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SOME THERMODYNAMIC ASPECTS OF WETTING AND ADHESION
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Abstract — A general formulation is given of the thermodynamics of systems
consisting of a solid in contact with two fluid phases. The treatment
is based on a general theorem concerning the geometry of fluid interfaces
constrained by a solid surface originally derived by Gauss. The Laplace,
Young and Kelvin equations emerge as equilibrium conditions in appropriate
cases. Special attention is given to the stability of the equilibrium
states and to the irreversible processes which accompany various capillary

phenomena. This analysis forms the basis for a thermodynamic discussion
of a number of particular problems, including immiscible displacement and

imbibition, contact angle hysteresis, capillary condensation, the wetta—
bility of porous and powdered media and the adhesive force between wetted
particles.

1. INTRODUCTION

Most elementary discussions of wetting are based on a consideration of the free energy
changes which result from variations in the areas of solid/vapour (sly) and solid/liquid
(s/i) interfaces when a three—phase line of contact moves across the solid surface.
In this way familiar quantities such as spreading pressure, wetting tension, and work of
adhesion may be defined(1). However, these definitions refer to situations in which the
solid interface is planar and where changes in the area of the Z/v interface can be
ignored. In real systems, on the other, hand, wetting processes — in, for example, a
porous body or packed powder — involve changes in the areas of all three types of interface,
and a more complete thermodynamic analysis is needed. Furthermore, the behaviour of real
systems is often determined bymechanistic factors which lead to irreversible transitions
whose influence must be taken properly into account.

In this paper a fundamental geometrical relation due to Gauss is employed, together with
a general thermodynamic argument, to establish the familiar equations of Laplace and Young.
The range of validity of these equations is then discussed and formulations presented of
the thermodynamics of liquid/liquid displacement and of capillary condensation leading to
Kelvin's equation. The possibility of using measurements of adsorption from solution to
predict the wettability of porous or powdered materials is examined.

2. THE GAUSS EQUATION

The present discussion is based on the use of an equation derived by Gauss(2) and applied to
a system of two fluid phases a and in contact with one another and with a rigid solid S
along a three—phase line of contact. The importance of this equation has only recently
been appreciated(3,4,5), but it provides a convenient and general approach to a thermodynamic
discussion of multiphase surface systems.

O3 X5The changes in the a/ and a/S interfacial areas (dA ,dA ), and of the volume of phase a
(dVa) accompanying the displacement of the line of contact, are related to the curvature,

of the a/ interface (defined by C = 1/ri + 1/r2, where r1 and r2 are the principal
radii of curvature) by the equation

CdVa = dA° — dAaS cos 0 , (1)

where 0 is the contact angle, measured through phase a at the a/s/S line of contact. As
written, equation (1) applies only to a/ surfaces of constant curvature. For the present
purposes the equation needs to be expressed in a more general form, applicable when the
curvature varies from point to point on the surface.

This is readily done(6) by considering the contributions to dA from the movement of
elements of surface remote from and immediately adjacent to the line of contact (Fig. 1).
For each element of surface away from the line of contact 6A CacSVa, where 6A and SVa
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(b)

+ SA

a/ and ce/S surfaces:

(a)

= CVa

SA

6AS

6A = 5A5 cos 0

Fig. I Contributions to changes in areas of
(a) at an as—interface;
(b) at the three—phase line of contact.
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are defined for the displacement of an element of surface along normals to the surface
(Fig. Ia); while adjacent to the line of contact (Fig. Ib), 5A = cSA cos 0. Thus in
genral when C vajs across the cL/$ surface and 0 varies along the line of contact,
dA° = J6A + fsA9 where the first integral is taken over all elements of surface and the
second along the line of contact. Equation (1) can thus be written more generally:

J
= dA° — J cos 0 SAaS . (2)

a1°
line of

surface
contact

For reasons which will appear later it is convenient to introduce a quantity called the

'effective area', Aeff, defined by

dAeff =
J

(3)

surf ace

Integration of the right—hand—side of equation (2) gives

AaS

Aeff = —

J J
cos 0 6AaS (4)

A°—O line of—
contact

If the contact angle is independent of the volume of liquid (and hence of AaS), and does not
vary round the perimeter, this general definition reduces to the more usual form(7)

= — cos 0 . (4a)

An important feature of equation (2) is that it includes the case in whi.ch the shape of the
a/ interface, and hence AefE, varies at constant volume of a, i.e., dVa = JSVa = 0. This
is not true of the form of equation derived by Huang(6):

dA = <C> dVa + <cos 0> dA (5)

where the average curvature <C> is defined as fcva/fva which breaks down when = 0.

