Startseite Technik Determination of Fatigue Life and Failure Location of Vehicle Cylindrical LPG Fuel Tanks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of Fatigue Life and Failure Location of Vehicle Cylindrical LPG Fuel Tanks

  • F. Kartal

    Fuat Kartal completed his PhD in mechanical engineering at the Karabuk State University in Turkey. He is Assist. Prof. Dr. at the Kastamonu University, Mechanical Engineering department in Turkey. His working areas include abrasive water jet technology, pressure vessel design and analysis and 3D printing.

    und Y. Kişioğlu
Veröffentlicht/Copyright: 7. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study addresses the determination of the fatigue life and its failure locations of the vehicle cylindrical LPG fuel tanks using both experimental and finite element analysis (FEA) methods. The experimental investigations performed as an accelerated fatigue tests are carried out using a hydraulics test unit in which the cylinders are internally pressurized by hydraulic oil. The LPG cylinders are subjected to repeated cyclic pressure varying from zero to service pressure of the tank. The FEA modeling of these tanks are developed in three dimensional (3D) using non-uniform geometrical parameters and nonlinear material properties. These models are also subjected to zero-based high cycle fatigue pressure load considering the stress life approach. The FEA modeling process is also simulated in non-homogeneous material conditions. Therefore, the fatigue life performance and failure location of the cylindrical LPG fuel tanks are predicted and compared to the experimental results.

Kurzfassung

Diese Studie widmet sich der Bestimmung der Ermüdungslebensdauer und Fehlerorte eines zylindrischen LPG-Fahrzeug-Kraftstofftanks mittels experimenteller Methoden und Finite-Elemente-Analyse. Für die experimentellen Untersuchungen, vorgenommen als beschleunigter Ermüdungstest, kommt eine hydraulische Testeinheit zum Einsatz, in der die Zylinder durch Hydrauliköl intern unter Druck gesetzt werden. Die LPG-Zylinder sind wiederholtem zyklischen Druck ausgesetzt, der von Null bis zum Betriebsdruck des Tanks reicht. Die FEA-Modelle dieser Tanks werden anhand uneinheitlicher geometrischer Parameter und nicht-linearer Materialeigenschaften dreidimensional (3D) entwickelt. Unter Berücksichtigung des Stress-Life-Ansatzes sind diese Modelle außerdem nullbasierter High-Cycle-Fatigue-Druckbelastung ausgesetzt. Der FEA-Modellierungsprozess wird auch unter nicht homogenen Materialbedingungen simuliert. Somit werden Ermüdungslebensdauer und Fehlerorte der zylindrischen LPG-Kraftstofftanks vorhergesagt und mit den experimentellen Ergebnissen verglichen.

About the author

F. Kartal

Fuat Kartal completed his PhD in mechanical engineering at the Karabuk State University in Turkey. He is Assist. Prof. Dr. at the Kastamonu University, Mechanical Engineering department in Turkey. His working areas include abrasive water jet technology, pressure vessel design and analysis and 3D printing.

Acknowledgement

The authors would like to thank Step Inc. (http://www.steplpg.com) to perform these experimental tests, providing LPG tanks and related expenses. Special appreciation is expressed to Faruk Guraksu, General Director and Aydin Karateke, Engineering and Manufacturing Director, and other lab technicians.

Danksagung

Die Autoren möchten sich bei Step Inc. (http://www.steplpg.com) für die Durchführung der experimentellen Tests, die Bereitstellung der LPG-Tanks und die Übernahme der damit verbundenen Kosten bedanken. Besonderer Dank gilt Faruk Guraksu, General Director und Aydin Karateke, Engineering and Manufacturing Director, sowie sonstigen Labormitarbeitern.

References / Literatur

[1] ECE-R67; The Economic Commission for Europe, 1999Suche in Google Scholar

[2] TS 12095 EN 12805; Turkish Standard Institute, Ankara, Turkey, 2004Suche in Google Scholar

[3] Kisioglu, Y.; Brevick, J. R.; Kinzel, G. L.: J. Press. Vess.-T ASME 123 (2001) 240–247 DOI: 10.1115/1.135715810.1115/1.1357158Suche in Google Scholar

[4] Kaptan, A.; Kisioglu, Y.: Int. J. Pres. Ves. Pip. 84 (2007) 451–459 DOI: 10.1016/j.ijpvp.2007.02.00410.1016/j.ijpvp.2007.02.004Suche in Google Scholar

[5] Aksoley, M. E.: Gebze High Institute Technology, MSc. Thesis, (2004)Suche in Google Scholar

