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ABSTRACT 

Reccnt advances in thc theory of dilute polymer solutions are critically 
summarizcd. The following topics are discussed: thcory ofthe excluded volume 
effect, including perturbation theory, the asymptotic solution, and approxi­
matc trcatments; thc sccond virial coefficient; thc theory of intrinsic vis­
cosity. cspccially pcrturbation thcory: comparison of theory with experiment 
using data rcccntly obtaincd for monodisperse polystyrenes; methods of 
dctcrmining the binary duster integral; and simple analysis of the binary 

clustcr integral by a cell-theory approach. 

INTRODUCTION 

The statistical mechanics of polymer solutions has been for many years 
one of the active tields of polymer science because of its close relation to 
molecuhlr characterization. Specifically, since the concept of the excluded 
volumc dTect in a polymer chain was introduced by Flory 1

• 
2 in 1949, there 

have been a number of significant advances in the study of this effect and the 
related equilibrium and nonequilibrium properties of dilute polymer solu­
tions. These advances, made during the last two decades, have delineated 
the relationship between the theory in the field, now called the two-parameter 
theory, and other branches of the molecular sciences. There are now various 
aspects of the field which are covered by the two-parameter theory 3

. In 
this paper, emphasis is focused on the following characteristics and problems. 

First, the excluded volume problern in a single polymer chain is a many­
body problem, and many mathematical difficulties are encountered. Indeed, 
an exact asymptotic solution for an infinitely long chain with large excluded 
volume has not yet been obtained, though the problern may be unravelled 
applying the techniques used in solving many-body problems in simple 
tluids and many-electron systems. This is in cantrast with the problern in 
contigurational statistics of polymer chains without excluded volume which 
is equivalent to the problern in one-dimensional cooperative spin systems 
and is therefore amenable to exact solution. Although the asymptotic 
solution to the excluded volume problern cannot be directly compared with 
experiment, it is of great statistical-mechanical interest and is also useful 
in deriving approximate closed expressions. 
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Second. there have been a nurober of attempts to derive approximate 
dosed expressions for the expansion factor and the second virial coefficient 
which are valid over a wide but experimentally accessible range of exduded 
volume interaction. However, there have been very few investigations of the 
nonequilibrium properties, such as intrinsic viscosity, of polymer chains 
with exduded volume. In this case. we must solve simultaneously the 
problern of polymer dynamics. such as the problern of the hydrodynamic 
interaction which exists even in the unperturbed 8-state. Nevertheless, the 
establishment of such consistent expressions for all equilibrium and non­
equilibrium properties is very important, because it provides an under­
standing of the physical processes in dilute polymer solutions and also 
methods of determining the two basic molecular parameters, the unper­
turbed dimension and the binary duster integral for a pair of segments. 
We note that several advances have recently been made also in the pertur­
bation theories of equilibrium and nonequilibrium properties. 

Third. when we attempt to make experimental tests of the derived approxi­
mate expressions. a fundamental difficulty arises from the fact that the 
binary cluster integral and hence the exduded volume parameter are not 
directly observable. Even with Monte Carlo data. another difficulty arises 
from the fact that there is a gap between lattice chains and polymer chains. 
This is in cantrast with the theory of simple fluids. Although the latter also 
involves the many-body problem. experimental tests of the derived approxi­
mate equations of state can be achieved by examining the relationship 
between pressure and density with the use of actual experimental data and 
also of molecular dynamics data. 

The fourth point is concerned with the theoretical interpretation of the 
two basic molecular parameters appearing in the theory. As for the unper­
turbed molecular dimension, extensive investigations have been made 
during the past decade, and the methods and results are summarized in 
books by Volkenstein4

• by Birshtein and Ptitsyn 5
, and by Flory 0

. The present 
paper is not, of course, intended to discuss this subject. On the other hand, 
very few investigations of the binary duster integr-al have been published. 
However, it is this parameter that has a close relation to the exduded volume 
efTect. and plays an important role in the interpretation of interactions in 
dilute polymer solutions on the molecular and atomic Ievels. 

In the following sections, we discuss these problems in more detail, 
summarizing the results recently obtained by the present author and col­
laborators. We emphasize that the resolution of the many-body problern in 
polymers consists of exploring the dependence of dilute-solution properties 
on polymer molecular weight. and that this Ieads to correct estimatcs of the 
molecular parameters. 

