

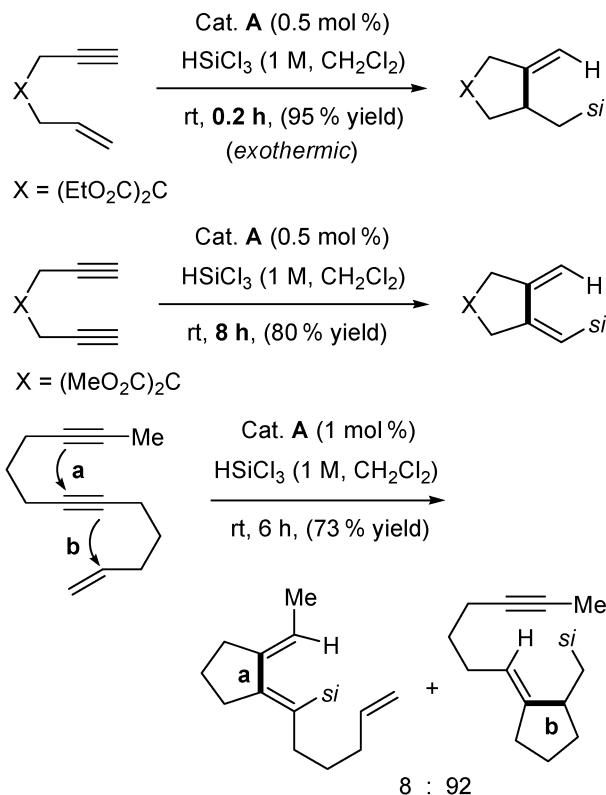
Cationic palladium-catalyzed hydrosilylative cross-coupling of alkynes with alkenes forming 4-silylated-1-butene frameworks*

Takamitsu Shimamoto, Motoharu Chimori, Hiroaki Sogawa,
Yuki Harada, Masaharu Aoki, and Keiji Yamamoto‡

Department of Materials Science and Environmental Engineering, Tokyo University of Science, Yamaguchi, 1-1-1 Daigaku-Dori, Sanyo-Onoda, Yamaguchi 756-0884, Japan

Abstract: A new hydrosilylative cross-coupling reaction of a variety of alkynes with several alkenes, which is catalyzed by a cationic Pd complex $[\text{Pd}(\eta^3\text{-C}_3\text{H}_5)(\text{cod})]^+[\text{PF}_6]^-$ (cod = 1,5-cyclooctadiene) was studied systematically. The reaction using HSiCl_3 as an addend afforded more or less two types of products consisting of four possible derivatives, $\text{R}^1\text{CH}=\text{CR}^2\text{-CHR}^3\text{-CHR}^4\text{-SiCl}_3$, which always contained 4-trichlorosilyl-1-butene frameworks, in acceptable combined yields. The coupling pattern was markedly dependent both on the precatalyst in the absence or presence of PPh_3 ligand and on the combination of the alkyne and alkene partners employed. A possible catalytic cycle that involves an initial hydropalladation of an alkyne, followed by a facile and specific carbopalladation of an alkene, is proposed. At the same time, the lack of regioselectivity in the latter step is noted.

Keywords: cationic palladium complex; hydrosilanes; alkynes; alkenes; cross-coupling; hydropalladation; carbopalladation.

