Dimensions of Architectural Knowledge, 2021-03 8
https://doi.org/10.14361/dak-2023-0512

Palladio, the Computer Program. Source Code and
Architectural Principles

Pablo Miranda Carranza

Abstract: In 1992 MIT Press published Passible Palladian Villas (Plus a Few Instructively Impassible
Ones), the result of a chance collaboration between Richard Freedman, an undergraduate majoring
in Computer Science, and George Hersey, Professor of Art History at Yale. The book described their
findings while writing the software called Palladio, which was included in a floppy disc accompa-
nying the book. Software and book presented a new type of architectural historiography, one that
used writing and running programs to analyze and explain a body of architectural work. The third
partner in this collaboration was the computer. In its capacity to impersonate Palladio and mimic
their intellectual toils the computer embodied many of the myths, and even some of the anxi-
eties, of 20th-century architecture. This paper looks at how Palladio, the software, incorporated
and exposed some of the contradictions of a project of disciplinary autonomy partly resting on
analyses of Palladian villas by Rudolf Wittkower and Colin Rowe. It proposes a close reading of its
code, written in the C programming language, to understand how the principles of this discipli-
narity, presented as so intrinsically human, could be translated into the mechanical operations
of a computer program.

Keywords: Architectural Principles; Formalism; Disciplinarity; Interactivity; Debugging;
Conversation; Code; Heuristics.

Corresponding authors: Pablo Miranda Carranza (Department of Architecture and the Built Environment,
LTH, Lund University, Sweden); pablo.miranda@abm.lth.se; http://orcid.org/0000-0001-9963-5759.

3 Open Access. © 2023 Pablo Miranda Carranza published by transcript Verlag. This work is licensed
under the Creative Commons Attribution 4.0 (BY) license.



208 Pablo Miranda Carranza

1.
Andrea Palladio: Pages 47— 65 from 11 Secondo Libro dell’Architettura.



Palladio, the Computer Program

Palladio, the Author of The Four Books
»He is inside my Mac!«’

Since its publication five centuries ago, architects have been fascinated,
time and time again, by the work of Andrea Palladio. Besides the neo-Pal-
ladianism of Lord Burlington and Thomas Jefferson, or Palladio’s influ-
ence on Jean-Nicolas-Louis Durand, analyses of Palladio’s architecture
became central to articulating the idea of a disciplinary autonomy during
the mid-20th century. Palladio’s productivity stands as one of the reasons
for this interest. From 1531 to 1580, his output included 143 buildings and
architectural works, a productivity hard to match by most architects then
and now (Puppi 1975). As with Frank Lloyd Wright almost four centuries
later, Palladio’s sizable output was the result of a building bubble, one that
demanded a new form of exurban dwelling in response to the agricultural
reorientation of the Venetian Republic’s economy. Palladio reinterpreted
the villa’s original Roman model and delivered it to the administrators of
the new type of agricultural estate that emerged in the Veneto during the
sixteenth century (Ackerman 1966: 50).

This profusion of work was paralleled by Palladio’s own efforts to present
his architecture as something beyond its factuality as buildings. As the
representative of the new cadre of humanist architects, Palladio bolstered
his authorial credentials by including detailed descriptions of his own works
in his famous architectural treatise The Four Books of Architecture, of which his
Second Book was dedicated to his villas and palazzi. The purpose of this inclu-
sion was to present his »inventions«, the innovations in the layout and design
of domestic architecture for a clientele of affluent landowners and finan-
ciers around Vicenza, alongside the classical models he documented as their
sources. According to Kurt Forster, The Second Book constituted the first oeuvre
compleéte in architecture, identifying the person of an architect as coincident
with their work (Eisenman 2000). Palladio’s technique of representation
coordinated plans, elevations, and sections to present idealized versions of
his own work, linking them to classical examples from Antiquity by drawing
them the same way. This systematization through graphical conventions set
the stage for its future interpretations. It implied, particularly to modernist

1 Richard Freedman, author of Possible Palladian Villas, referring to Andrea Palladio in conver-

sation with the Author.

209



210 Pablo Miranda Carranza

2.
Paul Frankl: Analyses of Churches from Principles of Architectural History: The
Four Phases of Architectural Style 1420-1900.



Palladio, the Computer Program

readers, a system that would perhaps not just underpin the disposition and
presentation of the work in print, but also explain the mechanisms behind
its production (fig. 1).

