Z(6p)~L\/MUn(6o) + op« (N~2/2) s0 thaty/n(8 — 6p) con-
verges in law to the normal distribution given in Section 3. An argument similar to
Bickel et al. (1993, p.517) shows also that under the condition (ign),c, 0) is a
contraction orH,(an), ay € Ep, with contraction coefficiendn(awy). Thus in this
case, the root is uniqu€n(wy) = {@(wo)} for ap € E, andn > ng.

Case (2). If¢ng estimators are na¥;” @ %(.7) measurable, then the score
function splits into two partstyy(8) = Un(68) +Uan(8). The termUy,(6) remains
7P ® %(0) measurable, while the second term is not. Howewgr= op. (n~%/2),
an = 0op,(1) while bs, = |2(8p)2Un(60)| = Op(n~2). In this case, the sef,
satisfies liminf P, .(En) > 1—2n and the closed balB (6o, An/1—ay) is contained
in (6o, €n) with inner probability tending to 1.

Case (3). We Writé]n(e) for the modified score function obtained by sub-
stituting in @n(x) = ¢,5(x) in place ofgng. Suppose thafl is ZP-measurable and
dno(X) is A F @ %(.7) measurable. Then the plug-in estimagipg (x) is ISP
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([0, 1)) measurable and the modified score prodég®) is 5”"@@(@) mea-
surable. Moreover, we hau#(6) = Un(8) +Uns(6), where the remaindéfsn(0)
satisfies,/NUna(8) — Una(8)] = op(1+/N|8 — Bo|), uniformly in 8 € B(6p, &).
We also havén(8) —Ugn(0') = (6 — 8')remmpn(6,0'), sup(remp,(0,60'): 0,6’ ¢
2(60,€n)} = op(1). With probability tending to 1, the modified equation has
a unique rootd in a compact random ball contained B{6o,s,) and un(e) =
op-(n~Y/2). On the other hand, if eithed or ¢ng are not measurable, then this
remains to hold, except that the modified equation has a unique solution with inner
probability tending to one[]]

Under assumptions of part (1), measurAabIe selection theorgms (Wagner,

1976) ensure that there exists at least one fundlioS, — R¢ such tha@(wo) €

Cn(wn) wheneveruy € E, and is measurable with respect wP. This also ap-
plies to part (3), provide@ and¢ng are.#F - measurable.

5.4 Proof of Proposition 3.2. With some abuse of notation, 3ét= |V;, j €
o] whereV (x) =V (x, 8p) andV (x, 8) is the Gaussian process of Lemma5.1. Un-
der the assumption th& is the true parameter of the modulated renewal process,
the proces¥ corresponds to a vector of independent time-transformed Brownian
motions with covariance

couV;(x),Vi(y)) = Ci(xAY) and colVj(x),Vi(y)) =0 if j#C.

Similarly, letV = [V; : j € _#q] be equal t&/ (x) = v/NVin(X, ) whereVin(x, 8) is
defined as in Lemma 5.1. Thus tirh component oY is

M]m| du

jX \/721/5] 90,)

PutV* = [V#j 1,...,q,

Njmi (d
j \/72\ / SJ r901 ), 6 )

Finally, let Go be a .#(0,l4«q) variable, independent ofD;,G;j)’s. Set

A~ A~

=} =21 (60)%0(60)"/*Go and=% = 5,(6)30(8)Y/2Go. We haveEVF(x) = 0=
EVj( ),

coMV/ (0. V(X)) = cowVj (). Vi(X)) = 5;Cigy (XAX).,  (5.6)
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Moreover,_1 is independent dD4,...,Dp. This also means that it is independent
of (V# V).