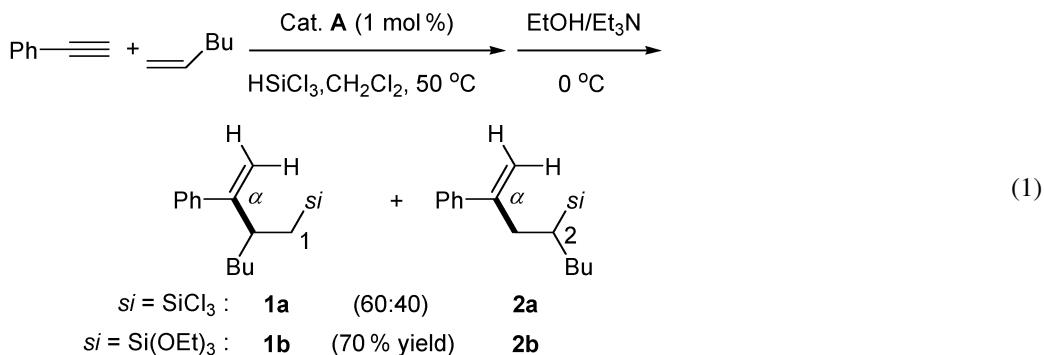

INTRODUCTION

Cyclization/hydrosilylation of certain alkadiynes has been well known to be catalyzed by either Rh(I) [1], Ni(II) [2], or Pt(II) complex [3], by using trialkylsilane as an addend. However, we have found that a cationic Pd complex $[\text{Pd}(\eta^3\text{-C}_3\text{H}_5)(\text{cod})]^+[\text{PF}_6]^-$ (**A**), (cod = 1,5-cyclooctadiene) is very effective for the reaction only by using trichlorosilane [4]. In addition, we are interested in the fact that a 1,6-alkyne undergoes the same reaction exothermically, and much faster than the corresponding 1,6-alkadiyne as depicted in Scheme 1.

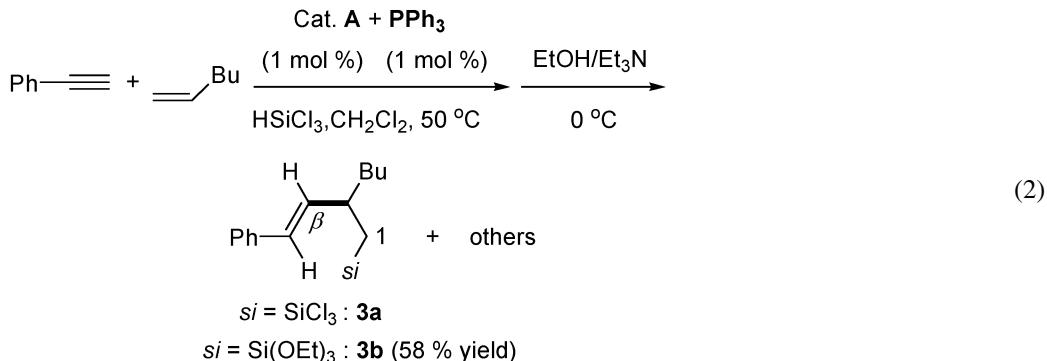
Taking advantage of the observed rate enhancement for the 1,6-alkyne cyclization, we have examined an intramolecularly competitive cyclization/hydrosilylation of certain 1-alkene-6,11-dynes. Thus, the results obtained for the cyclization of 1-tridecene-1,6-dyne are particularly of interest as shown also in Scheme 1. There are two products arising from different pathways, and we have detected a quantitative rate difference in the cyclization between a dyne pathway **a** and an enyne pathway **b**: We have found that, on the basis of product composition, pathway **b** proceeds over 10 times faster than pathway **a** [5].

*Paper based on a presentation at the 14th International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), 2–6 August 2007, Nara, Japan. Other presentations are published in this issue, pp. 807–1194.

‡Corresponding author



Scheme 1 Facile cyclization of 1,6-enynes compared to 1,6-diyynes.


Now we ask: Does intermolecular version of coupling-hydrosilylation of 1,6-alkyne work? Indeed, we have found that, under hydrosilylation conditions, an unprecedented cross-coupling between an alkyne and an alkene occurs satisfactorily. Herein, we disclose the cationic Pd complex-catalyzed hydrosilylative cross-coupling of alkynes with alkenes [6].

RESULTS AND DISCUSSION

Phenylacetylene and an equimolar amount of 1-hexene were chosen as coupling partners in order to settle the reaction conditions. Hydrosilylative coupling was catalyzed effectively by a 1 mol % catalyst loading of a cationic Pd complex **A** under mild heating for a few hours. Tetrafluoroborate as a counter anion worked equally well. Use of HSiCl_3 in 1 M solution of dry CH_2Cl_2 was particularly suitable for the reaction. Two major products, isolated by bulb-to-bulb distillation and identified by ^1H and ^{13}C NMR analyses, were found to be regioisomers arising from a reverse coupling of 1-hexene with phenylacetylene in a ratio of **1a:2a** = 60:40 as depicted in eq. 1 [7]. On the other hand, the alkyne part underwent regioselectively the coupling. Namely, the initial hydropalladation of phenylacetylene took place in an α -directing manner. By using three-fold excess of 1-hexene, the combined yield, 70 % as triethoxysilyl derivatives **1b** and **2b**, improved, while the isomer ratio was found unchanged.