The above demonstration of Gauss's equation does not constitute a rigorous mathematical
proof and at first sight(4) might be thought to be inapplicable to the movement of an
interface past a mathematical discontinuity in the surface, during which the contact angle
is indeterminate. The area of a/S contact remains constant however, and equation (2) still
applies, the second term remaining zero during transit past the discontinuity. This may be
illustrated simply by considering the movement of a spherical meniscus through a sharp—edged
neck in a capillary (Fig. 2), for which during the hold—up of the movement of the a/s/S line
of contact:

(6)= a$1V — — 2v h2

r
—

(R—h)

0

Fig. 2 sharp—edged neck,
showing hold—up of line of contact during the readjustment of the angle of
contact.
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Finally, we stress that the general form of equation (2) is important in discussing the
shapes of menisci in external fields such as gravity, and close to an adsorbing surface(5).

3. THERNODYNANICS OF IMMISCIBLE DISPLACEMENT

We consider first the case in which a and are two immiscible one—component liquids as
represented in Fig. 3. Gravitational effects are excluded. It is supposed that the
a/13 interface is distributed in some arbitrary, though continuous, fashion within the
solid s A If the fluids are incompressible, movement of the left—hand piston through a
volume dV will be accompanied by an equal movement dVB of the right—hand piston and of the
ct/s interface through the same volume dV = _dVC = dV. The work done by the surroundings
during such a displacement is

d = (A — p)dV (7)

A

fl __
B

= dV = dVB

Fig. 3 Displacement of phase by phase a in a porous solid S by application
of a pressure difference A — B.

The total change of energy accompanying the process, which in general may involve irrevers-
ible displacement of at least some elements of the a/ interface, is thus given (using the
second law of thermodynamics in the form dS = dq/T + dS) by

dU = TdS + (A — P)dV — Td.S , (8)

where dS 0 is the amount of entropy produced irreversibly during the movement of the
interface. The differential of the Helmholtz energy is thus

dF = — SdT + (A — P)dV —
Td1S

. (9)

We now consider this total differential in terms of the internal variables upon which it

depends. In general

F = F(T,Va,v,AaS,A,Aa,na,n)
where and n are the amounts of material in the two phases. However, in this instance
Va, V, a and n are constant since there is no transport of material between phases. For
each surface the contribution to dF is assumed to be if the form faôA, the integral being

dA
taken over the element dA of the relevant surface. The a's (called interfacial tensions)
are thus defined as the partial derivatives of the free energy with respect to the conjugate
interfacial area. By writing these contributions in the form of integrals over the surface
regions, we allow the possibility that the interfacial tensions may vary across the surface.
The dependence of F on the length of the line of three—phase contact is ignored, i.e.,
effects arising from line tensions are omitted.

Thus

dF = — SdT + fa6A + JaA + . (10)
aS S a . . .If. the solid is rigid, 5A = — iSA and iSA can be eliminated using Gauss s equation to

give

dF = — SdT + JaC°6V° + f{aaS — a + cos o}SA° . (11)

The condition that the two equations (9) and (11) for dF shall be identical is thus

Td1S = EPA — P)dV - 5 aC0iSVJ — 5 {a0 — a + a° cos
(12)

If the system remains in equilibrium so that the change considered is reversible, then
dS = 0 and both terms in (12) must separately be zero:

A

dVA
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(A B)dVct faCc6vcs = 0 (13)

and, if ÔAS

oS Sc — a + a cos 0 = 0 . (14)

In the particular case where dAS o (cf. Fig. 2) and 0 is indeterminate, the condition

(14) no longer applies. These equations refer, respectively, to the establishment of
hydrostatic and contact angle equilibrium and will be discussed in turn.