Palladio’s systematic representations lend themselves as ideal objects
for the formalist architectural historiographies of the mid-20th century.
Their methods of diagrammatical abstraction and systematization were
in fact not that dissimilar from Palladio’s own, as exemplified in Paul
Frankl's typographical abstractions of configurations of Renaissance
churches (Frankl 1968) (fig. 2). Following the logic of estrangement under-
lying formalist methods of analysis, which, as in literary analyses of Russian
formalism, attempted to dislodge form from its context to discover what
was intrinsically literary, or in this case, architectural (Jameson 1972), Rudolf
Wittkower further isolated Palladio’s readily abstracted plans in search of
their »Palladian-ness«. By focusing exclusively on the master houses of the
villas and disregarding their wings or »barchesse«, as much as signs of their
productive and social functions as architectural responses to the landscape
and conditions of their locations, Wittkower effectively foregrounded them
as abstract compositions disentangled from their contexts. Most of this fore-
grounding was already implicit in The Four Books, which relegated any infor-
mation external to the abstracted architecture of its graphical conventions
to text, as noted by Kurt W. Forster (Eisenman et al. 2000). In Wittkower
the geometric syntaxes of the villa’s central bodies became the artistic and
symbolic expression of a humanist culture manifested through proportions,
ratios, and symmetries, rather than indexes of political, social, and economic
conditions. James Ackerman explained how this »almost religious« commit-
ment to an idea of universal harmony was closely lodged in post-war archi-
tecture and zealously sought by the likes of Wittkower after a war that they
saw as the result of political extremism (Cohen/Delbeke 2018).

As part of this investment of meaning into abstract form, Wittkower
and his most eminent follower, Colin Rowe, saw the plans of villas in The
Four Books as indices of Palladio’s own intellectual work, of his tinkering
and struggles. Their analysis would reveal the cognitive processes behind
the genesis of his architecture, even if the plans in the book were known
to be subsequent idealized versions of the actual buildings.? This identi-

2 OrasWittkower asked: »Whatwas in Palladio’s mind when he experimented over and over
again with the same elements? Once he had found the basic geometric pattern for the
problemyvilla, he adapted it as clearly and as simply as possible to the special requirements

Al



212 Pablo Miranda Carranza

3.
Rudolf Wittkower: Diagrams of Palladian Villas from Architectural Principles in
the Age of Humanism, 1949.



Palladio, the Computer Program

fication between Palladio’s thoughts and the abstract geometric patterns
traced by Wittkower and Rowe on the plans of the villas followed the prin-
ciples of gestalt psychology driving formalist analysis in art (Jarzombek
1999). As gestalts, mental entities born from Palladio’s toils, these patterns
synthesized the disparate intentions and specific conditions of each project
into a whole. These figures signified Palladio’s architectural essence, the
»principle« resulting from and governing his mental operations. During the
following decade, and especially through Rowe’s influence, this reading of
Palladio became the template for architecture as a humanist autonomous
discipline. This disciplinarity was based on being literate in, on being able to
read and write, these abstractions of form that were its »principles«. These
defined its theoretical domain, what was intrinsically architecture. Writing
and reading these forms, or rather drawing and perceiving them, defined
architecture as more than a mere response to economic, social, or techno-
logical demands (fig. 3).

Enter the Computer

In 1985 Richard Freedman, a student at Yale majoring in Computer Science,
enrolled on a course that art history professor George Hersey was teaching
on the Italian Renaissance. Interested in architecture, Freedman studied
a copy of Palladio’s Four Books that he had borrowed from a close relative,
particularly the over 40 villas and buildings from The Second Book. Seen
through his programming habits, he explained how The Second Book consti-
tuted a database, one sufficiently large and regular so that it might allow
him to abstract some underlying design rules, so that a computer could be
programmed to generate Palladian villas. With Hersey’s encouragement this
became the theme for his course assignment and an article in the journal
Architectura (Freedman 1987). It finally led to their collaboration on the book
Possible Palladian Villas (Hersey/Freedman 1992), which explained the devel-
opment and consequences of Freedman’s program.
Incontrasttothearttheoreticalideas of Wittkowerand Rowe, Freedman’s
digital encoding of Palladio recast his work into the different technologies

of each commission. He reconciled the task at hand with the>certain<truthof mathematics
which is final and unchangeable. The geometrical keynote is, subconsciously rather than
consciously, perceptible to everyone who visits Palladio’s villas and it is this that gives his
buildings their convincing quality.« (Wittkower1944:111).

213



214

Pablo Miranda Carranza

and ideologies of programming. Though codified through computer science,
programming as a practice also consists of a multitude of conventions,
habits, and tacit know-hows that regulate how to develop the complex arti-
facts that are programs. The practices Freedman deployed came from his
own story with computers: As did many other programmers, he learned how
to code as a teenager using the popular but limited BASIC programming
language, which during the 1970s became the entry point for anyone not
studying science or technology at university and wanting to learn how to use
computers. Yet despite the increasing availability of computers that enabled
teenagers like Freedman to learn programming, writing programs were still
a complicated business in the early 1980s. Anyone wanting to compile larger
programs beyond what BASIC interpreters could execute needed access to
machines that were often too expensive to be personally owned. Their avail-
ability at Yale, Freedman explained, allowed him to learn how to put larger
and more complex programs together (Richard 2022). Things were changing
rapidly though. In 1984, just a couple of years before Freedman took Hersey’s
course on the Italian Renaissance, the Apple Macintosh had made the use
and programming of graphics available to a general public and successfully
commercialized the Graphic User Interfaces (GUI) first developed at Xerox
PARC during the 1970s. Freedman first used the larger computers available
at Yale to write the programs explained in Possible Palladian Villas, but the
popularity of the Macintosh gave him the idea of distributing his programs
along with the book. After many months of working at a Macintosh SE using
the Aztec C compiler, he could finally run his interactive software; the result,
he described, was the feeling that »Palladio was inside my Mac« (fig. 4).