[6] Kisioglu, Y.; Brevick, J. R.; Kinzel, G. L.: J. Press. Vess.-T. ASME 127 (2005) 112–118 DOI: 10.1115/1.185891910.1115/1.1858919Suche in Google Scholar

[7] Young-Seob, K.; Lae-Hyun, K.; Ji-Sang, P.: Compos. Struct. 93 (2011) 2963–2968 DOI: 10.1016/j.compstruct.2011.05.00710.1016/j.compstruct.2011.05.007Suche in Google Scholar

[8] Giglio, M.: Int. J. Pres. Ves. Pip. 80 (2003) 1–8 DOI: 10.1016/S0308-0161(02)00151-510.1016/S0308-0161(02)00151-5Suche in Google Scholar

[9] Rauscher, F.: Int. J. Pres. Ves. Pip. 80 (2003) 197–204 DOI: 10.1016/S0308-0161(03)00028-010.1016/S0308-0161(03)00028-0Suche in Google Scholar

[10] Alegre, J. M.; Bravo, P. M.; Cuesta, I. I.: Eng. Fail. Anal. 17 (2010) 748–759 DOI: 10.1016/j.engfailanal.2009.08.00810.1016/j.engfailanal.2009.08.008Suche in Google Scholar

[11] Hossain, M. M.; Seshadri, R.: Int. J. Pres. Ves. Pip. 87 (2010) 381–388 DOI: 10.1016/j.ijpvp.2010.04.00110.1016/j.ijpvp.2010.04.001Suche in Google Scholar

[12] Camara, S.; Bunsell, A. R.; Thionnet, D.H.: Int. J. Hydrogen Energ. 36 (2011) 6031–6038 DOI: 10.1016/j.ijhydene.2010.12.06910.1016/j.ijhydene.2010.12.069Suche in Google Scholar

[13] Chou, H. Y.; Bunsell, A. R.; Thionnet, A.: Int. J. Hydrogen Energ. 37 (2012) 16247–16255 DOI: 10.1016/j.ijhydene.2012.07.02110.1016/j.ijhydene.2012.07.021Suche in Google Scholar

[14] Song, L.; Xiaolong, J.; Hongjie, S.; Hongwei, S.; David, H.; Xiaoping, Y.: Composites Part B 46 (2013) 227–233 DOI: 10.1016/j.compositesb.2012.09.06710.1016/j.compositesb.2012.09.067Suche in Google Scholar

[15] Augustins, L.: Eng. Fail. Anal. 28 (2013) 264–274 DOI: 10.1016/j.engfailanal.2012.10.02110.1016/j.engfailanal.2012.10.021Suche in Google Scholar

[16] Sant’Anna, H. M.; Leal, M. F.: Engineering Fracture Mechanics, 78 (2011) 1669–1683 DOI: 10.1016/j.engfracmech.2010.12.00510.1016/j.engfracmech.2010.12.005Suche in Google Scholar

[17] Spear, A.; Ingraffea, A.: Procedia Engineering 10 (2011) 686–691 DOI: 10.1016/j.proeng.2011.04.11410.1016/j.proeng.2011.04.114Suche in Google Scholar

[18] Rudolph, J,; Schmitt, C,; Weib, E.: Int. J. Pres. Ves. Pip 79 (2002) 103–112 DOI: 10.1016/S0308-0161(01)00139-910.1016/S0308-0161(01)00139-9Suche in Google Scholar

[19] Koh, S. K.: Int. J. Pres. Ves. Pip. 79 (2002) 791–798 DOI: 10.1016/S0308-0161(02)00135-710.1016/S0308-0161(02)00135-7Suche in Google Scholar

[20] Varvani-Farahani, M. R.; Kianoush, M.: Materials and Design 28 (2007) 575–580 DOI: 10.1016/j.matdes.2005.08.00310.1016/j.matdes.2005.08.003Suche in Google Scholar

[21] Marczewska, T.; Bednarek, A.; Marczewski, W.; Sosnowski, H.; Jakubczak, J.: Int. J. Fatigue 28 (2006) 739–1751 DOI: 10.1016/j.ijfatigue.2006.01.00310.1016/j.ijfatigue.2006.01.003Suche in Google Scholar

[22] ANSYS User's Manual, Swanson Analysis Systems, Houston, PA, 2005Suche in Google Scholar

Received: 2016-01-25
Accepted: 2016-03-22
Published Online: 2022-03-07

© 2016 Carl Hanser Verlag, München

Heruntergeladen am 9.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/147.110391/html
Button zum nach oben scrollen