TWO-PARAMETER THEORY 
Consider a model polymer chain composed of n identical segments 

(beads) joined linearly with a bond of etlective length a. Suppose that inter­
actions between two segments belanging to the same chain or different 
chains in dilute solutions may be described in terms of the pair correlation 
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function g(r) as a function of the separation r between segments averaged 
over all orientations. 'With g(r), define the binary duster integral ß by 

ß = J [1 - g(r)] dr, (1) 

which represents the efTective exduded volume for a pair of segments at 
infinite dilution. Then, all the equilibrium and nonequilibrium properties 
of dilute polymer solutions may be expressed in terms of the two parameter 
combinations na 2 and n2ß within the framework of the two-parameter 
theory, i.e., on the assumptions that n ~ 1, ß ~ (na 2)!, and the potential is 
pairwise additive. We may choose as the two basic parameters the unper­
turbed mean-square end-to-end distance (R 2

) 0 (or the unperturbed mean­
square radius of gyration (S2

) 0 ) and the exduded volume parameterz: 

(R 2
) 0 = 6(S 2

) 0 = na2
, 

z = (3/2n(R 2
) 0 Yin 2ß. 

(2) 

(3) 

We note that the parameters n and a, and also n and ß, never appear separately 
in the final equations. In other words, the final equations are invariant to 
the choice of n, and the value of n may therefore be, to some extent, arbitrary 
as long as the val ue of ß itself is not discussed. 

Expansion factors 
V\' e define expansion factors cx.R and rt5 by 

cx.R2 = (R2)/(R2)o 

and 

CX.s2 = (S2)/(S2)o 

with (R 2
) and (S 2

) the mean sqmrre end-to-end distance and radius of 
gyration of the chain with exduded volume, respectively. These expansion 
factors may be expressed as functions of z only. For small z, an evaluation 
of rtR and rt5 can be carried out in a manner similar to the virial or duster 
expansion of the gas pressure at low density. The results obtained so far 
are summarized as follows, 

cx.R 
2 

= I + 1.333z - 2.075z2 + 6.459z3 
- ..• , (4) 

rt5 
2 

= 1 + 1.276z - 2.082z2 + . . . . (5) 

The linear term of cx.R 2 was derived by Teramoto 7 and many other investi­
gators8-11 long ago, the quadratic term of rtR 2 and the linear term of rt5

2 

being due to Fixman 10
• The cubic term of cx.R 2 and the quadratic term of 

rt5
2 have recently been derived by Yamakawa et a/. 12• 13. 

The investigation of the other extreme, i.e., the asymptotic solution for 
rtR at ]arge z, has been initiated by Edwards 14

, applying the self-consistent 
tield method. Subsequently, this approach has been further investigated by 
Reiss 15 and others 16· 17. However, these investigations involve some 
numerical error and incorrect derivations. The correct integro-differential 
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equations for the distribution function have been obtained by Yama­
kawa 18 • 

19 and Freed10 for both the zeroth-order field of Edwards and the 
first-order field of Reiss. For the Edwards field, the solution is 

(6) 

with v = 5 and C = 0.744 14
• 

19
. (Edwards has erroneously obtained the 

value of 1.49 for C.) For the Reiss field, the exact solution of the integro­
differential equation has not yet been obtained, but it has been solved by 
Yamakawa 18 only in a uniform-expansion approximation with the result 
v = 5 and C = 1.45. These recent results support the earlier conclusion of 
Flory l. 2 • though thcre has been controversy on the question of whether the 
behavior of aR or a5 obeys an equation of the fifth-power type (v = 5) or of 
the third-power type (v = 3)11

· 
22 . We note that integro-differential equations 

have also been derived by the liquid theory approach 13
· 
14

. 

As for the derivation of approximate closed expressions for aR or a5 , 

various attempts have been made for many years 3
. In these the problern has 

been approached from two starting points. One begins with the closed form 
of the distribution function of the end-to-end distance R. 

