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ABSTRACT 
7Li and 23 Na relaxation times in aqueous solution of Li+ and Na+ in the 
presence of an increasing amount of Mn2+ are reported. From these measure­
ments the cation-cation pair distribution function has been calculated. A 
distance ofapproach between Li+ (or Na +)and Mn2 + of ~4.5A has been found. 

The intermolecular proton relaxation rates of the acids CH3 COOD, 
CH3CD2COOD, and CD3CH 2COOD dissolved in water (D20) are presented 
and from these data simple acid-acid pair distribution functions are constructed. 
Association has been detected from excess intermolecular proton-proton 
interactions. In the solution of propionic acid the association is stronger as 
seen from the methylene group than from the methyl group. 

In the pure alcohols CD3 0H and C2 D 50H and their mixtures with inert 
solvents intermolecular proton relaxation is entirely of rotational character and 
permits conclusions concerning the depth of the potential characterizing the 
pair distribution function. 

1. INTRODUCTION 

Usually the total relaxation rate 1/T1 of a nucleus is separated into two 
contributions 

:, = Gl". + Gl". (1) 

The intramolecular relaxation rate, (1/T1)intra' is caused by the interaction 
of the relaxing nucleus with the nuclei and the electrons of the same molecule 
in which the nucleus resides. The intermolecular relaxation rate, (1/T1)inter' 

is due to the interaction of the nucleus considered with all other nuclei and 
electrons of the system. In this paper the 'system' will be a liquid in all cases. 
Equation 1 is not without problems: rigorously, equation 1 in itself implies 
a definition of the concept 'molecule' which may be different from the usual 
concept 'molecule' as used by the ehernist Indeed, the distinction between the 
first and second term of equation 1 is the existence and nonexistence of 
correlated motion ofthe various sources ofrelaxation producing interactions 
araund the reference nucleus for relatively short times-down to 10- 10 s. 
Weshall however notadopt this refined point ofview, rather weshall follow 
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the usual way and define the borderline between intra- and intermolecular 
contribution as given by the geometry of ordinary chemical molecules. Only 
magnetic dipole-dipole interactiön will be considered in the present article 
as the relaxation producing mechanism. Quadrupoleinteraction and scalar 
interaction may also be of importance but details cannot be described here 
due to the limited space. Relaxation by spin-rotation interaction and aniso­
tropic chemical shift are typical intramolecular processes. 

The other quantity we are interested in is the molecular pair distribution 
function which we denote as p(r0). We understand this function in the sense, 
that dp is the probability of finding a specified molecule (or nucleus) in dr

0 
at r 0 relative to the reference nucleus selected at random, i.e. dp = p(r 

0
) dr 

0
• 

The normalization of p(r 0) is chosen to be 

1 = J p( r 0 ) dr 0 

where the integral is extended over the entire system, i.e. the liquid. Then the 
intermolecular relaxation rate caused by magnetic dipole-dipole interaction 
and the pair distribution function are interrelated in the following way1

: 

the intermolecular relaxation rate is a linear combination of a number of 
spectral intensities J(w1), J(w2), J(w3) 

( ; ). = y;h2
{ aJ(w 1) + bJ(w2 ) + cJ(w3)} 

1 mter 

(2) 

a, b, and c being constants given by the theory and 

Wz = WI 

W3 = WI +Ws 

where w1 and w ... are the nuclear magnetic resonance frequencies of the 
relaxing nucleus and that of the interaction partner, respectively (in the case 
of like spins w1 = ws, a = 0). J(w) is the Fourier transform of the time 
correlation function 

(3) 

+oo 

J(w) = J g(t) e-iwt dt. (4) 
-oo 

For g(t) we write: 

f f Y~*(O, c/J) Y~(00, c/1 0) ) d 
g(t) = .!V 3 · 3 p(r0 ) P(r0 , r, t dr0 r. 

r r 0 

(5) 

y~*(O, </>) is the spherical harmonic of order 2. On the left hand side of equa­
tions 3 and 5 the superscript m is dropped which indicates that for the isotropic 
systemtobe treated here g(t) does not depend on m. 0 and c/J are the polar and 
azimuthal angles of the vector r relative to the Iabaratory system, the z 
direction being given by the magnetic field. r = { 0, c/J, r), r connects the 
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reference nucleus with another particle which is the interaction partner. 
Both particles undergo diffusion relative to one another, thus r = { 8(t), </J(t), 
r(t)}. 80, <Po and r 0 stand for r = {8(0), </>(0), r(O)}. P(r0 , r, t), the propagator, 
determines 

dP = P(r 0 , r, t) dr, 

the probability that a particle is in dr at r relative to the reference nucleus at 
timet ifwe know that it was at r0 at time 0. The number .JV'which appears in 
equations 3 and 5 is the number of magnetic dipoles present in the system, 
e.g. for 1 mole water .JV' = 2·6 x 1023

. The fact that g(t) is written as a sum 
of .JV''self-correlation' terms implies that all cross-correlation terms between 
different particles are neglected. 