However, once triphenylphosphine was added to the precatalyst **A**, the cross-coupling reaction exhibited completely different pattern: Initial hydropalladation makes the Pd center attach at a β -position of phenylacetylene almost exclusively. Of the several bulky phosphines, PPh_3 was found to be the most effective ligand in giving selectively a β -1 [7] type cross-coupling product **3a** (see eq. 2). Combined with other evidence for the coupling of 1-heptyne, the ligand effect on the Pd catalyst may be attributed to a steric origin.

Although the critical species derived from precatalyst **A** that conducts the coupling reaction is not clear yet, we have examined the scope and limitations of the present hydrosilylative cross-coupling reaction. Phenylacetylene, 1-heptyne, or methyl propiolate was employed as a 1-alkyne, while 1-hexene or styrene was used as a 1-alkene partner. In addition, *trans*-3-hexene was also examined. All results are compiled in Table 1.

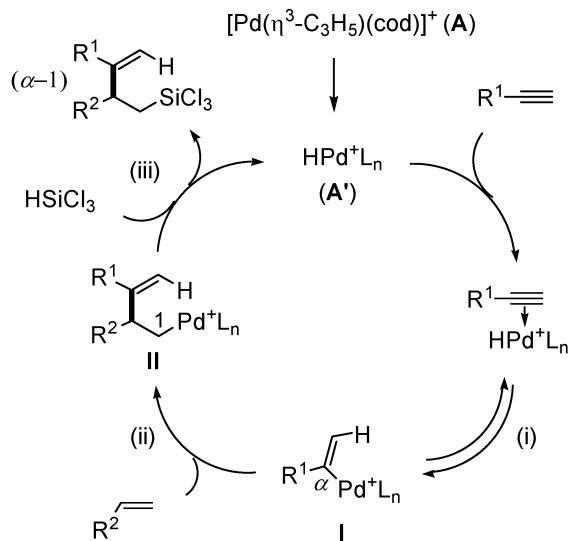
Under the standard conditions without PPh_3 ligand, the extent of α -directing selectivities for 1-alkynes [$(\mathbf{A}_1 + \mathbf{A}_2)/\mathbf{B}$] are about similar, except for propiolate, as seen in entries 1–4 and entry 5. As for the alkene insertion to the vinylpalladium intermediates, the ratios of 1,2- vs. 2,1-insertion ($\mathbf{A}_1/\mathbf{A}_2$) for styrene (entries 2 and 4) are a little better than those for 1-hexene (entries 1 and 3), both being not regioselective at all so far examined.

Trans-3-hexene reacted similarly with phenylacetylene, but 80/20 of **16a/17a** (entry 6) became diminished as compared with 91/9 for 1-hexene as a coupling partner (entry 1). We believe the difference is significant, being indicative of a reversible hydropalladation to phenylacetylene in an initial step of the catalytic cycle (vide infra).

Furthermore, with added PPh_3 (1 equiv to cat. **A**) under otherwise the same conditions as given in Table 1, highly **B** selective cross-couplings were uniformly attained for entries 1–4: The ratios of $(\mathbf{A}_1 + \mathbf{A}_2)/\mathbf{B}$ were found around 4–9/96–91 [6b].

Table 1 Hydrosilylative cross-coupling of alkynes with alkenes catalyzed by complex **A**.

Entry	R ¹	R ²	Time/h	Yield/% ^{a)}	Composition ^{b)}	
					A ₁ /A ₂	(A ₁ + A ₂)/B ^{c)}
1 ^{d)}	C ₆ H ₅	C ₄ H ₉	1.5	70	60/40	91/9 (1a+2a)/3a
2	C ₆ H ₅	C ₆ H ₅	3	71	78/22	93/7 (4a+5a)/6a
3	C ₅ H ₁₁	C ₄ H ₉	3	56	66/34	89/11 (7a+8a)/9a
4	C ₅ H ₁₁	C ₆ H ₅	2.5	52	81/19	73/27 (10a+11a)/12a
5	CO ₂ Me	C ₄ H ₉	4	40	88/12 ^{e)}	100/nil (13a+14a)/15a
6	C ₆ H ₅	(E)-3-hexene	3	50	(A ₁ = A ₂)	80/20 ^{f)} (16a/17a)


^{a)} Combined yield as triethoxysilyl derivatives. ^{b)} Glc analysis of trichlorosilyl derivatives.^{c)} See Experimental. ^{d)} See eq. 1. ^{e)} Minor product estimated to be A₂.^{f)} Presumably (R*,S*)-diastereomers.