P(R) = z- I Po(R) exp [- V(R)/kT], (7) 

where Z is the configurational partition function, P 0 (R) is the unperturbed 
distribution, and V(R) is the potential of mean force with R fixed. In this 
approach. the problern is to evaluate V(R). Recently. Fujita et a/. 25 have 
shown that within the framework of the two-parameter theory. V(R) may 
be expressed exactly in the form, 

ß 
V(R) = kT L .f P(OijiR) d{J, (8) 

i <i 0 

where the conditional probability density, P(Oul R), for the contact between 
thc ith and jth segments with R tixed is tobe evaluated in the perturbed state. 
In the earlier treatments belanging to this category, the conditional prob­
ability density in equation 8 was evaluated in the unperturbed state. However, 
this has a significant intluence on the final result. F or instance, K urata, 
Stockmayer. and Roig11 have evaluated P in equation 8 in the unperturbed 
state for an ellipsoid model to derive an equation of the third-power type 
for aR. while evaluation of P in the perturbed state for the same model Ieads 
to an equation of the fifth-power type 25

. In general, fifth-power type equa­
tions are obtained irrespective of the form of distribution of segments if P 
is evaluated in the perturbed state with the use of a uniform-expansion 
approximation 3

· 
15

· 
16

. We note that Alexandrowicz17 has also used an 
expression for V(R) similar to equation 8. 

There hold similar equations also for the distribution function P(S) of 
the radius of gyration S and the potential V(S). Strictly, however. P 0 (S) is 
not Gaussian, and the problern is more difficult. lf we assume the Gaussian 
P 0 (S) and the spherically symmetric distribution of segments, that is: 

V(S) = es- 3 zkT, 
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and C is adjusted to give the exact first-order perturbation theory, the 
modified Flory (F,m) equation for IJ.s is obtained. Flory and Fisk (FF) 28 

have improved the form of P 0(S) in an approximate fashion to re-evaluate 
IJ.s, based on the investigation of P0(S) by Fixman29 and Forsman 30

• 
31

. 

However, the exact solution for P0 (S), though only numerical. has recently 
been obtained by Koyama 32 and Fujita 33

. With this result, Fujita and 
Norisuye (FN)33 have revised the calculation of Flory and Fisk. In Figure 1 

F p 

Fiyure 1. Values of r:x../ calculated from various approximate thcories. Curve F,o: the original 
Flory theory. Curvc F.m: the modified Flory theory. Curve FF: the Flory-Fisk theory. Curve 
FN: thc Fujita-Norisuye theory. Line F: the Fixman theory. Curve P: the Ptitsyn theory. 

Curve YT: the Yamakawa-Tanaka theory. 

are p1otted the va1ues of r:x.s3 predicted by these three theories. Comparing 
the three curves in the Figure, it is clear that the improvement of Flory and 
Fisk has been made in the wrong direction. We note that the recent boson­
operator theory of Fixman34

· 
35 also gives va1ues of 11./ smaller than those 

predicted by the F,m theory. 
The other approach is a derivation of a differential equation for rxR or 

as. lt was attempted first by Fixman (F) 10
• 

36
, and subsequently by Ptitsyn 

(P)37
. Both these theories give equations of the third-power type for r:x.R and 

as. Yamakawa and Tanaka (YT) 13 have extended this approach to derive 
a hierarchy of differential equations for aR or 11.8 , by analogy with the tech­
nique in the theory ofliquids. The hierarchy has been truncated appropriately 
to give higher-order approximations to aR and rxs. The values of rxs 3 predicted 
by these three theories are also plotted in Figure 1. lt is seen that the values 
predicted by the YT theory are very close to those predicted by the FN theory 
of the fifth-power type. In the Figure are also plotted the values predicted 
by the original Flory (F,o) theory 1

. 
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Although it is difficult to test these appro-::.nate expressions for aR or 
115 as functions of z using Monte Carlo data 3 , the recent available data38

-
40 

Iead tothedefinite conclusion that neither aR 3 nor a/ is linear in nl. Furt her, 
the extrapolated data for lattice chains41

-
43 support the asymptotic solution 

of the fifth-power type. 

Second virial coefficients 
The second virial coellicient A 2 may bc expressed in the form, 

A 2 = 4rriN.1(<S2 )tfl\1 2 )tp_ (9) 

where N is the Avogadro number. M is the polymer molecular weight, and 
tp is a ttnction of z which represents the degree of interpenctra!ion of 
polymer molecules in dilute solution. The problern is to evaluatc lf. and 
this is also a many-body problem. For small z, the cluster-expansion tech­
nique is again useful. The results obtained so far are summarized as follows, 

lf = z(l - 2.865z + 9.202z 2 
- ... ) (10) 

with z = zirt5
3 . In equation 10, we have ignored the corrclation between 

intramolecular and intermolecular interactions. since it has no great influ­
ence on the result'l-4

·
45

. The linear term in the parentheses of equation 10 

has becn derived by Zimm46 and others47
·
48

, and the Albrecht value41 of 
9.726 for the coefficient of the quadratic term has recently been corrected 
by Tagami and Casassa45 as above. 