The function P(r 0 , r, t) generally is not known precisely. Very often 
P(r 0 , r, t) is approximated by the solution of the translational diffusion 
equation. Use of jump-models for the derivation of P(r 0 , r, t) is another 
possibility2

. 

Equation 5 contains the quantity we are interested in, namely the pair 
distribution function p(r 0 ). In principle one has to introduce any given 
functional form of p(r 0), to solve the integral equation 5 and then to see 
whether the calculated intermolecular relaxation rate is in agreement with 
the observed one. Usually for pure liquids the efficiency of such a method is 
not great for several reasons: (a) the intermolecular relaxation rate is not 
very sensitive to relatively weak maxima and minima in p(r 0)

3
• 
4

; (b) the 
molecule which carries the relaxing spin in most cases is not of spherical 
symmetry with respect to the nucleus considered whereas equation 5 is 
derived only for spherical particles with the spin in their centre-Hubbard's 
recalculation of the intermolecular relaxation rate has taken account of this 
complication5 ; (c) P(r0 ,r,t) is not known precisely; (d) correlation effects 
among the motions of different particles are neglected, no theoretical treat­
ment has as yet been given to investigate this question. 

So the usefulness of a direct evaluation of equation 5 seems tobe confined 
to mixtures where a priori very little is known about p(r 0) and where even a 
rough knowledge of p(r 0 ) is of value. : 

Weshall give two examples for a 'direct' evaluation of p(r 0) from equation 5, 
firstly the ion-ion pair distribution function between two cations in an 
aqueous electrolyte solution, and secondly the pair distribution function 
between two carboxylic acid molecules at relatively low concentration in 
aqueous solution. In both these cases the concentration of the particles, the 
distribution ofwhich is desired, is comparatively small, i.e. small as compared 
with the particle concentration in the liquid. Furthermore-at least in the 
first type of. system--the distances between the interacting particles are 
large; both these facts justify the use of a propagator P(r 0 , r, t), which is 
derived from the diffusion equation, in first approximation. 

lt is clear that the propagator P(r 0 , r, t) and the distribution function 
occuring in equation 5 are in some way interrelated. So in a second approach 
to the determination of the cation-cation distribution function we shall 
correct the propagator in a simple and intuitive way. 

The third example which we wish to discuss concerns metbanal and 
ethanol as pure liquids andin their mixtures with inert solvents. Whereas in 
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the two former examples weshall consider P(r 0 , r, t) and p(r 0 ) tobe essentially 
independent of one another, now with the alcohols, we shall have the other 
limiting case and shall use the fact that the propagator P(r 0 , r, t) corresponds 
to very tight binding of two alcohol molecules. Having established this tight 
binding-by study of the experimental results-and the corresponding form 
of the propagator, it will then be possible to draw certain conclusions 
regarding p(r 0), namely the depth of the potential well implied in p(r 0 ). 

2. THE CATION-CATION RADIAL DISTRIBUTION FUNCTION 
FOR Li+ -Mn1 + AND Na+ -Mn1 + 

Herewe make use of the magnetic dipole-dipole interaction between the 
nuclei 7Li or 23Na and the unpaired electrons of the ion Mn2 +. The 7Li 
relaxation in Li+ solutions have been studied in the presence of Mn2 +. In all 
these systems the nuclear magnetic resonance frequencies ( of 7Li and 23Na) 
are very much less than the reciprocal of the time constants characterizing 
molecular motions. 

It may be shown that in this situation equation 2 reads 1 

(6) 

y 1 = gyromagnetic ratio for the nucleus the relaxation of which is studied, 
here 7Li or 23Na. 
Ys = gyromagnetic ratio for the unpaired electrons of the paramagnetic ions. 
S = spin of the paramagnetic ion (S = i for Mn2 +). 
W

8 
= electron spin resonance frequency. 

It is also useful to write the analogaus expression for 1/T2 
1 

( ; ). = y;y;h2S(S + 1) ;
5 

{141(0) + 26J(w8
)}. (7) 

2 mter 

One sees: 

and 

if 

As already mentioned we take the propagator P(r 0 , r, t) to be the solution 
of the diffusion equation 

1 { (r- r 0 )
2

} 
P(r O' r, t) = (87tDt)f exp - 8Dt (8) 

where D = mean translational self-difTusion coefficient of the two interacting 
ions e.g. 

D = ~Du+ + DMn2+ ). 

Since both ions move relative to one another, the diffusion coefficient has 
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been multiplied by a factor of 2 in equation 8 1
• Usually one takes a step 

function for p(r 0) in equation 5 

p(r 0) = 0 for r 0 < d 

p(r 0) = const. = 1/V for r0 ~ d. 
(9) 

V is the volume ofthe system, d is the closest distance of approach between the 
ions. 

Forthisdistribution function g(t), equation 5 can be calculated in a closed 
form: 

00 00 

g(t) =NI p e- 2Dtp' {f Jir~r) drr dp (10) 

0 d 

N = ff/V 

J t = Bessel function of ordert; and the Fourier transform is 

(11) 

u = p.d, 

It may be shown that the combination of equations 6, 7 and 11 yields 

(12) 

(13) 

which is valid if the electron spin relaxation time -r ;p -r. This is indeed true 
for our solutions, -r ~ 10- 11 s (see below) and -r: = 3·10- 9 s10, f(ws-r) is 
a bell shaped function with the properties8

• Y 

/(ws-r) = 1 for ws-r--+ 0 

j(ws-r) = 0 for ws-r--+ ± oo. 