4 . THE LAPLACE EQUATION

ct. . . . cThe total change dV in the volume of a is the sum of the contributions 5V from each
element of surface so that the equilibrium condition (13) can be written in the 'local'
form

(A B)óVc = (15)

whence

A B = caCcx . (16)

This is Laplace's equationwhich is often taken as a starting point in the theory of
capillarity: the present discussion shows how it follows from equation (2) and general
thermodynamic considerations. In the form obtained here, equation 16) implies that
since A and B are the external pressures exerted on the system, must be constant
over all the a/ interface. If a is constant, then the equilibrium surface is one of
constant curvature. However, if the system exhibits a dynamic surface tension different
from its static value, the possibility exists that ca8 may vary with time as o relaxes
to its static value. Thus, in principle, the present treatment can include Marangoni
effects. However, since it is generally supposed that one—component fluids do not exhibit
dynamic surface tension effects, we shall, for the present, assume constancy of ci over
the whole surface.

Since the molecular processes which establish the pressure difference across an element of
surface are expected to occur much faster than the bulk viscous flow needed to change the
curvature of the surface, we assume that equation (16) applies locally, A and B now being
replaced by p and p, the hydrostatic pressures immediately adjacent to the element of
surface under consideration, even though global hydrostatic equilibrium may not have been
established. If the curvature varies from point to point on the ct/s interface, a hydro-
static driving force, acting from regions of high curvature to those of low curvature, will
tend (in the absence of external fields) to produce a constant curvature interface.

It is to be noted that equation (16) applies to differences of hydrostatic pressure and
therefore to regions sufficiently far from the surface that the stress tensor is isotropic.
However, since in the interfacial region the deviations from a hydrostatic stress occur in
tangential components whose mechanical effects are taken care of in the introduction of
the concept of surface tension, in such regions equation (16) refers to the difference
between the normal components of the stress tensor on either side of the surface of tension.
Problems arise when the curvature is so high that in no part of the system is the stress

hydrostatic. The following discussion becomes increasingly less valid when applied to
menisci in micropores whose radii of curvature approach two or three times the molecular
dimensions of the components of the fluid phases. We note also that this is the
regime in which it may no longer be justifiable to neglect tensions in the three—phase line
of contact, and in which the surface tension depends on the curvature.

5. THE YOUNG EQUATION

Equation (14) establishes that the condition for local contact angle equilibrium is

— o = cos 0 , (17)

which is Young's equation. The main assumptions upon which this derivation is based are
that the solid is rigid and that line tension can be neglected. The effect of roughness
can be taken account of by noting that Gauss's equation, when applied to a finite displace-
ment across a rough surface, becomes (Fig. 4)

= dA — — cos 0 , (18)

where dAaS is the microscopic change in the surface area, 0 is the apparent macroscopic
contact angle, and r, the roughness factor, is the ratio of dAS to the change in the
apparent macroscopic surface area.
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Fig. 4 Movement of an cs/8 interface across a rough solid surface.

This leads to Wenzel's modification(8) of Young's equation

8S aS
a — a = (a cosO)/r (19)

This is, however, little more than a formal correction since, in effect, all that (19) does
is to indicate that the interfacial tensions yS and S should be defined with respect to
changes in the apparent macroscopic area rather than to the microscopic area change; and

when they are, Young's equation holds. Details of the local configuration of the o$ surface
close to a rough surface and for displacements small compared with the scale of roughness of
the surface become important, however, in the discussion of contact angle hysteresis (see
section 8).

6. IRREVERSIBLE PROCESSES IN IMBIBITION

We return to equation (12) and consider the case in which contact angle equilibrium is main-
tained so that the irreversibility arises only from the first term:

TdS = (A — B)dVct — fC6V° (20)

If the process occurs at constant volume, increases in associated with movements of
some elements of surface being exactly cancelled by decreases elsewhere,

Td.S = — a°1 .i
a c effC SV = — a dA

1
(21)

The interface thus adjusts itself spontaneously to a condition of minimum effective area
consistent with the condition of constant volume. This state of global Laplace equilibrium
corresponds, as shown earlier, to constant curvature of the ct/s interface.