Debugging

Freedman’s initiation into programming in BASIC was that of the self-taught
enthusiast, rather than the result of his more formal and academic studies
in computer science. This may seem anecdotal, but this influenced his
reading of Palladio, especially compared to the parallel efforts of William
Mitchell and George Stiny, who instead used »shape grammars, a mathe-
matical formalism first proposed by them in 1971 to encode the generation of
Palladian villas (Stiny/Gips, 1971; Stiny/Mitchell 1978b, 1978a; Mitchell, 1990).
Most relevant to this case were the programming methods that began with
BASIC. Mainframe computers such as the IBM 700/7000 series, first avail-
able to governmental organisms, universities, and corporations during the



Palladio, the Computer Program

1950s and 1960s, operated under what is known as »batch mode«: programs
were first written into »batches« of punched cards that would run during
some allocated time in a mainframe. The results would then be printed out or
otherwise punched back into cards to be processed further. Since computers
were in short supply, time allocated in a mainframe was considerably expen-
sive. Access to these scarce computational resources was limited to scien-
tists and technicians in the universities and corporations that could afford
them. The BASIC language that allowed Freedman and many other teen-
agers to learn programming was an effort to make programming available to
a wider public as computers became increasingly available. Developed first
at Dartmouth College in the early 1960s, BASIC wanted to be a user-friendly
language for non-scientists. Rather than batch mode, BASIC initially made
use of time-sharing, the technique to grant access to many users to the same
computer and the basis of multi-tasking in today’s computers. What this
implied, compared with »batch mode«, was interactivity: programs could
now be written by anyone with access to a teletype-like terminal (later substi-
tuted by a keyboard and a screen) linked to the mainframe, and executed
immediately. The increasing availability of computers, which had prompted
this change in the first place, also meant much cheaper computer time; now it
was affordable to waste it running incorrect programs with bugs and errors.
Programming changed then from a process of carefully engineering code to
one of iteratively writing and testing programs, observing their behavior,
and modifying them accordingly, what is generally known as »debugging«.
It became a sort of conversation between a programmer and a computer
which, given a set of instructions to execute, would either answer with its
results, often not necessarily the expected ones, or with error messages, to
which the programmer would respond by rewriting the program. The text of
Possible Palladian Villas and the code that is at its core mirror this process of
software production and which informed the personal habits and practices
of programmers like Freedman. A close reading of the code that formed the
basis of Possible Palladian Villas shows how the technical conditions of writing
programs also shaped the conceptual framework within which Palladio was
transposed into the computer (Hersey/Freedman 1992).

3 Richard Freedman kindly provided me access to the code written in C language of
»Palladio«, the software for the Macintosh that was published at the same time as Possible
Palladian Villas and distributed in a floppy disk.

215



216 Pablo Miranda Carranza

4.
Richard Freedman: Screen captures of a Macintosh Emulator (Mini vMac), running
System 6, and the Palladio software.



Palladio, the Computer Program 217

5.
Richard Freedman: Screen captures of a Macintosh Emulator (Mini vMac), running
System 6, and the Palladio software.



218

Pablo Miranda Carranza

Setting up the Conversation

The result of these »conversations» between Freedman and the computer was
the code, written in the C language, that ran Palladio in the Macintosh. All
C programs have a function or subroutine called main();* this is the entry
point for the execution of the program, the starting point from where its
labyrinthine structure will unfold in time. An inspection of Palladio’s main()
discloses a record of the technical conditions at the end of the 1980s when
it was written main() called for example another function, iwindows(),
which set up the monochrome display of 512 x 342 pixels of the Compact
Macintosh. This limited screen real state, considered high resolution at
the time, presented a design challenge to Freedman, who had to use it as
efficiently as possible both to interact and display the results of Palladio
(Miranda Carranza 2022). main() took care of dealing with all the prelimi-
naries of the program: it initialized all parts of the interface such as fonts,
windows, menus, and dialogues, and managed all the necessary memory, a
requirement in a language like C. It also set up the bitmap image in which
to draw the plans and eventually the facades of the generated villas (with
setbitmap(), called from startplan()). The first drawing in this image would
be an undivided rectangle defining the generic perimeter of the villa (via
drawroom (pr), also called from startplan()). All the drawing was done
using the Macintosh QuickDraw 2D Application Programming Interface (or
API) for the Classic Mac OS operating system and which defined the oper-
ations, such as drawing a line or a rectangle, on a Macintosh. QuickDraw
is still accessible from contemporary MacOS versions more than 30 years
later, a digital fossil lodged in the operating systems of 2023. Unravelling the
function call in main() also exposes the interesting transfer of typographic
conventions into digital screens: The resolution of the Macintosh display
followed the convention originated in mechanical printing of 72 points
per inch, translated in this case to a resolution of 72 pixels per inch (Apple
Computer, Inc. 1994). Correspondingly, all translations between dimensions
on the plans of Palladian villas and those on the screen were done using a
constant defined in the program as PIXPERFT or pixels per Vicentine feet,
defined in the plan.h file and called through startplan(). startplan() in turn

4 Function is a sequence of instructions that are grouped under a name that can be invoked
anywhere else to run it. Functions can receive data as input for instructions and output or
»return«data back to wherever in the program they were called from.