So far the cation-cation distribution function is only characterized by the 
distance of the step in this function from the reference ion. This distance is d, 
the closest distance of approach. Since -r may be obtained from the frequency 
dependence of the experimental (1/T1)inter' d can be calculated from the 
absolute value of the relaxation rates according to equations 12 and 13. 

Since the step function is certainly only a rough approximation to reality 
we improved the form of p(r 0) by writing 

1 {(r0 - a)/(d - a)}m 1 
p(ro) = fm(ro)y = 1 + {(ro- a)/(d- a)}m "y for a ~ ro 

(14) 
for a > r 0 
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The parameter m determines the steepness of the function p(r 0); for m -+ oo 
we obtain the step function, see Figure 1. For all m we have f (a) = 0 and 
f(d)-.1 m 

m - 2' 

1.0 

B 
...... 0.5 

X 

w~---------------------------

~o:t , ~ .L' 8 i 
ro 

Figure 1. Upper part: Graphical representation of the function fm(x). Lower part: f 3 (r
0

) for the 
pair distribution Li+ (or Na+) ion-Mn2 + ion at 2SOC. 

Furthermore, we corrected the propagator 
2 { (r- r )

2
} P(r 0 , r, t) = f m(r). (SnDt)- 2 exp - SDto 

in an intuitive way in order to take account of the repulsive force which 
hinders the two cations to approach towards one another. With these two 
modifications equations 10 and 11 take on the form 

00 00 

g(t) =NI p e- 2
Dtp' {f fm(r) J~~r) drr dp (15) 

0 

(16) 

andin particular, for the extreme narrowing case: 9m2 r:2/d4 ~ p4 

00 00 

J(O) = NI {I f (r) J t~r) dr}2 dp 
D m r2 p 

(17) 

0 

which can no Iongerbe evaluated in a closed form. 
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In Figure 2 the longitudinal and transversal relaxation rates of 7Li at 25°C 
are shown. 7Li is present as Li+ in aqueous solution at a constant concentra­
tion 1M (M = molarity, moles 1- 1 

). The relaxation rates are given as a function 

1500 

-;- 1000 
Ul 

c.n 
....:- 500 
........ 

0.5 1.0 2.0 

18 MHz 

6MHz 

6MHz(A) 

18MHz(o) 

Figure 2. Transversal and longitudinal relaxation rates of 7 Li in solutions of 1 M LiCl with 
increasing concentation of MnC12 (cP, in moles l- 1

, M), at 25°C. 

of c, the concentration of Mn2 + (c in moles 1- 1
). Both salts are chlorides. 

Thldata are presented for two freqriencies: 18 MHz and 6 MHz. 1/T1 is seen 
to be independent of the frequency within the experimental error, whereas 
1/T2 increases slightly as the frequency increases by a factor 3. The ratio 
T 1/T2 is also given in Figure 2 and will be discussed below. From the in­
dependence offrequency of 1/T1 we conclude that either rws ~ 1 or rws ~ 1. 

This question can easily be answered: in the former case frequency 
independence should be preserved when the temperature is raised, in the 
latter case frequency dependence should appear at higher temperature. 
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Figure 3 shows that 'WJs ~ 1 is indeed correct at room temperature. At 86°C 
we find 

1/T1 (6 MHz) = 1.3. 
1/T1 (18 MHz) 

(At low temperatures, 9 < 25°, we find 1/T1 (6 MHz) slightly less than 

80 

60 

IJl 40 t: 
~ 

20 

0 

Cp=0.2 

0 10 30 50 

T°C 

70 90 

Figure 3. T
1 

of 7Li as a function of the temperaturein two solutions: 1M LiCl + 0.2 M MnCl, 
and 1 M LiCl + 0.6 M MnC12• 

1;T1 (18 MHz). This finding must be ascribed to a systematic experimental 
error). Thus from equation 6 

1 + ~J(wsi:) = 1 3 
1 + ~](3wsr) · 

(ws = 6.38.1010 s - 1 is the electron spin resonance frequency corresponding 
to a 7Li nmr frequency 6 MHz). Graphical evaluation yields r = 1.57.10- 11 

s at 9 = 86°C. 
The activation energy for translational diffusion in H 20 is about 

4 kcal mole- 1, thus r = 5.10- 11 s at 9 = 25°C. This gives /(wsr:) < 0.1 w_hich 
explains our finding that the frequency dependence is beyond detectability 
at room temperature. As a consequence we shall neglect the second term in 
the brackets of equation 12. Then we are left with the 'extreme narrowing' 
formula which only contains J( 0) according to equations 17. The self diffusion 
coefficient D depends on the concentration. We put 

1 1 
l5 = n (1 + bcp + ... ), 

0 

b = const. 
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This is one reason for the deviation from linearity of (1/T1)inter as shown 
in Figure 2. We may write equation 17 as 