Secondly, if the pressures on the two bulk phases are equal, equation (21) again applies and
spontaneous flow of fluid occurs to a state of minimum effective area.

More generally, writing dV = fcsv° and considering a local process

A B
TÔS

= 3p —p) — a (22)

If (A — B) — is positive, then a spontaneous local increase c5v will occur.

Equation (22) therefore defines the condition that, if the externally applied pressure
difference is maintained constant, a local irreversible jump in the volume of imbibed a

occurs (Haines jump(9) or rheon(10)). Jumps of this kind occur, as is well known, in the
displacement of a liquid from a capillary of varying cross—section (Fig. 5).

Fig. 5 Spontaneous motion of interface from P R.

a
dAaS/r

dAaS
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As the pressure difference (A — B) is increased, the meniscus moves reversibly towards P,
the curvature increasing to match the increasing pressure difference. At P the a/ inter-
face reaches a maximum curvature and the pressure difference a value (pA — pB)a consistent
with the contact angle and geometry of the pore: further movement leads to a decrease in
the local pressure difference and spontaneous imbibition occurs through unstable states
such as Q until at R the equilibrium curvature is re—established. The entropy production
in this spontaneous jump is given by

TdS = (A —
pB)adVa

— aa J (23)

and can be calculated from the pore geometry and contact angle. A similar instability
occurs during withdrawal of a when the retreating line of contact reaches a maximum in
the pore diameter at T and a spontaneous jump occurs at (p — PBr' see Fig. 7. As is well
known, these mechanisms provide a ready explanation of imbibition hysteresis.

Alternative forms of (20) are

and

Td.S = (A — B)dVa — adAeff (24)

TdS = J(aA — pa)6na + f(,B — p)c5n , (25)

(where ?, are local chemical potentials and those in the cylinders A and B).
Equation (25) shows that equilibrium is achieved when the chemical potentials a and p are
constant throughout phases a and .

7. IRREVERSIBLE MOVEMENT OF THE CONTACT LINE

The second term on the right of equation (12) refers to irreversibility associated with
the movement of the three—phase contact line. Considering a local process

aS S aT6.S = {a — a + a cos
1 (26)

Spontaneous movement leading to an increase in AaS occurs if {a — S + cos O} is

negative, i.e., if

asa — a > a cosO

s.ST 1cosO = cosO —
a e

i.e., 0 > 0 , and conversely, for receding contacta e

T 1cosO = cosO +

or 0 < 0 (Fig. 6).r e

(a) (b)

Fig. 6 Establishment of local contact angle equilibrium.

However, the equilibrium contact angle 0e is given by cos
an advancing contact line (6AaS > 0)

°e (5 aS a— a — a )/a so that for

line (ÔAa < 0),

(27)

(28)

I
I

I
I

dAaS
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These equations refer to the establishment of local contact angle equilibrium, and show the
tendency for a contact angle greater than the equilibrium value to decrease by increasing

ÔAS, and conversely. Since the distances which molecules have to move to change the
contact angle are small, it is usually assumed that local equilibrium is achieved and that
apparent contact angle hysteresis is to be attributed to other factors.

Recent treatments of contact angle bysteresis(1I,12,13) are based on models which depict real

surfaces as either geometrically rough, or intrinsically heterogeneous. Thus the observed
contact angle differs from that locally achieved either because the local tangent plane to
the surface at the contact line lies at an angle to the macroscopic surface (e.g., Fig. 4),
or because local variations in (y0S — cy) lead to variations in the intrinsic or local
equilibrium value of 0 depending on the particular patches of surface crossed by the line of
contact. However, in discussing contact angle hysteresis it is essential to consider not
only the local situations depicted in Figs. 4 and 6, but the constraints imposed upon them
by the global geometry of the system considered. Thus detailed treatments must be presented
in relation to a specific phenomenon such as the spreading of a sessile drop(11,13),
capillary rise(12) or motion of a drop on an inclined plane(14). In particular, the
stability of interfacial configurations has to be examined carefully to identify metastable
states and to describe the spontaneous transitions which ensue when the metastability
breaks down.