The cross-coupling between certain internal alkynes with 1-alkenes can also be carried out: 1-phenylproplyne, 3-hexyne, and ethyl 2-butynoate were examined as alkyne substrates, these selected examples being to avoid potentially complicated coupling pattern [6b].

Based on the common understandings, the coordination affinity of alkynes to any Pd species must be stronger than the affinity of alkenes. It is probable to presume that alkenes undergo a migratory insertion to the vinylpalladium intermediate much faster than alkynes. As discussed above, we can estimate this rate difference to be about 10 times [5]. Furthermore, according to a theoretical study, alkenes have a weaker coordination to a cationic phenylpalladium(II) compared to the methylpalladium(II) complex, and have a lower insertion barrier [8]. Then, in our case, a vinylpalladium intermediate must play a decisive role to undergo a facile insertion of alkenes that we examined. In addition, without added PPh₃, the regiocontrol at this insertion step may be difficult, at the present time.

A proposed catalytic cycle for the hydrosilylative cross-coupling between alkynes and alkenes is presented here (Scheme 2). As a major path to lead to **A₁** or **A₂** type of coupling (see, Table 1), a real catalyst species, HPd⁺L_n (**A'**) may contain a few ligands other than the substrate alkyne. Coordinated alkyne undergoes reversible hydropalladation to form a vinylpalladium intermediate (**I**). Then, a quick migratory insertion of alkene follows to afford a homoallylpalladium intermediate (**II**), which, in turn, reacts with HSiCl₃ to give one of 4-trichlorosilyl-1-butene, and regenerates HPd⁺L_n (**A'**).

In conclusion, we have found an unprecedented hydrosilylative cross-coupling of 1-alkynes with 1-alkenes, which is catalyzed by a cationic Pd complex **A** in the absence or presence of added PPh₃ ligand. The reaction, using HSiCl₃ as an addend, afforded more or less two types of coupling products consisting of 4-trichlorosilyl-1-butene frameworks, in acceptable combined yields.

Scheme 2 Possible catalytic cycle of cross-coupling.

EXPERIMENTAL [6b,9]

Typical procedure for eq. 1: 2-phenyl-3-(trichlorosilyl)methyl-1-heptene (**1a**) and 2-phenyl-4-trichlorosilyl-1-octene (**2a**)