2 N 
J(O) = g.J{O)stepfunction = g.15 dD 

where the factor g takes account of the effect of the real smooth distribution 
function. Further: N = N 

0
c , N 

0 
= 6.02 ·10- 20 cm- 3

. Taking all these 
results tagether we obtain folequation 12 

(~) = y;y;nzS(S + 1) 8n.gN ocv (_!__ + ... ) 
Tl inter 75d Do 

and 

( d(l/;;:•·"}~o = r;r;h2 S(S + 1) ~~~~~ 
where we have set d = const., i.e. we have neglected a possible concentration 
dependence of d, the parameter of approach. D0 we take from conductivity 
data. Since the ionic conductivity of Mn2 + is not available, we use the value 
for Mg2 +. Mg2 + and Mn2 + have the same ionic radius. At infinite dilution 
D0 = ~ (D Mg2+ + Du+) = 0.87 · lo-s cm2 s - 1. This has to be divided by 
1.17, since we have a constant concentration of 1 M LiC111 ; i.e. D 0 = 
0.75 · 10- 5 cm2 s - 1. Our experimental slope of (1/~)inter at cP--+ 0 is, see 
Table 1, 

{d(l/T1)inte/dcPLp=o = 180s-1 M-1 

for both frequencies. Then with the step function (g = 1) our result is: 
d = 4.9·10- 8 cm. 

Table 1. 7Li relaxation times ·in the system Li Cl + MnC12 at lower 
concentrations, 9 = 25 ± 0.5 oc. 

cP Tt 1/_If Tz 1/_Tj 
moll- 1 ms s ms s 

(a) at 6 MHz 
0·05 121 8·27 
0.1 61 16.4 55 18.2 
0.2 31 32.2 27.5 36.4 
0.3 17.3 57.8 16.7 60 
0.4 13.7 73 11.8 85 
0.6 8.0 125 7.0 143 
1.25 3.25 317 2.75 364 

(b) at 18 MHz 
0.05 120 8.33 107 9.35 
0.1 57.8 17.3 52.5 19.0 
0.15 36.3 27.5 32.5 30.7 
0.2 28.0 35.7 22.9 43.7 
0.3 17.2 58.1 14.0 71.4 
0.4 13.0 77 11.0 91 
0.6 7.99 125 6.08 165 
0.8 5.55 180 3.90 256 
1.25 2.97 336 2.13 470 
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Next we performed the numerical calculation of the more general form of 
the integral in equation 17,/m(r) not being a step function. According to equa­
tion 14 we have to choose a distance a where p(r0 ) = fm(r 0 ) = 0. We assumed 
a = 2.6 A, the distance from the Li+ ion to the midpoint between two water 
molecules which are members of the tetrahedral first hydration sphere of 
Li+. We performed the calculation of the integral equation 17 at d = 4.5 A. 
First we checked the reliability of the numerical calculation through · com­
parison of its result with the exact mathematical solution using the step 
function for f m(r 0), namely 2/15 d. The number of computational operations 
needed for the evaluation of the double integral is of the order 105 , so one 
necessarily obtains an appreciable amount of computational and rounding 
errors. The computation was carried out until the result was within 4.3 per 
cent of the theoretical value of 2/15 d. Then we chose a number of parameters 
m and calculated the results listed in Table 2. 

T able 2. Double integral in equation 17 in per cent of 2; 15d. 

m aA dA 

stp. fct. 4.5 95.69 
33 2.6 4.5 94.09 

3 2.6 4.5 88.21 
4 2.6 4.5 90.27 
5 2.6 4.5 92.10 
3 2.0 3.0 90.10 
3 2.5 3.0 93.39 

We see from this table that the influence of the smoothed distribution is 
small. The double integral with m = 3 is by a factor 0.93 smaller than the 
one with m ~ oo (step function) for the same parameter d. Conversely, 
accepting m = 3 tobe a reasonable approximation of the truth we have to 
reduce our parameter d previously found for the step function by 0.93. So 
our final result is (see Figure 1) 

{(r0 - 2.6)/(4.5 - 2.6)} 3 1 
p(ro) = 1 + {(r

0 
- 2.6)/(4.5 - 2.6)} 3 V 

Had we used only the corrected pair distribution function and the uncorrected 
propagator, then the result would be d = 4.7 A. With our das obtained with 
the step function, d = 4.9 A, we can calculate -r = d2/6D = 5.3·10- 11 s 
which confirms our previous finding. 

We add abrief comment regarding the transversal relaxation rate. Fora 
correlation time -r = 5·10- 11 s we expect TdT2 = 1.17 (see equations 12 
and 13). Our experimental error for T1 and T2 is several per cent. We see 
that at 6 MHz, T 1/T2 is close to the expected value, but at 18 MHz, T 1/T2 
seems tobelarger than 1.17, the effect being outside the experimental error. 
The easiest way to explain this effect is to assume that there is some contribu­
tion from scalar interaction to 1/T2 • In this event the correlation time for this 
mechanism should be rather long: it should be equal to the electron spin 
relaxationtime -rs = 3·10- 9 s. Then (1/T1)scalar'"" -rs and Ts increases_ as the 
frequency increases. Assurne that at 6 MHz the scalar contribution to 1/T2 
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is 10 per cent, then at 6 MHz, T1/T2 = 1.28 and one estimates from the frequency 
dependence of rs 12 that T 1jT1 = 1.35 at 18 MHz. The physical model under­
lying this estimate is the following. A very small fraction of Li+ ions is close 
to the Mn1 + -probably to a Mn Cl+ or MnC11-complex-for a rather long 
time. Thus rs acts as the correlation time for scalar coupling. 

