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Abstract: In a crystal lacking inversion symmetry, in the presence of spin-orbit 
interaction, the spin degeneracy is in general removed at k # 0 even in the 
absence of an external magnetic field. Such is the case for bulk 111-V semicon- 
ductors having the zincblende structure. In nanostructures having a reduced 
symmetry with respect to the bulk, additional zero-field spin-splitting mecha- 
nisms are allowed. The interplay between the different spin-orbit interactions 
is thoroughly investigated and the relevance of the spin-splittings for excitonic 
properties is addressed. In particular, the competition between intraexciton 
exchange and single particle spin flips in the relaxation of the exciton lumine- 
scence polarization is analysed. 

INTRODUCTION 

It is well known that in crystals having a center of inversion the spin degeneracy of the electronic 
states is not removed by the spin-orbit interaction. In fact, time reversal symmetry guara_ntees that 
a state with wavevector k and spin up has the same energy of one having wavevector -k and spin 
down (Kramers degeneracy). Then, inversion symmetry guarantees that a state with wavevector 
-2 and spin down is degenerate with one having wavevector Therefore, in a 
centrosymmetric crystal, with spin taken into account, even in the presence of spin-orbit coupling, 
the electronic states at any given k are at least doubly degenerate. Of+course, the spin degeneracy 
is removed by the Zeeman interaction in an external magnetic field B which breaks time reversal 
symmetry. In crystals which are not centrosymmetric, however, the spin degeneracy of the electronic 
states with # 0 is in general removed by the spin-orbit interaction in the absence of any external 
magnetic field. Such zero-field spin splittings can be thought of as due to the total crystal electric 
field seen by the spin of a moving electron as an internal k-dependent magnetic field; such interaction 
does preserve time reversal symmetry. 

- 
and spin down. 

+ 
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The spin splitting in the rS conduction band of zinc-blende semiconductor compounds, due to in- 
version asymmetry, has been predicted long ago by Dresselhaus [l], and detected with different 
experimental techniques [2], one of its characteristic manifestations being a beating pattern in the 
amplitude of the magneto-oscillations [3, 41. The corresponding term in the effective mass Hamilto- 
nian is proportional to k3 and of the form 

where ai stands for the Pauli spin matrices, 7 is a material constant and the coordinate axes are 
parallel to the crystallographic cubic axes. In the degenerate I's valence band, instead, the splitting 
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is linear in k as given by[l] 

C aV = - k, J J’ - JJ; + J ~ J ,  - J~J,) + cyclic permutations) , 
( “ Y  

where J; are the j = 312 hole spin matrices, and C is a material constant. 

In semiconductor nanostructures such as asymmetric quantum wells or inversion layers, there are 
additional spin splitting mechanisms due to the lack of mirror symmetry with respect to the plane 
perpendicular to the growth axis. For the conduction electrons, in particular, Rashba[5] has pointed 
out the existence of a spin-orbit interaction linear in k of the form 

HR = a a .  (Z x i ) ,  (3) 

where i is the growth axis and a a phenomenological parameter. The Rashba term, in general, 
depends both on the band bending and the heterojunction discontinuities. In 111-V semiconductor 
asymmetric nanostructures, the total electron zero-field spin splitting is due to both the Dresselhaus 
and the Rashba contributions. 

The spin splittings in the bulk and heterostructures of zincblende semiconductors have been studied 
in many different contexts[6, 71. In the following, we report on our recent work on the electron spin- 
orbit couplings in 2D asymmetric nanostructures and discuss how such spin splittings are germane 
to exciton spin relaxation. 