A mixture of phenylacetylene (1 mmol), 1-hexene (3 mmol), and the catalyst **A** (1×10^{-2} mmol, 1 mol %) dissolved in dry CH_2Cl_2 (1 mL) was placed in a 5-mL screw-capped test tube under an argon atmosphere. To this solution was added HSiCl_3 (1 M, CH_2Cl_2 , 1 mL), and the mixture was heated at 50 °C in a thermostated oil bath for 4 h. Color change of the reaction mixture was diagnostic of the endpoint of reaction. GLC analysis of the reaction mixture [3 mm ϕ \times 3 m column packed with SE-30 grease on Celite (10 %) under programmed heating at a rate 10 °C/min from 100 °C (for 2 min) to 280 °C] revealed clearly that the reaction was complete, and that the peak area ratio of the cross-coupling products containing a trichlorosilyl group [$T_R = 17.0$ (**1a**) and 17.2 (**2a**) min] was estimated to be 60:40. A small amount of hydrosilylation products from 1-hexene, which were usually neglected, were also obtained. The products were directly subjected to bulb-to-bulb distillation under reduced pressure to give the regioisomeric products consisting of **1a** and **2a** (0.223 g, 70 % combined yield). Little change in the ratio **1a** to **2a** except combined yields was observed by using 1 or 5 equiv of 1-hexene to phenylacetylene. They were separated by preparative GLC for the spectral identification. Spectral data for **1a**: ^1H NMR (270 MHz, CDCl_3 , TMS) δ 0.85 (t, $J = 7.1$ Hz, 3H), 1.2–1.4 (m, 6H), 1.67 (dd, $J = 15.5$, 7.3 Hz, 1H), 1.79 (dd, $J = 15.5$, 6.9 Hz, 1H), 3.03 (quint, $J = 6.9$ Hz, 1H), 5.12 (s, 1H), 5.29 (d, $J = 0.7$ Hz, 1H), 7.3–7.4 (aromatic H, 5H). ^{13}C NMR (67.8 MHz): δ 14.0, 22.6, 28.7, 29.8, 31.4, 39.1, 113.6, 126.9, 127.5, 128.3, 141.9, 151.8. Spectral data for **2a**: ^1H NMR: δ 0.85 (t, $J = 7.1$ Hz, 3H), 1.45–1.65 (m, 6H), 1.19 (quint, $J = 7.1$ Hz, 1H), 2.55 (ddd, $J = 14.5$, 10.2, 0.7 Hz, 1H), 3.09 (ddd, $J = 14.5$, 4.3, 0.7 Hz, 1H), 5.17 (d, $J = 0.7$ Hz, 1H), 5.36 (q, $J = 0.7$ Hz, 1H), 7.3–7.4 (aromatic H, 5H). ^{13}C NMR: δ 13.8, 22.8, 27.4, 29.9, 34.1, 35.8, 115.4, 126.5, 127.8, 128.5, 139.7, 145.8. The corresponding triethoxysilyl compounds **1b** and **2b** were derived from **1a** and **2a** for analytical purpose. The distilled sample obtained above was treated with an excess EtOH and Et_3N dissolved in CH_2Cl_2 in an ice-cooled bath for 1 h. Salt $\text{Et}_3\text{N}/\text{HCl}$ formed was removed by repeated trituration with cold hexane and filtration through a short celite plug, and the filtrates were concentrated using a coolnit evaporator. The residual oil was purified by a bulb-to-bulb distillation under a reduced pressure to give products. If necessary, they were purified by a preparative GLC. Spectral data for **1b**: ^1H NMR: δ 0.83₄ (t, $J =$

7.1 Hz, 3H), 0.86 (dd, J = 15.2, 8.2 Hz, 1H), 0.95 (dd, J = 15.2, 6.4 Hz, 1H), 1.20 (t, J = 6.9 Hz, 9H), 1.3–1.4 (m, 6H), 2.81 (quint, J = 6.8 Hz, 1H), 3.79 (q, J = 6.9 Hz, 6H), 5.06 (d, J = 1.0 Hz, 1H), 5.18 (d, J = 1.3 Hz, 1H), 7.2–7.4 (m, aromatic, 5H). **2b**: ^1H NMR: δ 0.82₆ (t, J = 7.1 Hz, 3H), 1.22 (t, J = 6.9 Hz, 9H), 1.43–1.53 (m, 7H), 2.35 (ddd, J = 14.5, 10.7, 0.7 Hz, 1H), 2.93 (ddd, J = 14.5, 4.0, 0.8 Hz, 1H), 3.84 (q, J = 6.9 Hz, 6H), 5.06 (d, J = 1.0 Hz, 1H), 5.27 (q, J = 1.3 Hz, 1H), 7.2–7.4 (m, aromatic, 5H). Anal. found: C, 68.25; H, 9.51 %. Calcd. for $\text{C}_{20}\text{H}_{34}\text{O}_3\text{Si}$ (**1b**): C, 68.52; H, 9.78 %.

The procedure was applied for all other cross-coupling reactions catalyzed by the precursor **A** in the absence of PPh_3 (see Table 1).

Typical procedure for eq. 2: (*E*)-1-phenyl-3-(triethoxysilyl)methyl-1-heptene (**3b**)