Palladio, the Computer Program

contained all the necessary steps to generate the plans of Palladian villas,
and it was also called through the eventloop() function, which would take
care of generating Palladian villas after pressing the »new plan« button
by the user. Called here in main(), startplan() generated the first plan to
display by the software. Besides taking care of setting up the data necessary
to calculate a plan, startplan() contained the kernel of Palladio, the split()
function, which encapsulated the automation of Palladio’s design process.
Its code was the final result of the conversation between Freedman and the
computer. split() had as its input parameter a pointer to a structure describing
a room in the villa (initially the whole undivided perimeter of the villa).? The
result returned by split(), its output, was another pointer to the data of the
left-most and top-most room of the subdivisions generated by the program,
a position in the generated plan that would allow the program to access all
other rooms in the villa.

main()

{
itoolbox();
iwindows();
imenus();
idialogs();
iprint();
startplan();
eventloop();
terminate();

itoolbox()

{
InitGraf (&qd.thePort);
InitFonts();
FlushEvents (everyEvent, 0);
InitWindows();
InitMenus();
TEInit();

5 A pointer in Cis an index to data, an address in the computer memory. In this particular
case it pointed to a »structure, a collection of values that in Palladio’s code described the
properties of aroom.

219



220 Pablo Miranda Carranza

6.
Richard Freedman: Recursive subdivision process, from A Computer Recreation of
Palladian Villa Plans, 1987.



Palladio, the Computer Program

InitDialogs (NULL);
InitCursor();

}

terminate()

{

unallocplan();

}
Divide and Conquer

The interesting thing with split() is how it operated on the room description
it got as its input: first, it subdivided it into smaller rooms (if possible), and
then called split() again with each of the new smaller rooms as input, to be
further processed and subdivided. This programming technique is called
recursion and it produces the programming equivalent to a mise en abime,
a matryoshka doll of telescoping code in which a function self referentially
calls itself. Recursion enables the defining of a large and complex task — in
this case, splitting a large room representing the perimeter of the whole
villa into the many smaller ones making up a Palladian plan - as made up
of smaller versions of the same task — splitting any room into a couple of
smaller ones. This type of procedure is called a »divide and conquer algo-
rithmg, a method for factorizing jobs common in programming. Freedman
programmed how split() would decide to nest splits into other splits, making
up a recursive subdivision process that would generate the room layouts of
any possible villa (fig. 6).

The generation of these recursive subdivisions was fundamentally
different from the gestalts at the center of Wittkower’s analyses. Rather than
»principles« in the guise of elemental or ideal forms, the program used a set
of »heuristics« or rules of thumb to decide how to split, or not, a room. Their
development followed the process explained in Possible Palladian Villas of trial
and error, of the logic of »debugging« typical of interactive programming
and software development. Faced with the production of »improvable«villas
by the code, Freedman iteratively ran and tested, and added and tweaked a
set of rules that would make the subdivisions of rectangles more probable,
more like the plans in The Four Books. There was no essential or underlying
principle there, just the accumulative result of being able to produce, at the
press of a button, an almost limitless number of variations in applying the
same rules, and of modifying the code depending on the results.

221



222 Pablo Miranda Carranza

pROOM split (pr)

pROOM pr;

{
SPLITTYPE stype;
SPLITRATIO sratio;
pROOM ptopleft;
intatts=o0;
MYBOOLEAN yessplit;

if (pr==NIL)
return();

if (pr—>stage ==0)
roomcount=1;

resetcontext();
if (yessplit = splityn (pr, roomcount)) {
do{
if (yessplit = (atts++ < MAXATTEMPTS)) {
getstype (pr, &stype);
getsratio (pr, &stype, &sratio);
}
else
break;
}while (lookahead (pr, &stype, &sratio, _H));

if (yessplit) {
ptopleft=dosplit (pr, &stype, &sratio);
incroomcount (pr, &stype);
split (ptopleft);
}
}
if (lyessplit) {
split (pr—>right);
split (pr—>down);
return (pr);
}
}