2D ASYMMETRIC NANOSTRUCTURES 

A very useful theoretical approach to  the study of the electronic properties of semiconductor na- 
nostructures is the envelope function approximation. The simplest possible model to study in a 
consistent way the Rashba term as due to both interface discontinuities and band bending is the 
eight band - p’ Kane model. The resulting multiband effective mass Hamiltonian can be projec- 
ted on the subspace of the conduction electron states giving rise to a Pauli like equation for a two 
component wavefunction (f+, f-) containing all the effects of the electrostatic potential and material 
composition variation along i on the spin-orbit interaction. With the same notation as in Ref.[7], we 
finally have 

with 

and 
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Figure 1: Flat band asym- 
metric AlAs/ GaAs/ A1.3 Ga.rAs quantum well 
(width of 4 nm): solid and dashed lines re- 
fer, respectively, to the case with and without 
wavefunction penetration in the AlAs barrier 

3 t  
----I 

Figure 2: Spin splitting for the quantum well 
of Fig. 1 as a function of well width: the 
first and, when present, second confined state 
splittings are shown for a fixed parallel wa- 
vevector k = 0.03A-I. 

The f sign refers to spin up and down along the y direction, the 2D wave vector being set along x 
(i = k 6 ) .  The Kane momentum matrix element, taken to be independent of z [8], is denoted by P ,  
E,, E,, V, A are, respectively, the conduction band edge, the valence band edge, the band bending 
electrostatic potential energy and the spin-orbit splitting in the valence band. For a given k, the 
solutions E*(k) are the spin dependent eigenenergies; / E +  - E - I  being the zero-field spin splitting. In 
a lowest order perturbation treatment, the p term corresponds to the Rashba term (proportional to 
5 . x 2 ) .  When considering the dependence of /3 on z in equation (4) for a generic asymmmetric 
heterostructure, two contributions of the Rashba spin-orbit splitting can be identified: the first is 
proportional to the space-charge and/or external electrostatic field ( V ) ,  the second is related to the 
discontinuities of the band profiles (&, A). The former gives a spin-dependent term in the effective 
mass Hamiltonian proportional to the long range band bending, the latter corresponds to an interface 
short range term that, in the case of ideal abrupt junctions, can be dealt with using the following 
spin-dependent boundary conditions: 

f*  continuous and - -- '* df* p k f *  continuous. 
2m d z  (7)  

The two contributions to the Rashba term are in general comparable; under flat band conditions only 
the short range term survives, whereas in an inversion layer the interface contribution is negligible 
when the conduction band offset (the confining barrier) is much larger than the valence band offset. 
In the latter case, the Rashba term coupling constant can be expressed as: 

f i2  A 2Eg + A  
c y =  -- 

2m* E B ( E g + A ) ( 3 E g + 2 A ) e E '  

being E the electric field and m* the band edge effective mass. We stress that the above approach 
is equivalent to the solution of the multiband Kane model (nonparabolicity included) and that E,(z) 
and V ( z )  clearly do not play the same role, which is consistent with other treatments[lO, 111. As 
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Figure 3: Zero-field spin splitting at three 
points of the Fermi "surface" along different 
directions in k-space (indicated in the case 
of GaSb), as a function of the carrier density 
n, in inversion layers. The dashed line gives 
the isotropic contribution of the Rashba term 
alone. 
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Figure 4: Comparison of the computed total 
spin splitting averaged over the Fermi sur- 
face with that obtained in Ref. 10, shown by 
dashed lines. Two theoretical cases are con- 
sidered: one with both contributions to  the 
spin splitting and one with only the Dresse- 
lhaus term. 

an example, we consider the problem of the stationary states for electrons confined in asymmetric 
semiconductor quantum wells of the type A1,Gal-,As/GaAs/Al,Gal-yAs. Sizable splittings are 
obtained with a pure AlAs barrier on one side of the GaAs quantum well. The conduction band edge 
profile and the first bound state are as shown in Fig. 1. In Fig. 2 we plot the splitting at a fixed 
parallel wave vector k = 0.03A-' as a function of the well width. It also interesting to compare the 
results with those obtained in the infinite barrier approximation, when no wavefunction penetration 
is allowed in the AlAs barrier, as shown by the dashed lines; in this case, the difference is s m d  as 
the splitting is dominated by the penetration in the lower barrier junction. 