In Figure 4 results for LiN03 in solutions with Mn(N0 3) 1 are presented. 
The initial slope is again ~ 180 s - 1 /M, and the approach parameter one 

2000 18MHz 

6 MHz(6) 

1500 

I 
2000 

V1 

N ..._ 
1000 

1500 

500 
I 
lf1 

1000 
...:-...... 

1.0 

6MHz(6) 
500 

18MHz(o) 

1.3~ 
K" 1.2 L--~____;:;6;:__ __ --;;::-_----,~"r---___;;;Q;",..._,_ 
" 1.1 Li 6 6 
~ 0 1.0L.._ ___ ....L.,_ ___ _,__ ___ ___..L,. ___ ___,_ __ 

1.0 2.0 3.0 4.0 Cp 

1.0 2.0 3.0 4.0 Cp 

Figure 4. Transversal and longitudinal relaxation rates of 7Li in solutions of 1 M LiN03 with 
increasing concentration (cP) of Mn(N0 3) 2 at 25°C. 

calculates is the same as that for LiCl + MnC11. Thus the cation-cation 
distribution does not depend markedly on the nature of the anion. The ratio 
T 1/T1 however does not show an anomalous increase which we have 
ascribed to scalar interaction in the case of the chloride. Thus, in nitrate 
solutions scalar interactions is less as will again be seen shortly. 

Figures 5 and 6 show the 13Na relaxationrate in Na+ + Mn 1 + solutions. 
Again cNa+ = 1 M, being kept constant in all experiments. It is seen that the 
general relaxation behaviour of Na+ is very similar to that of Li+. Within 
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1.0 ~------'---------'--' -------'-----
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Figure 5. Transversaland longitudinal relaxation rates of 23Na in solutions of 1M NaO with 
increasing concentration (cP) of MnC12 at 25°C. 

the experimental error there is no frequency dependence of 1/T1• However at 
high concentration we find 1/T1 (18 MHz) > 1/T1 (6 MHz) which cannot be 
physically correct and must be due to a systematic error in our experiments. 
We get a consistent description if we assume that 1/T1 (6 MHz) = 1/T1 
(18 MHz) at c ~ 4 M, then 1/T1 (6 MHz) is 10 per cent larger than 1/T1 
(18 MHz) at lo~ concentrations and 

1 + ~](mst:) = 110 
1 + ~](3wst:) · 

yields t: ~ 4.5 · 10- 11 s. The quadrupolerelaxationrate ofNa + is greater than 
that of Li+. At Cp :--+ 0,1/T1 Na+ = 17 s - 1 13

• 
14

, at cP = 1 M we estimate a 
quadrupole contribution 1/T1 Na+ ~ 25 s- 1 (viscosity and water reorientation 
time in MgC12 solutions increase by ~ 40 per cent at c = 1 M). From these 
numbers and our experimental data given in Figure 5 and 6 we find the 
magnetic dipole-dipole contribution to the increase of 1/T1 : 
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Figure 6. Transversaland longitudinal relaxation rates of 23Na in solutions of 1 M NaN03 with 
increasing concentration (cP) of Mn(N0 3) 2 at 25oC. 

{d(1/~1 )inte/dcPt =
9 

= 80 ~- 1 • The ~ean self diffusion coefficient in 1 M 

NaCl1s ~0.93 ·10- cm2 s \ then With 1 + ~· f(w
5
-r) = 1.185 we calculate 

from equation 12, d = 4.7 A. With this d, -r = d2/6D = 4.0·10- 11 s which 
we consider tobe in satisfactory agreement with our -ras previously estimated. 
Thus we obtain the result that the approach between Na+ and Mn2 + is 
described by substantially the same p(r0 ) asthat obtained for Li+ and Mn2 +. 

Again the effects caused by scalar interaction between the spins of Na+ 
and Mn2 +, which should be observable through the T 1/T2 ratio, are stronger 
for the chloride than for nitrate (see Figures 6 and 5). The correlation time 
seems to be shorter here than for Li+. However the experimental results 
which arerelevant for this question arejustat the Iimit of experimental error. 
In Figure 7 the chemical shift of the 23 Na resonance in solutions of Mn2 + 
salts is depicted15

. The shift is caused by scalar interaction 16 and it will be 
seen that the scalar interaction is most effective for chlorides. The Li+ 
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chemical shift is much smaller15
, the coupling constant is smaller but other 

factors arealso important17
• 

18
• 

-100 

E 
c. 
c. 