Palladio, the Computer Program

This cumulative work, »the conversation« between programmer and
computer, is still readable in the code of split(). The series of steps given
in the book, the trials and errors that made its second chapter, entitled
»Planmaker, (the same ones summarized in Freedman’s article in the Journal
Architectura) (Freedman 1987) appear in code as a set of decisions layered on
top of each other, different bits of text that modulate the general behavior
of previously encoded assumptions. But even if Freedman treated the plans
in the The Four Books as merely empirical data for his code, his programming
could not bypass the influence of the architectural culture of the second half
of the 20th century. Thus, the proportional system suggested by Wittkower,
and which presented the villas as equivalents of musical compositions,
also regulated the subdivision scheme of Palladio, now transformed into an
operational procedure rather than a symbol of the humanist spirit of the
Renaissance.® As a computer science major, Freedman had little stake in
the ideological investments architects had made in Palladian architecture
and The Four Books. Since their identification by Wittkower, the absence or
presence of equivalent formal »principles« in buildings separated what
Rowe described as utilitarian answers to specific problems from concerns
with the universal problem of architecture (Rowe 1956). The iconographic
and gestaltist understanding of form behind this idea of »principle«, with
its emphasis on human conception and perception, had little place in the
computational makeover of Palladio. Hersey, the art history professor, was
fully aware of Palladio’s role in the discipline and the consequences of down-
grading his work to a mere mechanical procedure, of the danger to »have

6 The only procedural description of proportional relations in The Four Books that could be
transcribed asan algorithm refers to the proportions of the rooms, rather than of the whole
plan: »By numbers it will thus be found: The length and breadth of the room in feet being
known, we'll find a number that has the same proportion to the breadth as the length has
to the number sought. This we find by multiplying the lesser extreme with the greater;
because the square root of the numberwhich will proceed from the said multiplication, will
be the height we seek. As forexample, if the place that we intend to vault be nine foot long,
and fourwide, the height of the vault will be six foot; and the same proportion that nine has
tosix, sixalso has to four, thatis the sesquialteral« (Palladio 1738: 28). Palladio discussed the
proportions of the rooms at length (proportions that he does not always follow, not even
in the edited version of the plans of his buildings in the Four Books), but not of a system to
orderthese throughout the whole building. This idea, with the abstraction of walls to lines,
tracing general geometrical relations in the plan, are Wittkower’s invention and discovery.

223



224

Pablo Miranda Carranza

devalued the originality and genius of this architecture« and »have reduced
Palladio to a game«. But he turned the argument around however, presenting
instead the idea of The Four Books as almost a work of conceptual art. In this
view, The Four Books consisted in the description of certain rules describing
»procedures for assembling given parts into new wholes«, rules that a reader
may want to reuse (Hersey/ Freedman 1992: 1). According to Hersey and
Freedman these rules were given by Palladio in an applied from, rather than
explicitly stated: hidden precepts for the combination or elements rather
than the iconographic figures of Wittkower and Rowe. Writing a program
to produce the plans in The Second Book was simply to accept Palladio’s chal-
lenge of discovering the rules behind his systematization. Palladio’s build-
ings became reinterpreted after their digital representation by Hersey and
Freedman as the first representatives of a type of game-like architecture
identified by the recurrent application of a rule-based principle on a corpus
of work. Palladio’s example would be followed by Claude-Nicolas Ledoux
customs houses, Le Corbusier’s villas, Frank Lloyd Wright’s prairie houses,
or even the prefabricated systems and modular kits of the 20th century.
Hersey and Freedman called this type of architecture »paradigmatic. In it,
buildings were produced similarly to how sentences are produced following
grammatical rules. The Four Books, after the precedent set by Francesco di
Giorgio and Sebastiano Serlio, were then a set of specimen plans, doorways,
windows, or columns that seem to ask to be »conjugated« according to some
rules in order to produce architecture (Hersey/Freedman 1992: 8-9). In the
challenge of deciphering Palladio’s language game, the computer would be
taught to design, or rather speak, Palladian villas. According to Hersey and
Freedman, the difference with applying the rules by hand was in the comput-
er’s ability »to calculate a huge number of possible permutations and combi-
nations based on Palladio’s rules«. The computer would do this instantly
and straightforwardly, in contrast to how »an unaided human being« would
(Hersey/Freedman 1992: 10).

But to teach the computer to speak »Palladian« it was necessary to estab-
lish its grammar by a computer that could only dutifully conjugate it, and a
programmer who could only tentatively define it and subjectively compare
the results against an existing corpus of plans. Rather than an in-depth anal-
ysis of the diagrammatic drawings of The Four Books, the process of decoding
Palladio’s game consisted instead of the progressive adjustment of elimina-
tion of error, a definition of Palladio’s architecture more by what it isn’t than
whatitis. To find what Palladio did, it was necessary to discover »everything



Palladio, the Computer Program

he would not do«. Lacking any personality of its own or any idea of the
programmer’s intention, the computer would simply do what it was told,
making every rule »explicit and unambiguous« (Hersey/Freedman 1992: 10).

This process of iterative and pragmatic approximation, rather than one
based on ideal forms, would be the basis of a new type of historiography
that Hersey and Freedman proposed more than 30 years ago. A historiog-
raphy consisting of writing software, and which would remove »architec-
tural connoisseurship from the realm of instinct and sets it within that of
the verifiable«, where articulating the immanent rules of architecture would
have the advantage to »etch out, with hitherto unexperienced clarity, the
procedures and habits that distinguish this great architect from all others«
(Hersey/Freedman 1992: 12).