As mentioned in the introduction, the Dresselhaus term proportional to k3 also contributes to  the 
zero-field electron spin splitting in 111-V semiconductor nanostructures (symmetric or not). This 
splitting is much smaller than the quantized subband energy E of the confined electrons and its 
effects can be treated within first order perturbation theory. In this case, it is sufficient to take the 
expectation value of H o  on the unperturbed electron subband wavefunction without modifying the 
boundary conditions[l2]. The lowest subband of the triangular well corresponding to an inversion 
layer can be well described with the Fang-Howard trial function, 

where b is a variational parameter determined by minimizing the total energy. When the Dresselhaus 
term is comparable to the Rashba one, the spin splitting exhibits a typical anisotropy with respect 
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Figure 5: Anomalous magneto oscillations 
for a n, = 6.0 x lo1’ cm-’ GaSb heterojunc- 
tion under zero and 50 kV/cm of applied elec- 
tric fields. We have traced with envelope cur- 
ves the semiclassical magnetic breakdown fit. 

Figure 6: The 2D Fermi “surfaces” for the 
GaSb heterojunctions considered in Figure 5. 
The two curves correspond to the two spin 
split subbands and give the two sheets of the 
Fermi “surface”. 

to the 2 D  wavevector c [7]. The total spin splitting A, for a triangular well is given by: 

b4 b2 k4 A,(k,  0) = 2[(7’% + cu2)Ic2  + yCu(k2 - - )A2  2 sin 26’ t r2(k2 - b’)- 4 sin2 26‘]1/2, (10) 

where 6’ is the angle between the parallel wave vector and the z cubic axis. The total (Rashba 
+ Dresselhaus) spin splitting in inversion layers of InAs and GaSb is shown in Fig. 3 by the solid 
lines, the anisotropy being particularly strong for the case of GaSb (notice the difference between 
[ll] and [ll] directions). This anisotropic pattern has been recently confirmed directly by spin flip 
Raman scattering[9]. Our results for the spin splitting in a GaAs inversion layer averaged over the 
Fermi surface are shown in Fig. 4 together with the corresponding results from a more sophisticated 
calculation[lO]: in view of the transparency of our approach as well as of the uncertainty in the 
material parameters the agreement is quite satisfactory. 

A very sensitive probe of the electronic structure are the magneto-oscillatory phenomena like the 
de Haas-van Alphen effect: the magnetization exhibits a periodicity in 1 /B  with frequency given by 
h c S F / e  (Onsager relation) where SF represents the section of the Fermi surface (area in reciprocal 
space) perpendicular to the magnetic field g. In the presence of zero-field spin splittings, the Fermi 
surface has two sheets and, thus, the magneto-oscillations show a beating frequency proportional to 
S i  - S, [3, 41. In a two dimensional system such frequencies are simply proportional to the electron 
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Figure 7: Schematic diagram of the HH exci- 
ton spectroscopy, the states are labelled with 
the electron and hole J, quantum numbers. 
The two optically active states can be selec- 
tively excited with circularly polarized light, 
the two “dark” states are also shown. 

Figure 8: Schematic diagram of the heavy 
hole exciton spin relaxation: the two opti- 
cally active states can transform into one 
another either through a single step exchange 
spin flip or through a double step single par- 
ticle spin relaxation. 

densities in the split bands: 

O(z) being the Heaviside function and EF the Fermi energy. For strongly anisotropic splittings, the 
possibility of magnetic breakdown leads to a complex beating pattern from the measurement of which 
it is possible to extract very detailed information on the various spin splitting mechanisms[3,4, 7,131. 
As an example, we show in Fig. 5 the simulated de Haas-van Alphen effect for an inversion layer of 
GaSb with n, = 6.0 + 10” cm-2; the lower panel shows the effect of an additional bias field which 
increases the spin splitting anisotropy (see Fig. 6) leading to a very complex beating pattern. The 
heavy solid lines are the envelopes obtained from a semiclassical fit[7] based on the Fermi surface 
sections shown in Fig. 6. 