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

a/r

Fig. 7 (a) Sinusoidal capillary with a/A = 0.1; a/r0 = 0.667.
(b) Apparent contact angle as function of position of contact line in

capillary shown in (a), and for °e = 140°, showing °a and °r
corresponding to onset of spontaneous transitions.

(c) Cr0 (o A B) as a function of position of contact line in
capillary shown in (a), showing onset of metastability in imbibition
(0) and retraction (S).

(c) Dependence of contact angle hysteresis, L0 — 0r' on a/r0 for
case of a/A = 0.1; a/r0 = 0.667; 0e = 140°.

8. CONTACT ANGLE HYSTERESIS

0

y/a I

0

180

160

0 140
app

120

100

5
4
3

Cr
o 2

0

60°

400

(a)

(b)

(c)

(d)

20°

I I I I I I I 1 I I
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It is usually assumed that when contact angle hysteresis occurs the observed contact angle is
the apparent contact angle at the point where, in an advancing or receding process, the
system is about to undergo a spontaneous jump in the position of the line of contact. The
ensuing process depends on whether the pressure difference A — B is maintained constant,
dV is constrained to zero, or A B may be allowed to relax in some predetermined way
with dV.

As an example we consider the behaviour in a capillary whose radius varies sinusoidally with

distance along the capillary (Fig. 7a), when (A B) is steadily increased (or decreased)
until a spontaneous advancing (or receding) jump occurs at constant (A — pB): this depends
on °e and on the ratios of the amplitude ('k) of the radius variation to the wavelength (A)
and the mean capillary radius (r0). The apparent cofltact angle as a function of position
of the contact line is shown in Fig. 7b, for °e = 140 , a/A = 0.1, a/r0 = °•667A while
Fig. 7c shows the variation of curvature. Since A — B is proportional to the points
of onset of instability in advancing (0) and receding (0) processes are given respectively
by maxima and minima in curvature. The observed advancing (0a) and receding 0r angles
corresponding to these extreme values of can be read from Fig. 7b. The dependence of

the contact angle hysteresis gap, (0a — 0r) = AO, is shown in Fig. 7d as a function of a/r

Fig. 8 Motion of interface in capillary showing sharp discontinuities between
cones of angle of taper ± m: (a) advancing, (b) receding menisci.

0 < 180°—cee

o = 0 +
app e

0 = 180°—cre

0 = 180°
app

(a)

(b)

(c)

(d)

o > 180°—cee

0 = 180°
app

= 0 -oe
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which is a rough measure of the 'degree of roughness'. Similar curves are obtained for

other values of 0e' and a/A. If a/A and air0 exceed certain limits for a given °e' a

portion of phase is trapped behind the advancing contact line and more complex phenomena
result. When a/r0 ÷ 0, the situation approaches that in contact angle hysteresis in
capillary rise in a rough tube.

Similar considerations apply when sharp changes in contour occur: Fig. 8 illustrates a

simple example of alternating conical segments. The behaviour now depends mainly on the
relative magnitudes of °e and the angle of taper cx of the cones. When the contact line
reaches a constriction during imbibition, the contact line remains stationary while 0 changes.
When the contact angle with the exit cone reaches 0e a spontaneous jump gommences. If

this occurs before a hemispherical meniscus is achieved (case a, °e < 180 — cx), then

0a = 0e + cx. On the other hand if °e 1800 — cx, cases (b) and (c), the spofltaneous jump
occurs when a hemispherical meniScus just fills the constriction and 0a 180 . In the
reverse process the contact line retreats along the expanding conical section until a
maximum radius is reached (Fig. 8d). At this point a spontaneous increase in curvature
occurs, first at constant volume to achieve local contact angle equilibrium with the con-
tracting conical section, and then with expulsion of phase cx by movement along the cone.
The sequence of changes of pcx — p across the interface and 0app are shown schematically
in Fig. 9. Again if the angle cx is large and the cones short, trapping of phase can
occur during imbibition.