The asymptotic solution for tp at large z has not yet been investigated. 
However. from a simple physical consideration, it may be expectcd that in 
the Iimit z---+ x, polymer molecules behave like rigid spheres in dilute 
solutions, and therefore tp becomes a constant independent of z. 

On the other hand. various approximate closed expressions for tp havc 
been derived 3

. Then the following question arises: what exprcssion for a5 

is to be combined with a given expression for tp in order to complcte the 
form of tp as a function of z or as. Necessarily this must be done from the 
point of view of maintaining the self-consistence of the intramolecular and 
intermolecular theories. First, the Kurata- Yamakawa (K Y) equation-~· 44

· 
49 

for tp may be combined with the Yamakawa-Tanaka (YT) equation 13 for 

rts: 

tp = 0.547[1- (1 + 3.9032)- 0 ·
4683

], (KY) 

115 
2 = 0.541 + 0.459(1 + 6.04z)0

·
46

. (YT) 

(ll) 

(12) 

Thc reason is that both have becn derived by the hierarchy approach, and 
the intramolecular and intermolecular hierarchies have been truncated in 
mathematically consistent closure approximations. The pair of equations 
ll and 12 is referred to as combination Y. There are two other possible, 
though not completely justifiable, combinations. One is thc combination 
(F.o) of the original Flory-Krigbaum-Orofino (FKO,o) equation 50

· 
51 for 

tp and the original Flory (F,o) equation 1 for 11s. The other is the combination 
(f,m) of the modified Flory- Krigbaum Orofino (FKO,m) equation 50 52 for 
tp and the modified Flory (f,m) equation for a5 . In these the intramolccular 
and intermolecular thcorics have been derived on the basis of the smoothed 

184 



EXCLUDED VOLUME EFFECTS AND BINARY CLUSTER INTEGRALS 

Gaussian density model. However, there is no explicit justification of any 
combination. 

lntrinsic viscosities 
Therc are two problems in the development of the theory of intrinsic 

viscosities [17]. One is concerned with the unperturbed chain, that is, the 
evaluation of the Flory-Fox constant ll>0 (in the unperturbed state)53

, and 
the other is to evaluate the viscosity-radius expansion factor cx" defined by 

['7] = 6-t ll>o((S2)ot/M) cx"3 
= 6i ll>(S2)t/M. (13) 

It is important to note that the evaluation of cx" depends on the theory of ll> 0 . 

Many investigations· of ll> 0 , and more generally the dynamical properties 
of dilute polymer solutions, have been published 3

. These have two common 
foundations. One is the use of the Oseen hydrodynamic interaction tensor 
introduced first by Kirkwood and Riseman 54

, and ti~:' other is the reduction 
to diffusion problems in the chain configuration space formulated first by 
Kirkwood 55 in a very general form and later by Rouse 56

, Bueche57
, and 

Zimm 58 more conveniently using normal coordinates. Recently, the use of 
the Oseen formula has been criticized by Oe Wames, Hall, and Shen59 and 
by Zwanzig, Kiefer, and Weiss60

. In particular_ the latter authors have shown 
that in the Oseen approximation, with beads (segments) treated as point 
sources of friction, the frictional forces exerted by the beads on the fluid can 
become singular for some values of the strength of the hydrodynamic 
interaction. Perico and Rossi 61 and Thurston and Morrison62 have also 
encountered a similar situation in the calculation of the intrinsic viscosity 
of short chains. The difficulty may be eliminated by finite bead models. 
Such investigations have been very recently initiated by Rotne and Prager63 

and by Yamakawa64
-

66
. However, it seems that the Oseen formula has 

still some practical value in the case of flexible chains. 
There is another difficulty concerning the hydrodynamic interaction. 