2D EXCITON SPIN RELAXATION 

With the development of fast time resolved spectroscopy it has been possible to address the question 
of the exciton spin relaxation in quantum wells as revealed by the decay of the degree of polarization 
of the luminescence excited with circularly polarized light. In a zincblende direct gap semiconductor 
quantum well (e.g., GaAs/AlGaAs), the fundamental optical absorption is dominated by the heavy 
hole exciton resonance. The heavy holes (HH) having a lower confinement energy with respect t o  
the light holes (LH) possess an angular momentum projection along the growth axis J, = &3/2. 
Therefore, the HH exciton may have an angular momentum projection J, = A2 or J, = fl as given 
by the sum of the electron and hole J, (see Fig. 7). The two latter states are optically active, while 
the former are “dark”; the active states are split from the dark ones by the short range electron-hole 
exchange interaction. The electric dipole selection rules relevant t o  optical orientation of the HH 
exciton are depicted in Fig. 7. The exciton spin dynamics following the excitation with circularly 
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polarized light rules the decay of the time resolved polarized luminescence[l4]. The depolarization is 
either due to a single step process driven by the long range exchange interaction in which electron and 
hole flip their spins simultaneously[l5] or to a two step process driven by single particle spin relaxations 
in which an optically active state first changes into a dark one and then into the oppositely polarized 
active one (see Fig. 8). It is therefore clear that if the rate of either one of the single particle spin flips 
(the electron spin relaxation rate We or the hole one Wh) is lower than the rate of the direct exciton 
exchange process (WX), the latter dominates. This is the situation observed in Ref. 14 in a high 
quality 150 A AlGaAs/GaAs symmetric quantum well, for which an accurate fit of the time resolved 
polarized luminescence gives WX = 1.5 . 10" s-l, Wh = 0.7 - 1.0 . 10IOs-', We = 0.3 - 3.0 . lo9 s-'. 
The hole spin relaxation rate is dominated by effects related to the HH-LH valence band mixing, 
and is fast compared to We. The electron spin relaxation is dominated by the (motional narrowing) 
D'yakonov-Perel mechanism[l6] related to the zero-field spin splitting A, by: 

we = (+)2 r p ,  

being rp the momentum scattering time (assumed to be related to the homogeneous linewidth). In 
this case, we estimate A, taking the expectation value of the Dresselhaus term on the exciton bound 
electron wavefunction obtaining: 

where L is the effective well width (allowing for barrier penetration), QII  the 2D exciton center of mass 
wavevector (from the kinetic energy related to the homogeneous linewidth) and a& the 2D exciton 
effective Bohr radius (given by a variational calculation). From A, N lOpeV and rp N 6ps, the spin 
relaxation rate turns out to be We N 1.4. lo9 s-l, i.e. of the right order of magnitude. However, such 
an agreement should be checked examining the expected trends of We with variations of well width 
and linewidth. In the conditions of Ref. 14, however, the sensitivity to We is very low because of the 
large value of Wx. Such a situation can be changed diminuishing Wx by a drastic reduction of the 
electron-hole overlap[l4, 151. This can be easily achieved by employing a system with space indirect 
excitons, as in biased resonant couple wells[l7] in which the radiative recombination rate (which 
scales with the electron-hole overlap like WX) can be reduced by a couple of orders of magnitude. 
A still more flexible experimental configuration can be realized with AlSb/InAs/(AlSb/)GaSb/AlSb 
polytype heterostructures[l8] taking full advantage of the type-I1 band alignment and the large spin 
splitting of the constituent materials. In the regime wh > we > WX, the exciton spin relaxation 
is dominated by the electron spin relaxation and a more sensitive dependence of the time resolved 
polarized luminescence spectra on the zero-field conduction subband splittings would occur. 
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