We consider first unconditional weak convergence. By central limit theo-
rem and strong law of large numbers, the finite dimensional distributions of the
processesV,V*) converge weakly to finite dimensional distributions (8fV#),
two independent vectors of Brownian motions with variance functOng, j =
1....0

For eachj = 1,...,q, the processV/? can be represented a4 (x) =

n-/250 ) (Gi,D;), where
x Njmi (du)
(G,D) G/ imi .
" Z ™ Jo sj(Tgy(u—), 6o, )

The class of functions#j = {BED(Gi,Di) :x € [0, 7]} has a square integrable enve-
lope

Njmi (du)
F](Gh - |Gm|/ Sj relml 60 )
0 y

and is Euclidean for this envelope because eéé)ne Zj is a difference of two
functions increasing ix and bounded b¥;(G;i,Di). Thus.#; forms a Donsker
class of functions. The union of these class&s= |J;.-7; is Donsker as well.
From Lemma 1, the proce¥s= {Vj(x) : x€ [0, 7], j € _# } can be also represented
as an empirical process over a Euclidean class of funcfoasd the union U¥
forms a Donsker class. Using consistency of the estim#els_5), Lemma 5.5

and a couple of lines integration by parts yields &|$¢ —V*|| = op(1) in outer
probability.

Write V* as the empirical procesv/s? Pnf, f € .#. Further, letBL; be the
collection of Lipschitz functions from R x ¢=(.%) into [0, 1], such thath(r,w) —
h(r',w)| < |r—r'| +|lw—w| forr,r’ € R andw,w € ¢*(.%). The set¥ is totally

bounded with respect to the variance pseudo-métricherefore, for fixed > 0, it
can be covered by a finite numberdballs of radiusd, say#(f,0) ¢ =1,..., k=
k(5). SetV¥#o 15 = Pni5(f), wherergs(f) = f, for f € 2(f,,5) (pick onef, for
eachf € .#). By triangular inequality, we have

4
sup [Ech(=1,V¥) —EN(Z1, V)| < 5 14(9)
heBL, r=1
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11(6) = sup [Eh(Z],V¥ o) —ER(ZE, V7)),
hEBLl

12(3) = sup |[Eh(Z},V#oms) —Ech(Zi Vo),
heBLy

13(6) = sup |Egh(Z%,V¥#om5) — Egh(Z,V¥)],
heBLy

14(6) = sup |Ech(Z4,V#) —Ech(Z%,V#)|.
hEBLl

For givene > 0, we can choosé so thatl;(d) < ¢ for all d < &. The second term
converges in outer probability to O, for ady This follows from weak convergence
of finite dimensional distributions &* and the same argument as in Van der Vaart
and Wellner (1996, p. 182), except that in our setting, the Lindeberg condition of
their Lemma 2.9.5 is not needed to verify conditional weak convergence of finite di-
mensional distributions. We also hag¢d) < Eg||V¥o 15 —V#|| 7, < ZEE|IVF| 7,
whereZs ={f—f': f, f € # :d(f — ') < §}. Since.# forms a Euclidean class
of functions with a square integrable envelope, we havg lifimsup, E*13(d) <
lim,olimsup, E*E&||V¥| #, = 0. Finally, the terml4(5) does not depend o8,
and we havés(3) < 2P5(|=1 — Z1] +|V# —V¥| > &) + €. By unconditional con-
vergence, we havig(d ) — 0 in outer probability.

Finally, setW (=% V*) = [=# W], where

*_ 25, Y(6) z/ P16 (U, B)EN;. (duME (u)T,
W (x) :/ V#(du) P, (u,x)
/ V#(u—)Qg, (du) Zg, (u, ).

The estimates=* W] defined in Section 4 ar” WY = W(Z#,V¥), whereW is
the sample analogue d¥ obtained by plugging in the estimate@(;,@@,

pj7¢n(',/9\0). By the continuous mapping theorem, unconditionaﬂyff,v#) =
W(=E v#) = (2%, W§). By triangular inequality one more time, we have
SUfept, |Ech(Z*,WY) — En(=# WE)| < J1+Jp, where

b = sup|Ech(Z* W) — Esh(=*\W{)|,
heBL1
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J = sup |Ech(Z* W) —Eh(=* W)|.
hGBLl

For any Lipschitz continuous functidme BL;, ho W € BL; for some constant.
Therefore the preceding implies thittends to 0 in outer probability. This also
holds for the terml;, becausé|=* — =#|| —p: 0 and|W§ —\W'||» —p- O, by con-
sistency of the estimateé@, I5) and integration by parts]
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