A B

cxp —p
A B

180°

0a

0
e

e
app

r

90°

Fig. 9 Pressure differences and apparent contact angles in advancing and
receding motion of interface in capillary showing sharp discontinuities between
cones of angle of taper ± cx. 0e < (1800 — cx) (schematic).
0, • points of onset of instability in advancing and receding respectively.

Similar considerations apply to the case of a heterogeneous capillary consisting of alter-
nating bands of surfaces of different surface energies.

9. THERMODYNAMICS OP LIQUID-VAPOUR DISPLACEMENT IN A ONE-COMPONENT SYSTEM

The discussion of this case follows that of section 3 except that the total volumes V, v
of liquid and vapour phases vary because of evaporation or condensation processes*.

* The present treatment differs from that given previously(5) for capillary condensation
only in that in the earlier discussion the Laplace equation was assumed a priori.

Vcx



Therndynainic aspects of wetting and adhesion 1289

A

.5 i: B

dVA = dV — dV £
dVB = + dV

dv g

Fig. 10 Movement of liquid/vapour interface through porous solid by combined
liquid flow and evaporation/condensation processes.

Denoting by dVA and dVB the volumeb swept out by movement of the pistons, it follows that

dVA = dV —

(29)
dVB = + dV

The work done man infinitesimal displacement is

AA B B.dw = —pdv — pdV
= — Adv2 — Bg + (A —

, (30)

whence

dF = — SdT — pAdV9 — pdV + (A — — Td.S . (30a)

Now since

F =

where n is the amount of adsorbed material at the g/s interface,

dF = — SdT — AdV — Bg + +

+ + fpn8 + fiASn2' + fpa6na , (31)

where the p's are chemical potentials which in the general case may vary throughout each
phase. . .

Using Gauss's equation, SA9' = —SA and + 6nZ + 6n = 0, leads to

dF = — SdT — Adv — Bg +

+ f{5 — + g cos OhSA

+ f(p - p)5 + f(;? - p8)n . (32)

The condition that (30) and (32) are identical is thus

Td.S = (A — — fac cos 0 6V

— f{5 — +05 0}&
+ f(p - p)6 + f(c7 - (33)

Equation (33) is an extension of equation (12) and as before demonstrates that global

euilirium corresponds to Laplace's and Young's equations being satisfied and to
Ti = ii =

In discussing capillary condensation we may assume that local Laplace equilibrium and local
contact angle equilibrium are established;, the latter also implies adsorption equilibrium,
so that

Td.S = f( — g)6 (34)
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The spontaneous processes contributing to d.S are (1) equalisation of p' throughout the
condensed phase by liquid flow to achieve g±obal Laplace equilibrium, and (ii) equalisation
of p and g by condensation or evaporation processes leading to so—called Kelvin equilibrium.
The application of these concepts to the problem of capillary condensation and capillary con—
densation hysteresis have been discussed previously and will not be repeated here(4,5). In

particular, if global Laplace equilibrium is maintained, equation (34) leads immediately to
Kelvin' s equation:

= —- = ln g,o (35)
m a v2

where hr is the mean radius of curvature. This equation can also be written in the form

dAeff = ln g,o d4 . (36)

10. WETTABILITY OF POROUS OR POWDERED MATERIALS

It is widely recognised that the interfacial tensions and a which appear in Young's
equation are not separately measurable although the difference between them can be obtained
from contact angle measurements. While in the absence of contact angle hysteresis this is
possible for macroscopic surfaces, there is no simple method of obtaining this quantity for
porous materials or packed powders: the Bartell tube method is essentially étnpirical(16).

The following method is in principle possible, but has so far not been tested experimentally.
We consider three liquids A, B, C, of which A and B and A and C are miscible in all propor-
tions while B and C are immiscible (for example, A = ethanol, B = benzene, C = water). If
measurements are made of the adsorption by solid S from mixtures of A and B over the whole

concentration range, then(17)
x =1

- =
(1 (37)

xBO

where is the surface excess concentration of B which is related to the measured change
LxB in mole fraction of B when a mixture of A and B containing n0 moles is equilibrated
with a mass m of solid of specific surface area a:
-

r= m (38)

Similarly a'5 — aCS can be obtained from adsorption measurements on A + C mixtures. From
the difference between them, a'5 — aC,S, and hence (knowing a) cos 8 for the B/C/S
interface. Thus a thermodynamic method is available for estimating the relative wetta—
bility of solid by liquids B and C.