Use of the Oseen formula gives the draining effect, that is, the dependence of 
ll> 0 on molecular weight. However, such an effect has never been observed 
experimentally for flexible chain polymers. Very little attention has been 
directed to this problem64

· 
67 

· 
68

, and a complete solution has not yet been 
obtained. It is interesting to note that according to the recent calculation of 
Edwards and Oliver69 the draining effect does not occur in the frictional 
coefficient of a flexible cylinder. In the following discussion, we assume 
that the theory for impermeable molecules based on the Oseen formula are 
valid for molecular weights of ordinary interest. In Table 1 are summarized 
the values of ll> 0 derived in the nondraining Iimit by Kirkwood, Riseman, 
Auer, and Gardner (KRAG)54

• 
70

, by Zimm (Z) 58
, by Hearst (H) 71

, and by 
Fixman and Pyun (FP)72

· 
73

. The Hearst theory does not differ from the 
Zimm theory except that the Rouse eigenfunctions are adopted for all values 
of the draining parameter. The Oseen tensor is pre-averaged in the first 
three theories of the Table, while in the Fixman-Pyun theory this is avoided 
by a perturbation method. Thus, an exact value of €/>0 has not been derived, 
its bestexperimental value being 2.5 x 1023 (cgs). 
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Fahle I. The viscosity constant C/.> 0 

from various thcories for linear Ilexihle 
chains 

Theory C/.> 0 x 10 · 23 cgs 

KRAG 2.X7 
z 2.84 
H 2.R2 

FP(Oth order) 2.6X 
(Ist ordcr) l.H I 
(2nd ordcr) 2.66 

Now. a" becomes a function of z alone in the nondraining Iimit. At small 
z, a" 3 may be expanded in the form. 

(14) 

According to the semi-empirical theory of Flory and Fox 5 3
• a/ is equal to 

rxs 3
, so that C 1 = 1.914. Kurata and Yamakawa48 have introduced approxi­

mately the excluded volume effect into the Kirkwood-Riseman theory and 
obtained the value of 1.55 for C 1 . Fixman 34 has introduced the effect into 
the Hearst theory by an application of the boson-operational technique and 
obtained the value of 1.80 for C 

1 
-:-+. However, his procedure is still approxi­

mate. Very recently, Yamakawa and Tanaka 74 have introduced exactly the 
effect into the Hearst theory on the basis of the Fixman-Pyun theory and ob­
tained the value of 1.06 for C 1. At present, this last value may be regarded as 
most rigorous. 

However, there has not been derived an approximate closed expression 
for a" which gives the tirst-order perturbation theory of Yamakawa and 
Tanaka at small z. 

COMPARISON WITH EXPERIMENT 

Great efforts have been made to achieve a direct experimental test of the 
two-parameter theory, instead of an indirect test provided by viscosity 
plots 22

· 
7 5

. The foremost of these is the work of Berry 7 ' · 
77

. As already 
mentioned, the binary cluster integral fi, and hence the parameter z. cannot 
be estimated directly from experiment. However. Berry has attempted to 
estimate {i. assuming the temperature dependence, 

/) = /)0 ( 1 - B/T). ( 15) 

where {J 0 is a constant independent of temperature, and can be determined 
from the temperature dependence of A 2 near the B-temperature. Thus 
Berry has determined values of z for polystyrene in decalin and toluene, and 
plotted a/, and also a" 3 , against z. We believe that it is the best way to use, 
if possible, these plots as a criterion of validity for a theory. However. there 
is no justification of validity of the assumption (15) over a wide range of 
temperature49

, and moreover, it is ditlicult to determine {J 0 • accurately. 
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Subsequently, experimental tests have therefore been attempted without 
the use of any ad hoc assumption for polychloroprene by Norisuye et al. 78

· 
79

, 

for poly-p-methylstyrene by Tanaka et a/.80
, and for poly-p-bromostyrene 

by Takashima et a/. 81
. In this paper, we use light-scattering and viscosity 

data obtained recently by our group82 for monodisperse polystyrenes 
(prepared anionically in tetrahydrofuran) to test the theory following our 
procedure. 

Expansion factors and second virial coefficients 
What have been adopted as criteria ofvalidity of a theory are the following: 

( 1) consistency in the values of z determined from observed values of rxs 
and from observed values of 'P using the theoretical expressions for rxs and 
'P, and (2) linearity between Mt and z determined from observed values of 
rxs using its theoretical expression. The tirst criterion arises from the fact 
that the binary duster integral for segments in the same chain must be the 
same as that for two segments belanging to different chains. Clearly the 
second criterion is required by the definition of z. These two criteria involve 
no assumptions. 

os.-----.-------.--------.-----..--------r-----, 

03 

()'. 3 
s 

Fiuure 2. Plots of lJ' against o:s' for polystyrenc: e. in bemene at 30 C :C). in toluene at 30'C: 
(~.in dichloroethanc at 30' C: 0. in cyclohexane at various temperatures82

. The broken curve 
is an empirical fit to the previous data. The full curves represent the theoretical values calculated 

from the three combinations of the theories of tp and O:s defined in the text. 