Machine Psychologies

Incidentally, the verifiable representation of what was only the realm of
the instinct was one of the ideological foundations of programming. The
invention of programming languages during the 1950s was closely linked
to the propositions of cognitive psychology, which, during the same period
begun explaining the internal mechanisms of thought, including instinct,
as computations. Palladio, the software, can be seen then as the recasting of
architectural theorizations influenced by the premises of gestalt psychology
— the immediacy of visual perception, the subsumption of the parts to an
organizing whole — under the logocentric, fragmented, and procedural logic
of the computer. This psychological dimension of programming is perhaps
best summarized not in works of cognitive psychology, but in the foreword
to Structure and Interpretation of Computer Programs, the textbook for the intro-
ductory course to programming at the Massachusetts Institute of Technology
(MIT), where Alan J. Perlis wrote how »Every computer program is a model,
hatched in the mind, of a real or mental process« (Abelson/Sussman 1983).
This statement encapsulates the equivalences between thought processes,
language, and logic that, as the basis of analytical philosophy, were also the
starting point for programming languages, artificial intelligence, and cogni-
tive psychology at the end of the 1950s.

The first step in the method put forward by Hersey and Freedman was to
create a language to describe Palladian plans, a notation, using the recur-
sive subdivision process discussed earlier, that could account for the room
configurations in the villas in The Second Book. This was not a description of

225



226

Pablo Miranda Carranza

geometry, form, or shape, but a notation of the process for generating it.
Being a procedure, rather than a figure, permitted the suggestion of a corre-
spondence with Palladio’s own cognitive processes through the equivalences
between programs and thoughts underpinning programming. To strengthen
the possibility of this equivalence, Freedman and Hersey suggested that
Palladio himself would have thought in terms of the recursive »divide and
conquer« logic of their program, by identifying a similar subdivision tech-
nique in Palladio’s description of a method to design entablatures in The Four
Books (Hersey/Freedman 1992: 46).

The representation of Palladio’s hypothetical thought processes as
programs followed a pragmatic logic of approximation made up of tenta-
tive adjustments, patterned by the »conversation« between Freedman and
the computer. Whereas Wittkower’s analysis of eleven Palladian villas led
to the synthesis of an ideal twelfth villa, an imaginary patter underlying
all the others, Hersey’s and Freedman’s approximations were never conclu-
sive. Despite their unambiguous nature, the programs that would »etch out,
with hitherto unexperienced clarity« the procedures and habits of Palladio
remained a tentative hypothesis that ruled out their consolidation into a
final and idealized schema. Rules of thumb, or heuristics, were at the heart
of this pragmatic approach. Their use as part of an ad-hoc accumulation of
adjustments is clear in the structure of the split() function, which, to anyone
that can read code, shows the process of embedding loops, conditional
statements, and functions like lookahead() that are ostensibly solutions to
problems that occurred as the program was written, rather than as imple-
mentations of an algorithm carefully planned in advance.

In the context of operations research, »heuristic« were proposed by arti-
ficial intelligence pioneer and Nobel Prize laureate in economics, Herbert
Simon, in the 1950s as way of expanding the field’s area of applicability.
Whereas previous methods in operations research and management science
dealt with well-structured problems, »heuristics« would help to address
those tackled with judgment and guess (Simon/Newell 1958). »Heuristics«
enabled programs to be written that mimicked thinking habits learned from
experience, rather than simply implementing mathematical methods for
problem-solving. Programs could become »theories in a completely literal
sense, of the corresponding human processes«. These would be verified
by comparing the behavior of a computer running the program with the
behavior of a human performing the same task (Simon/ Newell, 1962). While
»heuristics« were not mentioned anywhere by Freedman and Hersey, their



Palladio, the Computer Program

rationale clearly drove their propositions as an ingrained technique in the
practice of programming. It is through the ideas behind »heuristics« that
the split() function above can then be seen as a theory »of the corresponding
human processes« of Palladio, as Simon would put it, or as Hersey and
Freedman intended of »the procedures and habits that distinguish this great
architect from all others« (Hersey/Freedman 1992: 12).

But »heuristics« and the cognitive motivations behind programming
were not the only psychological models involved in the writing of Palladio.
The very »conversation« between Freedman and the computer had also been
theorized under ideas from psychology. Besides BASIC, the expansion of the
potential user base of computers from the196os onward demanded other
ways to increase computer literacy. Teaching children how to program and
the use of computers in teaching became a worthy research pursuit during
the 1960s. Seymour Papert, Co-director of the AI Lab at MIT, developed
a pedagogical framework that had the idea of »debugging« at its center.
Papert reimagined the conversational model that was becoming standard in
computer-human interaction through the constructivist psychology of Jean
Piaget, with whom he had worked in Geneva. In the conversation between
a child and a computer, concepts that were initially intangible and abstract
would slowly be given concrete form. Errors in the code written by a child
would play an important role in the process: they would force the child to
understand the reasons behind them to fix them, and in the process improve
the concretization of their knowledge, both in their mind and in the unam-
biguous notation of a computer program (Papert/Solomon 1972; Papert 1980).