11. ADHESIVE FORCES BETWEEN PARTICLES WETTED BY A VOLATILE LIQUID

The procedures employed earlier may be extended to include other interactions with the
surroundings, and in particular to a consideration of the forces between wetted particles.

Consider the arrangement shown in Fig. 11 in which two particles separated by a distance D
have a volume V of liquid condensed between them and in equilibrium with vapour at pressure
pg. A force f is required to maintain mechanical equilibrium.

In a process in which the total volume is changed by dV and the separation by dD, the work
done on the system is

dw = — — fdD . (39)

The first term can be written in terms of changes in volume of liquid and vapour:
dV = dV2' + dvg, and the local pressure in the liquid phase:

dw = — — fpôV + f(pZ — p)SV — fdD , (40)

where the integrals are taken over the whole of the /g interface. We now assume that the
local pressure p is given by the Laplace equation so that the differential of the Helmholtz
energy becomes:
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—f

Fig. 11 Adhesion between two particles wetted with a volatile liquid.

dF SdT — fp2vZ + g fcv2# — fdD —
Td1S . (41)

For two particles of defined geometry and mutual orientation the Helmholtz energy will be
a function of

T, A, A , and n2'

so that

dF = — SdT — fpdV9' + fScSA2#5 + fatSAs + fcsA9

+ fpn + fpZn2 . (42)

If we assume that local contact angle equilibrium is achieved, and using the definition
Aeff = — As2, cos 0 the total differential of F may be written

dF = SdT — — fpSv2, + + f( — g)6 (43)

Comparing equations (41) and (43) we thus obtain

Td1S = g fc2,vi — igeff — f(p2, — g) — fdD . (44)

It is important to note that Gauss's equation does not apply to the present case, since the
positions of the solid boundary surfaces are not fixed. Consequently the first two terms
on the right—hand—side of (44) do not cancel.

We now consider the condition of equilibrium (dS = 0) for two cases:

2, 2,
(i) at constant V , hence also dn = 0

eff

(f) — 9g A
(45)3D 2,'

while at constant =

ef [C -fr]
— . (46)

However, by considering A and V as functions of D and p it is readily shown that

_____ g 1v2, _____— _____ = C — (47)

so that these two conditions are equivalent.

We now consider how the force depends on p, and hence on the vapour pressure. From
equation (46)

[JD = } + . {C(.J] (']D1 . (48)

Now at constant D, dp = v2'dp2, = c so that I /(cTv), while by Gaus' s
equation the second term in brackets on the right—hand—side is zero. Hence since V2,/v n2,
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12D [SD]
' (49)

where n is the amount of liquid held between the particles. We note that this is an

extension to the capillary condensation region of the equation previously derived by Ash,
Everett and Radke(18) for the effect of adsorption on interparticle forces when

rA

[}D
, (50)

when I' is the surface excess concentration of adsorbed material and A5 the surface area
of the solid particles. If the particles are of different materials (S1, S2), then the
effective area may be defined as •

2S1Ae = _ A cos Gi — A cos 02 ' (51)

and the same results are obtained.

If the particles are non—spherical, then their mutual orientation affects f, V, etc., and
the torque exerted by one particle on the other is

eff
= — gf . (52)

V D

The stability of the bridge between particles held apart by a force f may be investigated

by considering

= — c[B2fl] . (53)

2eff 2Instability, at constant applied f, occurs at the point where (B A /BD )Z = 0.

The equivalence between the .thermodynamic formulation given here and the more conventional
force analysis can be demonstrated in simple cases (e.g., the force between parallel wetted

cylinders(19)). The use of a force analysis becomes more difficult when several particles
are involved; here the thermodynamic method making use of the effective area may prove to
be more convenient.