The fulfilment of criterion (1) may be examined conveniently by con­
structing plots of 'P against rxs 3, as proposed by Fujita et al. 78

• Figure 2 
shows such plots for polystyrene in benzene, toluene, and dichloroethane 
at 30oC and in cyclohexane at temperatures ranging from 32o to 60°C82 • 

The data for A 2 and (S2
) have been obtained from light-scattering measure­

ments by the method of square-root plots 76
. The broken curve represents the 
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best fit to all published data cited above, the present data being consistent 
with those. Thus both tp and a5 are seen to be functions of z only. The three 
full curves in the figure represent the values calculated from combinations 
F.o, F,m, and Y of intramolecular and intermolecular theories. lt is seen 
that combination Y is most satisfactory. Strictly, this combination, and also 
the other two, cannot explain the experimental curve which is almost 
horizontal for a/ > 2. The Casassa-Markovitz theory83 can explain such 
a trend. but cannot predict values of P greater than 0.2, this being in dis­
agreement with experiment. 

.} F,m 

• YT 
5 

Cl 

~ • p 
F,o 

F 

0 5 10 15 20 

1 -2 MX X l!J 

Fiqure 3. Test of thc linearity bctwecn : and \1 ,.l with the data for polystyrenc in bcmcne at 
\() CR 2 Thc values of: \\t:rC calculatcd from various theories of 7.s / from thc F.o theory: 
t. lrom the F.m thcory ,e. from thc YT theory .&. from thc F thcory: 6. from the P thcory 

We now turn to the examination of criterion (2). Figure 3 shows plots of z 
against the square-root of the weight-average molecular weight, M }, for 
polystyrene in benzene82

, where the values of z have been estimated from 
observed values of a5 using the theories indicated. The data points obtained 
from the F.o. F,m, and YT theories are seen to fall close to the respective 
straight lines passing through the origin, indicating that these theories 
satisfy criterion (2). On the other hand, the F and P equations are seen to 
Iead to nonlinear relations between z and Mi, indicating an inadequacy of 
equations of the third-power type. 

From the above analysis and all previous investigations of this type, we 
may conclude that combination Y satisfies both criteria (1) and (2). Thus, 
in what follows, we adopt the YT equation ( 12) to determine values of z 
from observed values of rxs. Very recently, Fujita et a/.84 have made a similar 
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test for polyisobutylene to show that the Flory theory85 of tp for a uniform­

density sphere model combined with the Fujita-Norisuye theory 33 of cx8 is 

also in good agreement with experiment. 
Finally, we note that Berry's analysis has led to estimates of z greater 

than ours; he has concluded that the Flory-Fisk theory of cx8 is in good 

agreement with experiment 76
• Further, we note that the raw data obtained 

by Kato et al. 86 for (anionically prepared) poly-cx-methylstyrene aredifferent 

in behavior from all data cited above; for example, Kato's observed values 

of tp reach only 0.2 in good solvents. This difference may be regarded as 

peculiar to Kato's samples82
• 

lotriosie viscosities 
Berry 77 has concluded that for polystyrene the viscosity-radius expansion 

factor cx" is not a function of z only, again with the use of the values of z 
determined following his procedure already mentioned. This result has 

been interpreted in terms of the draining effect. However, this effect has 

never been observed for flexible chains at E>-temperatures, and then there 

arises the question of whether it actually exists for z > 0 . 

.------~...---~-------,---
--~-,---------,--~------, 

() 
0 • 0 0 

100 0() 

.-, 
~ 0 

_.: 

~50 0 

"'1: 

0 

0 

0 0.5 10 1.5 20 
,y_ s 2 -1 

Fiqur<-' 4. Plots of A 2 M,J['1] against ll./ - l for polystyreneR 2
. The symbols have the same 

significance as those in Fiqure 2. The curve is an empirical fit to the previous data. 