-75 

CIO- 50 

-25 

Na CL 

NaBr 

Figure 7. Chemical shift ofthe 23 Na resonance in solutions containing 1M NaX and an increasing 
concentration (c) of MnX2 • X = Cl, Br, N03, as indicated in the Figure; X = fS04 : +; 

X= Cl04 :0U1 = 25°C). 

3. MOLECULAR DISTRffiUTION FOR CARBOXYLIC ACIDS 
IN AQUEOUS SOLUTION 

Next we consider aqueous solutions of carboxylic acids. The two examples, 
with which weshall deal at present, are acetic acid and propionic acid. The 
pair distribution functions of these acids in aqueous solution are of great 
interest because they might reveal what is called hydrophobic association, 
i.e. association which is due to the presence of the hydrophobic alkyl groups. 

In these diamagnetic liquids we always have the situation of 'extreme 
narrowing', i.e. wlr ~ 1, which has the consequence that spectral intensities 
at w = 0 are the only ones which occur in equation 2, equation 17 being again 
the correct expression for J(O). For f m(r) we use the step function and, as 
may be shown 1, the result to be used is: 

( 
1 ) 4 2 8n N 1 

- . = yih 1(1 + 1)lsd' 
Tl mter D 

(18) 

Since we apply this formt.Jla to carboxylic acids dissolved in D 20 the meaning 
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of the symbols is as follows: (1/T1)inter = intermolecular relaxation rate of a 
given proton in the acid (see below), ''h = gyromagnetic ratio of the proton, 
I = t = spin of the proton, N1 is the number of protons per cm3 in the 
solution (water is always D 2 0 !), d = closest intermolecular distance of 
approach between the acid protons considered, D = self diffusion coefficient 
of the acid. From equation 18 we see that 

( ; ). ·: = A = const. (19) 
1 mter I 

should hold. If however we find 

{GJ..."·~l,=ll > {GJ..."~l,,",, 
then, since d is considered to be constant and given by the geometry of the 
molecules, equation 18 must have the form 

(~) = ·lh21(1 + 1) 8rc (KNI) 
Tl inter I 15 dD 

(18a) 

where K > 1 at small concentrations and K = 1 at high concentrations, 
i.e. the local concentration of spins araund the reference molecule is greater 
than the average concentration in the whole solution. In other words, we 
have a nonuniform molecular distribution which may also be called associa­
tion. 

In Figure Ba the intermolecular relaxationrate of CH 3COOD in D 20 is 
shown as a function of the concentration: number of acid molecules; cm 3 . 

These data are obtained from the total protonrelaxationrate ofCH3COOD in 
D 20 and from the deuteronrelaxationrate ofCD3COOH in H 20. Details will 
be published elsewhere19

. The experimental uncertainty ofthe intermolecular 
relaxation rate is ± 15 per cent. The self-diffusion coefficient of CH3COOD 
in D 20 has also been measured20 and the product (1/T1)inter. D/N may be 
calculated. The result is shown in Figure Be. lt is clearly seen that this product 
is }arger at small acid content than for the pure acid. Thus we have a crowding 
of acid molecules araund one acid molecule selected at random. In principle 
one could assume an appropriate p(r 0), which is not a step function but which 
has a distinct maximum at small interparticle distances, and calculate the 
integral equation 17 numerically as we did for the electrolyte solutions. But 
as we have not yet performed these calculations, here we shall present an­
other, simpler procedure. 

From equation 18 we calculate the distance d for the neat acetic acid 
(D = 0.97·10- 5 cm2 s- 1 at 25°C). The result is d = 3.17 A. This d is an 
effective distance of approach taking account of the nonspherical shape of 
the molecule and of internal rotation of the CH3 group. Then we calculate 
(1/T1 )inter according to equation 18 for the mixture, D being given. The 
result is the dashed line in Figure Ba. ß(1/T1)inter' the difference between the 
observed and calculated intermolecular relaxation rate, is due to the inter­
action with acid protons which are closer to the reference molecule than 
they should be, were the uniform random distribution valid. We consider the 
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Figure 8. Intermolecular relaxation rates of protons in (a) CH3COOD + D 20, 
(b) CD3CH2COOD + D 20, CH 3CD2COOD + D 20 as a function of the acid concentration 
N, given as acid molecules per cm3

• Dashed curves: calculated intermolecular relaxation rates. 
(c) (1/T1)inter' D/N as a function of the mole fraction of acid, x2• In the top of (c) the two concen-

trations in units of 1021 molecules per cm3 corresponding to the mole fraction are given. 