12. CONCLUSIONS

The objective of this paper has been to clarify, in a general thermodynamic context and with
the minimum of mathematics, the status of the various equations employed to describe wetting,
adhesion and capillary condensation phenomena. In broad terms the conclusions agree with
those of earlier workers(20), but the discussion appears to be simplified by using an
equation due to Gauss, and the concept of 'effective area'. In particular, the role of
the assumption that the solid is rigid is confirmed. The importance of considering the
stability of a given conformation of the fluid/fluid and fluid/solid interfaces is stressed
since many important real phenomena are dependent on the persistence, and then the break-
down, of metastable states. Brief discussions are given of immiscible displacement,

contact angle hysteresis and liquid—vapour displacement in capillaries. In problems of
adhesion, the relative positions of solid surfaces are not invariant but the treatment can
be extended to include the capillarity contribution to adhesive forces, which is shown to
have the same form as the equation previously derived for the effect of adsorption on
interparticle forces.

REFERENCES

1. see, e.g., R. Defay, I. Prigogine, A. Bellemans and D.H. Everett, Surface Tension and

Adsorption, Longman, London (1965), chap. I.
2. C.F. Gauss, Comment.soc.reg.scient.Gttingen recent., 7 (1830); Theorie der Gestalt

von Fltisiigkeiten (trans. H. Weber), Ostwald's Klassiker der Exakten Wissen—
schaf ten No. 135, Engelmann, Leipzig (1903).

3. J.C. Melrose, A.I.Ch.E.Journal, 12, 986 (1966); J.Coll.Interface Sci., 38, 312 (1972).
4. D.H. Everett and J.N. Haynes, .J.Coll.Interface Sci., 38, 125 (1972); Zeit.physik.

Chem.(N.F.), 82, 36 (1972); ibid., 97, 301 (1975).
5. D.H. Everett, J.CoTLlnterf ace Sci., 52, 189 (1975); in Characterisation of Porous

Solids (S.J. Gregg, K.S.W. Sing and H.P. Stoeckli, eds.), Soc.Cbem.Ind., London
(1979).

6. S.—T. Hwang, Z.physik.Chem.(N.F.), 105, 225 (1977).
7. E.C. Sewell and E.W. Watson, RILEM Bull., 29, 125 (1965); cf. ref. 4.



Thermodynamic aspects of wetting and adhesion 1293

8. R.N. Wenzel, Ind.Eng.Chem., 28, 988 (1936).
9. W.B. Haines, J.Agric.iiT, 20, 97 (1930).
10. J.C. Melrose, Can.J.Chem. ., 48, 638 (1970).
11. R.E. Johnson and R.H. Dettre, J.Phys.Chem., 68, 1744 (1964); Adv.Chem.Ser., 43, 112

(1964).
12. A.W. Neumann, Adv.Colloid Interface Sci., 4, 105 (1974); in Wetting, Spreading and

Adhesion (J.F. Padday, ed.), Academic Press, London (1978), p. 3.
13. C. Huh and S.C. Mason, J.Coll.Interface Sd., 60, 11 (1977).
14. E. Wolfram and R. Faust, in Wetting, Spreading and Adhesion (J.F. Padday, ed.),

Academic Press, London (1978), P. 213.
15. J.F. Oliver, C. Huh and S.G. Mason, J.Coll.Interface Sd., 59, 568 (1977).
16. F.E. Bartell and H.J. Osterhof, Ind.8.Chem., 19, 1277 (1927); F.E. Bartell and

H.Y. Jennings, J.Phys.Chem., 38, 495 (1934).
17. e.g., D.H. Everett, in Colloid Science, Specialist Periodical Reports (D.H. Everett,ed.)

Chemical Society, London (1973), Vol. 1, p. 58; D.H. Everett and C.E. Brown, in
Colloid Science, Specialist Periodical Reports (D.H. Everett, ed.) Chemical
Society, London (1979), Vol. 3, p. 63.

18. S.G. Ash, D.H. Everett and C.J. Radke, J.Chem.Soc.Faradayll, 69, 1256 (1973);
D.H. Everett, Pure and Applied Chem., 48, 419 (1976).

19. J.M. Haynes, private communication.
20. see, e.g., B.D. McLaughlin and P.L. de Bruyn, J.Coll.Interface Sci., 30, 21 (1969).




