Home Evaluation of Boundary Conditions for CFD Simulation of Liquid Food Thermal Process in Glass Bottles
Article
Licensed
Unlicensed Requires Authentication

Evaluation of Boundary Conditions for CFD Simulation of Liquid Food Thermal Process in Glass Bottles

  • Pedro Esteves Duarte Augusto and Marcelo Cristianini
Published/Copyright: January 18, 2012

The growing demand for safer and high-quality food products creates the need for better knowledge of the processes involved in food production. The computational fluid dynamics (CFD) have been widely used to better understand food thermal process, one of the safest and most frequently used methods for food preservation. However, no consistency in mathematical models has been observed, especially on the boundary conditions definition. The present study has evaluated four methodologies for the definition of boundary conditions for heating water in two commercial bottles: (M1) temperature profile of heating water (T∞) and convective heat transfer coefficient (h), (M2) T∞ as boundary condition for the outside package wall, (M3) T∞ as boundary condition for the outside heated liquid edge, and (M4) internal temperature profile (T=T(x,y,z,t)), previously measured in the inner package wall, as boundary condition for the outside heated liquid edge. Models that considered the measured value of h e T∞ as boundary condition showed good agreement with experimental values, compared by thermal history and sterilization value (F). The models that considered the temperature profile of the heating water or the inner package wall as boundary conditions, showed faster heating. By over-estimating the product heating rate, those models are not appropriated for thermal process modelling, as it compromises the safety and preservation of food products.

Published Online: 2012-1-18

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Articles in the same Issue

  1. Article
  2. Production of Gallic Acid by Immobilized Aspergillus niger Using Polyurethane Foam as Solid Support
  3. Comparison of Vacuum Cooling with Conventional Cooling for Purslane
  4. Adsorption Isotherms for Red Onion Slices Using Empirical and Neural Network Models
  5. Low Temperature Drying With Air Dehumidified by Zeolite for Food Products: Energy Efficiency Aspect Analysis
  6. Performance of Artificial Neural Network for Predicting Fermentation Characteristics in Biosurfactant Production by Bacillus subtilis ATCC 6633 using Sugar Cane Molasses
  7. Optimized Neural Network for Instant Coffee Classification through an Electronic Nose
  8. Optimization of Extraction of D-pinitol and Phenolics from Cultivated and Wild Types of Carob Pods Using Response Surface Methodology
  9. Mechanical Damage to Pinto Bean Seeds as Affected by Moisture Content, Impact Velocity and Seed Orientation
  10. Gel Properties of Ribbonfish (Trichiurus haumela) Surimi Gels with Soybean Dietary Fiber Induced by High Pressure and Heating
  11. Correlating the Data on the Mechanical Damage to Mung Bean Seeds under Impact Loading
  12. Numerical Simulation of Experimental Freezing Process of Ground Meat Cylinders
  13. Mathematical Modelling of the Heat Transfer and Microbial Inactivation During a Meat Pet Food Sterilization in Retortable Pouches
  14. Evaluation of Boundary Conditions for CFD Simulation of Liquid Food Thermal Process in Glass Bottles
  15. Shorter Communication
  16. Functional Characteristics of Extruded Blends of Potato Flakes and Whey Protein Isolate
  17. Using the Mitschka-Briggs-Steffe Method for Evaluation of Cactus Pear Concentrated Pulps Rheological Behavior
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/1556-3758.2329/html
Scroll to top button