A catalyst system consisting of the Pd complex **A** and PPh_3 (1 equiv) was employed, and the reaction of phenylacetylene (1 mmol) and 1-hexene (3 mmol) with HSiCl_3 (1 M, CH_2Cl_2 , 1 mL) was conducted at 50 °C for 4 h, in exactly the same manner as for eq. 1. The products of trichlorosilyl derivatives were detected by GLC analysis [T_R = 16.7 min (**3a**)], and isolated as triethoxy derivative **3b**. In the case of eq. 2, the distilled product **3a** was substantially a single one (0.203 g, 58 % yield). Spectral data for **3a**: ^1H NMR: δ 0.89 (t, J = 6.6 Hz, 3H), 1.23–1.37 (m, 6H), 1.58 (dd, J = 15.2, 8.9 Hz, 1H), 1.68 (dd, J = 15.2, 5.3 Hz, 1H), 2.63 (qt, J = 8.9, 5.3 Hz, 1H), 5.95 (dd, J = 15.5, 9.2 Hz, 1H), 6.43 (d, J = 15.5 Hz, 1H), 7.2–7.4 (m, aromatic, 5H). **3b**: ^1H NMR: δ 0.80 (dd, J = 15.2, 7.4 Hz, 1H), 0.87 (t, J = 6.9 Hz, 3H), 0.89 (dd, J = 15.2, 6.6 Hz, 1H), 1.20 (t, J = 6.9 Hz, 9H), 1.17–1.45 (m, 6H), 2.31–2.45 (m, 1H), 3.80 (q, J = 6.9 Hz, 6H), 6.06 (dd, J = 15.7, 8.9 Hz, 1H), 6.33 (dd, J = 15.7, 0.3 Hz, 1H), 7.1–7.4 (m, aromatic, 5H). ^{13}C NMR: δ 14.1, 17.5, 18.3, 22.7, 29.6, 37.6, 38.1, 58.3, 126.0, 126.6, 128.2, 128.4, 137.0, 138.0. Anal. found: C, 68.56; H, 9.77 %. Calcd. for $\text{C}_{20}\text{H}_{34}\text{O}_3\text{Si}$ (**3b**): C, 68.52; H, 9.78 %.

For spectral data of **4a–17a** listed in Table 1, see [6b].

ACKNOWLEDGMENT

This paper is dedicated to the late Prof. Emeritus Makoto Kumada of Kyoto University (deceased on 28 June 2007).

REFERENCES AND NOTES

1. (a) I. Ojima, R. J. Donovan, W. R. Shay. *J. Am. Chem. Soc.* **114**, 6580 (1992); (b) T. Muraoka, I. Matsuda, K. Itoh. *Organometallics* **21**, 3650 (2002); (c) H. Chakrapani, C. Liu, R. A. Widenhoefer. *Org. Lett.* **5**, 157 (2003).
2. K. Tamao, K. Kobayashi, Y. Ito. *J. Am. Chem. Soc.* **111**, 6478 (1989).
3. X. Wang, H. Chakrapani, J. A. Madine, M. A. Keyerleber, R. A. Widenhoefer. *J. Org. Chem.* **67**, 2778 (2002).
4. (a) T. Uno, S. Wakayanagi, Y. Sonoda, K. Yamamoto. *Synlett* 1997 (2003); (b) S. Wakayanagi, T. Shimamoto, M. Chimori, K. Yamamoto. *Chem. Lett.* **34**, 160 (2005).
5. T. Shimamoto, T. Hirano, H. Nishimoto, K. Yamamoto. *Chem. Lett.* **35**, 846 (2006).
6. (a) For a preliminary report, see: T. Shimamoto, M. Chimori, H. Sogawa, K. Yamamoto. *J. Am. Chem. Soc.* **127**, 16410 (2005); (b) for a full account, see: T. Shimamoto, M. Chimori, H. Sogawa, Y. Harada, M. Aoki, K. Yamamoto. *Bull. Chem. Soc. Jpn.* **80**, 1814 (2007).
7. In the chemical formula, the designations α or β and 1 or 2 refer to the *carbopalladation* that occurs at α or β position of the 1-alkyne employed, and C–Si bond occurring at terminal or internal carbon of the 1-alkene counterpart, respectively.

8. (a) H. von Schenck, S. Stromberg, K. Zetterberg, M. Ludwig, B. Åkermark, M. Svensson. *Organometallics* **20**, 2813 (2001); In addition, a cationic arylpalladium species is known to undergo a facile alkene insertion in the Mizoroki–Heck reaction: (b) F. Ozawa, T. Hayashi. *J. Am. Chem. Soc.* **113**, 1417 (1991).
9. Throughout this section, all chemical names for the products of hydrosilylative cross-coupling of alkynes with alkenes are given on the basis of common 4-organosilyl-1-butene frameworks, $R^1CH=CR^2-CHR^3-CHR^4-SiX_3$ (X = Cl or OEt), and not consonant with those by CAS (9CI).