Besides the influence that Papert’s ideas had in the development of
modern graphic user interfaces at Xerox PARC (Kay 1972), later mass-mar-
keted through the Apple Macintosh that also run Palladio, his Piagetian
theorization of »debugging« as a way of constructing knowledge fits quite
aptly the process followed by Freedman and Hersey. The idea was to first »let
loose« a program using »incipient Palladian rules«, which would come up
with plenty of mistakes from which to learn (Hersey/Freedman 1992: 53). The
code would then be refined, slowly constructing a model of Palladio through
this interaction between programmer and computer. The C code of Palladio
is a trace and record of this conversation and of the iterative concretization
of a hypothesis of Palladio’s own working process. What both »heuristics«
and a constructivist understanding of »debugging« highlight is the lack of
a »principle«, of an ideal. This was substituted instead by the deployment
of guesses, tests, and experiments that could, but may not, correspond

2217



228

Pablo Miranda Carranza

to Palladio’s design process. In their capacity to endlessly produce plans
that look somehow »Palladian«, their rhetoric differs importantly from
Wittkower’s or Rowe’s idealism. »Palladio«, the program, is not a repre-
sentation of a hidden ideal but a hypothetical and pragmatic encoding of
Palladio’s thought processes.

Possible Palladian Villas takes over many of Wittkower’s premises: the
formalist isolation of the abstract form of a building, a process started by
Palladio himself in The Four Books; the proposal of proportion and ratios as
an underlying and unifying logic for the geometry of the plans; the reading
of these plans as indices of Palladio’s cognitive work, and the possibility to
reconstruct, or at least speculate on, the mental processes involved in this
work. In their effort both showed a psychological leaning that was not neces-
sarily explicit but part of the respective discourses of formalism in art and of
programming and software design. Both were invested in the explanation
of the villa’s plans in The Four Books as the play of forms in Palladio’s mind,
rather than on the material, technical, economic, and social conditions for
their production as buildings and their reproduction in print. Both implied a
subject, Palladio, as their source. But the writing systems employed in each
case are also fundamentally distinct: one graphical and typographical, where
Palladio’s figure as an architect is presented as one of the first examples of
the very humanistic culture it promoted; the other algebraic and mechanical
and where subjectivity had been substituted with an objective rationality.
Wittkower’s logic was fundamentally visual. Form, broadly understood as
»gestalt«, worked as a principle unifying both the intention behind artistic
work and its perception. Freedman’s and Hersey’s was instead sequential
and algebraic, based on written symbols and their processing by computers.
These two forms of writing produced two distinct architectural subjectivi-
ties: the first, one in which the production and experience of form create the
respective subjects of the author and of the reader. The second, one where
human capacities and actions become disembodied mechanical procedures
and fragmented actions that can be indistinctly performed by humans or
machines. They thus propose two Palladios: one, the humanist artist, the
prototypical Western architect with all its baggage; the other, a name that is
a placeholder for a set of procedures, of »inventionss, that are anything but
inalienable.



Palladio, the Computer Program

Conclusion

Etymologically, collaboration means to work together; in the writing of
the software Palladio and of the book Possible Palladian Villas that supple-
mented it, work was distributed between two humans and the computer.
As the non-human partner in the collaboration, the computer brought the
capacity to work relentlessly, to carry out Freedman’s commands unques-
tioningly and to present back the results of their execution. Their relation
was patterned by the explicit and implicit discourses, the technologies, and
the practices shaping and regulating their interactions. The relationship
between Hersey and Freedman was framed on the other hand by its insti-
tutional settings — the difference in roles at a prestigious Ivy League univer-
sity — their generational difference — Freedman a young computer science
student, Hersey a humanist scholar born before computers had even been
invented - but more importantly by the two literacies represented by each
of them: a humanistic and academic, one funded on the reading and under-
standing of texts and artistic artifacts as human products; and a literacy of
algebraic writing where letters, symbols, and signs lost any reference to a
human voice. The collaboration comprised then a double translation, each of
them carried out mainly by Freedman and Hersey respectively: a first one of
the plans for The Four Books which, seen as data, became indices of a hidden
program to generate them, a set of tacit rules used by Palladio that could be
transcribed into the algebras of programming; and a second translation of
these technical inscriptions into their meaning to the historical conditions
of the Renaissance and the historiographical context of the second half of
the 20th century, to which analyses of Palladio had been key. The conclusions
reached by this double translation could not escape the discursive practices
and ideological formations of its two writing systems and their inherent
contradictions. In their common identification of Palladio as the principal
source of the plans for The Second Book, their contrasting ideas of subjectivity,
one human and the other mechanical, reproduced the very conflict between
system and authority that the villas in The Four Books present to modernist
thought.