'half-space' defined by the solid angle 2n around the C-C bond direction 
of the acid molecule and containing only the methyl group. Thus the carb­
oxylic oxygens and the OD hydrogen are not cantairred in this half of the 
space surrounding a molecule. We estimate the mean distance between the 
reference proton in the methyl group and the methyl protons ofthe associated 
acid molecule-which of course are in the 'half-space' indicated above-to 
be b ~ 2 A. The vector connecting one of these associated protons with the 
reference proton is considered to be of almost constant length for a time 
r ~ 10- 11 s. After this time the associated partner molecule has lost its local 
correlation with the reference molecule. This timeisalso the reorientational 
correlation time of the vector. Then the rotational intermolecular relaxation 
rate is 

(19) 
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Figure 9. Schematic representation of acid-acid pair distribution function for acetic acid dissolved 
in D 2 0. The association probability Pass is obtained by multiplying the peak height by 

2rrr~tlr0 = 5 A3 . Numbers indicate mole fraction of acetic acid. 

fll/T1 = Pass(;) ' (20) 
1 rot 

where Pass is the probability for an acid molecule to be somewhere in the 
'half-space' described above with an intermolecular proton-proton distance 
~b. With b = 2A and rc = 10- 11 s one calculates (1/T1)rot = 0.4 s- 1

. This 
is about the relaxation rate one finds for the intramolecular contribution in 
fluid organic liquids where a proton interacts with 2-3 other protons21

. 

We calculate Pass according to equation 20 from our lll/T1 results, transform 
to the probability density p'(r 0) = Passf2nr~!lr 0 and obtain the estimate of 
one possible type of pair distribution function as depicted in Figure 9. 
!lr 

0 
was assumed tobe !lr 

0 
= 0.2 A, the probability density p'(r 0) is given in 

A- 3 and is understood in the sense to give the probability density to find any 
acid molecule in dr 

0 
at r 0 (in the 'half space'). Thus the 'primed' probability 

density p' is connected with the one previously used by p'(r 0) = .JV'p(r 0) where 
.JV'is the number of (acid) molecules in the system. 

Of course the schematic molecular distribution function shown in Figure 9 
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is only one simple type which is possible; a broader distribution mayasweil 
lead to the intermolecular relaxationrate observed. 

In Figure Sb we present the proton intermolecular relaxation rates for the 
two propionic acids CD3CH 2COOD and CH3CD2COOD, bothin D

2
0. 

The self-diffusion coefficient for the neat acid at 25°C is D = 0.91·10- 5 cm2 

s- 1
. For the effective d we find d = 1.15 A. Then the same procedure as 

described for acetic acid yields radial distribution functions (probability 
densities) as given in Figure 10. (1/T1)rot for the methylene group is ~ 0.27 s- 1. 
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Figure 10. Schematic representation of acid-acid pair distribution function for propionic acid 
dissolved in D 20. Left-hand part of the figure: methylene-methylene group distribution; 

right-hand part: methyl-methyl group distribution. For other detailsseelegend of Figure 9. 

Again these distribution functions are only defined in the half-space contain­
ing the alkyl group as described above. It is seen that the probability to find 

· · a methylene group close to a methylene group is greater than the correspond­
ing probability forapair of methyl groups. 
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4. HYDROXYLIC INTERMOLECULAR RELAXATION RATE 
IN METHANOL AND ETHANOL 

The protonrelaxationrate of CD
3
0H at 25oC is 1/T

1 
= 9.3·10- 2 s- 122 

and the proton relaxation rate of C2D 50H at 25°C is 1/T1 = 16.9·10- 2 

s - 1 22
• 

23
• On the other band, the total proton relaxation rate of CH3 OD at 

25°C is 1/T1 = 9.8 · 10- 2 s- 1 and that of C2 H 5 0D is 1/T1 = 17.5 · 10- 2 

s - 1 22
• 

23
• The two former relaxation processes must be intermolecular 

because the intramolecular contribution is negligible. Thus we see that these 
intermolecular relaxation rates are almost as large as the total relaxation 
rates of the methyl and ethyl protons, which contain intramolecular and 
intermolecular contributions. We conclude that OH relaxation in the alcohols 
CD 30H and C2 D 50H must be predominantly of rotational character 
which implies that the propagator P(r 0 , r, t) in equation 5 for the hydroxylic 
proton is of such a kind that the proton-proton distance does not vary over 
times of the order of the reorientational correlation time. Each OH proton 
has two nearest neighbour protons due to the two H-bonds coupled to a given 
molecule. The 0-0 distance in the liquid alcohols is ~ 2.7 A 24 with the 
C--OH angle {3 = 110° and the C-0 ... HO angle a = 135°. This gives 
a proton-proton distance b = 2.3 A. 

Then the expected rotational relaxationrate is 

(21) 

Insertion of the numerical values yields Tc = 7.8·10- 12 s for methanol and 
Tc= 1.43·10- 11 s for ethanol. From the OD deuteron relaxation rate in 
these alcohols the correlation times '! = 3.7 ·10- 12 s and '! = 8 ·10- 12 s for 
methanol and ethanol, respectively, have been reported25

• The agreement is 
satisfactory and, by taking account ofthe influence ofnext nearest neighbours, 
could be improved. If the hydrogen bond had a life-time > 10- 10 s, then the 
correlation time should be Ionger than obtained, due to chain association. 
Very long and extended polymers should have very long rotational correla­
tion times. Since we do not find such long times, we conclude that Th, the 
life time of attachment, is about equal to rc, then 

rh ~ Tc ~ r 0 exp (E/RT) 

gives us, with 't'h ~ 10- 11 s, r 0 ~ 10- 14 s, E ~ 4 kcal mole- 1 for the depth 
of the potential describing the pair distribution function between two 
alcoholic hydroxyl groups. Thus, 

(
4000) p'(r0 ) = const. exp RT 

with const. given by the requirement 

1 = J p'(r0 )dr0 
AV 

where the integration is extended over the volume occupied by one hydrogen­
bonded OH group. 