But the lack of followers of their software-based historiography also
points to the distance between these two forms of writing and their
conflicting ideologies, and emphasizes the serendipitous circumstances
behind the improvable encounter between Freedman and Hersey. More than
30years later, and in the midst of a renewed interest in AI, we see many of the

229



230

Pablo Miranda Carranza

themes that played out in the writing of the software and the book. Rather

than the playfulness behind their propositions, today the mechanical repro-

duction of what were believed to be exclusively human performances conjure

instead apocalyptic futures without any nuance or critical distance, perhaps

because the gap between these two literacies, despite their current inextri-

cable interdependence, is at least as large as it was three decades ago.

References

Abelson, Harold/Sussman, Gerald Jay
(1983): Structure and Interpretation of Com-
puter Programs. Cambridge, MA: MIT Press.

JamesS., Ackerman (1966): Palladio, Har-
mondsworth: Penguin.

Apple Computer, Inc. (1994): »imaging with
QuickDraws, Apple Computer, Inc.

Cohen, Matthew A. (2018): »Proportional
Systems in the History of Architecture: A
Conversation with James S. Ackermanc,
in Cohen, Matthew A./Delbeke, Marteen
(eds), Proportional Systems in the History
of Architecture, Leiden: Leiden University
Press, 511—522.

Eisenman, Peter/Stanford Anderson
(2000): »Virtual Palladio: Two Views,
MIT Department of Architecture Lectures
Series. Cambridge, MA: Massachusetts
Institute of Technology, Department of
Architecture records.

Frankl, Paul (1968): Principles of Architectural
History: The Four Phases of Architectural
Style, 1420—-1900, Cambridge, MA: MIT
Press.

Freedman, Richard (1987): »A Computer
Recreation of Palladian Villa Plans, in:
Architectura. Zeitschrif t fiir Geschichte der
Baukunst,17/1, 58.

Hersey, George/ Freedman, Richard (1992):
Possible Palladian Villas: Software, Cam-
bridge, MA: The MIT Press.

Hersey, George/ Freedman, Richard (1992):
Possible Palladian Villas: (Plus a Few Instruc-
tively Impossible Ones), Cambridge, MA: The
MIT Press.

Jameson, Frederic (1972): The Prison—House
of Language: A Critical Account of Structur-
alism and Russian Formalism, Princeton, NJ:
Princeton University Press.

Jarzombek, Mark (1999): The Psychologizing
of Modernity: Art, Architecture and History.
Cambridge: Cambridge University Press.

Kay, Alan (1972): »A Personal Computer
for Children of All Ages«, Proceedings of the
ACM Annual Conference: Volume 1 .

Mitchell, William (1990): The Logic of Archi-
tecture: Design, Computation, and Cognition,
Cambridge, MA: The MIT Press.

Miranda Carranza, Pablo (2022): Interview
with Richard Freedman, Author of Possible
Palladian Villas (Plus a Few Instructively
Impossible Ones), unpublished interview.

Palladio, Andrea (1570): | Quattro Libri
dell'Architettura — English translation: The
Four Books of Architecture, transl. from the
the first edition by Isaac Ware, London:
Printed for R. Ware, at the Bible and Sun,
on Ludgate-Hill, 1738.

Papert, Seymour (1980): Mindstorms: Chil-
dren, Computers, and Powerful Ideas, New
York: Basic Books.

Papert, Seymour/ Solomon, Cynthia (1972):
»Twenty Things to Do with a Computers,
in: Educational Technology, 12/4, 9—18.



Puppi, Lionello (1975): Andrea Palladio,
Boston: New York Graphic Society.

Rowe, Colin (1947): »The Mathematics of
the Ideal Villa: Palladio and Le Corbusier
Comparedc, in: Architectural Review 101,
101-104.

Rowe, Colin (1956): »Chicago Frame, in:
Architectural Review 120, 285—289.

Herbert, A. Simon/Allen, Newell (1958):
»Heuristic Problem Solving: The Next
Advance in Operations Research, in:
Operations Research, 6/1,1—10.

Herbert, A. Simon/Allen, Newell (1962):
»Computer Simulation of Human Thinking
and Problem Solving, in: Monographs of
the Society for Research in Child Development,
27/2,137-150.

Palladio, the Computer Program

Stiny, George/Gips, James (1971): »Shape
Grammars and the Generative Specifica-
tion of Painting and Sculpturex, in: IFIP
Congress 2.

Stiny, George/Mitchell, William (1978a):
»Counting Palladian Plans, in: Environ-
ment and Planning B: Planning and Design 5/2,
189—198.

Stiny, George/Mitchell, William (1978b):
»The Palladian Grammar, Environment and
Planning B: Planning and Design 5/1, 5—18.

Wittkower, Rudolf (1944): »Principles of
Palladio’s Architecture, in: Journal of the
Warburg and Courtauld Institutes 7,102—122.

Wittkower, Rudolf (1949): Architectural
Principles in the Age of Humanism, London:
Warburg Institute, University of London.

231