It should be noted that equation 18 depends linearly on N, the concentra-
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tion of interacting molecules in the liquid, whereas equation 21 does not 
depend on N. Experiments have shown22 that (1/T1)inter for the OH protons 
of methanol and ethanol does not depend on the degree of dilution of the 
alcohols with inert solvents down to a mole fraction ~0·3 of alcohol. More­
over (1/T1)inter even increases strongly as a solvent ofhigher viscosity is added. 
Thus one sees that the OH-OH system behaves like a firmly coupled 
aggregate where the relative proton-proton motion in the time range ~ 10- 11 

s is only of rotational character. 
We conclude this section by the comment that the method just outlined, 

namely the demonstration that the propagator is of total or partial rotational 
form, has a wide field of application. One typical example is again the study 
of paramagnetic electrolyte solutions6

• 
12

• 
18 where the propagator of the 

vector connecting the water in the first hydration sphere with the central ion 
may be entirely of rotational character from which stable hydration can be 
inferred and this in turn may be reformulated in terms of pair distribution 
functions. 

5. INTERMOLECULAR RELAXATION RATES CAUSED BY 
QUADRUPOLE INTERACTION 

Nuclei with I > twhich reside in spherical ions usually relax by quadrupole 
interaction with electrical field gradients which are produced by other particles 
in the electrolyte solution. These particles are water (or solvent) molecules 
and other ions. Thus the relaxation process is of an intermolecular nature and 
should allow the determination of at least certain properties of the pair 
distribution functions. An attempt in this direction has previously been 
undertaken in this laboratory26

• 
27

. The result, however, must be considered 
as not being satisfactory as yet. The reason for this failure is now obvious 
and may be sketched as follows. If one considers the quadrupolar relaxation 
by point charges which represent the ions present in the solution, then the 
'self-correlation' terms occuring in the time correlation function are formally 
the same as those for the magnetic dipole-dipole interaction (equation 5). 
In the dipole-dipole case the total correlation function is .!V times the 
'self-correlation' function. But for the quadrupole relaxation the cross­
correlation terms between different particles become very important and 
must be included in the treatment. They cause the screening of a given ionic 
charge sufficiently far apart from the reference ion, which is the well known 
charge cloud effect in electrolyte solutions. Thus the contribution to the 
relaxation from the majority of the ions is quenched. The ion-ion part of the 
quadrupolar relaxation rate may be expressed in an approximate form in 
terms of the closest distance of approach between the ions and of the radius 
ofthe ionic cloud. So the relaxationrate depends on two parameters character­
izing the ion distribution and it has been shown that the experimental results 
for the relaxation of the ions Cl-, Br-, and 1- in aqueous solution of alkali 
metal halides may be interpreted satisfactorily in terms of these two para­
meters. The reader is referred to three forthcoming papers for further 
details28

-
30

. The quadrupole interaction vanishes if the surroundings of the 
nucleus in question is of cubic symmetry. A pair of particles cannot be of 
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cubic symmetry, but an arrangement of four or six particles around the 
reference particle can be so. As a consequence, any experimental demonstra­
tion that the quadrupole interaction vanishes at a given ionic nucleus implies 
symmetry in high er (not pair) molecular distribution functions. Corresponding 
effects have been found for the ion-water dipole distribution and for the 
ion-ion distribution in aqueous electrolyte solutions28

• 
30

, see also 11
. We 

quote here two other references which describe quadrupolar effects in ionic 
solutions from another point of view3 1. 32

. 

6.EXPERIMENTAL 
The Li+ and Na+ relaxation times have been measured with a Bruker 

B-KR 304 s pulse spectrometer. For Ionger Ti times the 90°-90° pulse 
sequence method was applied; for shorter relaxation times it was necessary 
to employ the 180°-90° technique. For weak signals, in particular at 6 MHz, 
measurements were performed by the aid ofsignal accumulation. T 2 measure­
ments were done with the Carr-Purcell method and Gill-Meiboom modifica­
tion. Care was necessary to prevent heating of the electrolyte solution during 
the Carr-Purcell procedure. Due to diode detection, base line shift had to 
be corrected. Equality of short proton T1 and T2 was checked with a CuC12 
solution where both relaxation times are known tobe equaP 3 . 

Proton and deuteron relaxation time measure:ments of the carboxylic acids 
have been performed with spin-echo apparatus of conventional construction 
at 20 MHz and 12 MHz, respectively, the 90°-90° pulse sequence being 
applied in all cases. The composition of the solutions was determined by 
weighing, the samples were freed from oxygen by the usual freezing-thawing 
technique. D20 for the higher acid concentration was of deuteron content 
99.7 per cent, the measurements at low acid concentration were made with 
D 20 of D content better than 99.8 per cent. We were unable to detect any 
proton signal in this D20. The acids were purchased from Roth, AG., 
Karlsruhe, and used withour further purification. 
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