Figure 4 shows plots of A 2 M wi[1J] against cx/ - 1 for our polystyrenes82 , 

[17] being expressed in deciliters per gram. The curve is an empirical fit to 

all data cited above; the plots may be well represented by a single-composite 

curve. This suggests that the two-parameter theory does work weil for the 

intrinsic viscosity as weil as the equilibrium properties, and therefore that 

there is no draining effect irrespective of the value of z. We note that earlier 
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• 

® 
() 

/ 
/ 

" 

~~~~~~~~~~~--L----~~~~~~~~~~~ 

-I I _< 

Fiy11re 5. Double logarithmic plots of 'l./ against 'l./ for polystyrcnc)l 2 Thc symhols havc thc 
same stgnificance as those in Fiyure 2. The curve is an empirical fit to the previous data. 

data for the above ratio have been found to scatter remarkably when plotted 
against r.x.,/ - 1, or r.x/ - 122

. This is probably due to the inaccuracy of the 
estimates of A 2 obtained from the conventional plots. 

Whether the draining effect exists or not for z > 0 may be examined 
more explicitly as follows. lf r.x'IJ is a function of r.x 5 only, then r.x'IJ must be a 
function of z only, since r.x5 is a function of z only. In order to demoostrate 
this, Fujita et a/. 79 have proposed to plot log r.x,/ against log r.x/. Such 

1. 2 

~-.----- ---------- --r·---------r- -------.------- T --

0 

---... 1. 0 t-----""'""=::-- ------------------~ 

s-

0.8 

f ( _) 

(). ® () _, __ _, ___ ~----;:;----

___ ____L_ ___ ----------

3 4 

ct l 
s 

Fi~Jure f>. Plots of f/J f/J 0 against 'Y../ for polystyrcncM 2
. Thc symbols havc thc samc significancc 

as thosc in Fiyure 2. Thc brokcn curvc is an cmpirical fit to thc prcvious data. Curvc K Y: thc 
Kurata Yamakawa thcory Curvc FS: thc Fixman Stidham thcory. 
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plots can be made without any assumptions, and are explicitly shown for our 
polystyrenes in Figure 5, where the curve is an empirical fit to all data cited 
above. The plots form a single-composite curve, and we therefore have 
support for the earlier conclusion that there is no draining effect for flexible 
chains irrespective ofthe value of z, as advocated first by Flory2

• Our problern 
is then to test approximate two-parameter theories of the intrinsic viscosity. 
F or this purpose, it is convenient to plot f/Jjf/J0 ( = a" 3 ja/) against rx5 

3
. 

Figure 6 shows such plots for our polystyrenes. The broken curve is an 
empirical fit to the data. The horizontalline, and curves KY and FS represent 
the values predicted by the Flory-Fox theory, the Kurata-Yamakawa 
theory ( f/Jjf/J0 = a5 -

0
·
57

)
48

, and the boson-operator theory of Fixman and 
Stidham34

• 
35

, respectively. The observed f/Jjf/J0 is seen to decrease first 
rapidly and then increase gradually with increasing rx5 . This behavior of f/J 
cannot be interpreted by any of the above approximate theories. 

4 

3 
1.6 

() 

• 
• 1.4 

2 
1.2 

1.0 

Q 0 2 0 4 

0 2 4 5 6 
z 

Figure 7. Plots of rx~ 3 against z for polystyrene82
, where the values of z were calculated from the 

valucs of rxs using e4uation 12. Thc symbols have the same significance as those in Figure 2. 
The curve is an empirical fit to the previous data. The insert is an cnlargcment of the region of 
small ::: linc (1): the first~order perturbation theory of Yamakawa and Tanaka. equation 14 
with C 1 = 1.06: line (2): thc Kurata Yamakawa theory with C 1 = 1.55: line (3): the Fixman 

theory with C 1 = 1.80. 

Now we examine the behaviour of rx" 3 as a function of z. We may determine 
values of z from observed values of a5 using the YT equation (12), as already 
discussed. In Fiyure 7 are plotted values of rx" 3 against z for our polystyrenes, 
where the curve is an empirical fit to all data cited above. The insert in the 
figure is an enlargement of the region of small z. Straight lines (1) to (3) 
represent the first-order perturbation theory predictions ( 14) with C 1 = 1.06 
(Yamakawa and Tanaka), C 1 = 1.55 (Kurata and Yamakawa). and C 1 
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um (Fixman). respectively. The new thcory of Yamakawa and Tanaka 
is seen to be in good agreement with expcriment. The theory scems to bc 
valid for ::: < 0.3. which range is wider than thc range (::: < 0.15) of validity 
of the first-order perturbation thcory of a:/. 

The curve in Fiqure 7 has only slight curvaturc. This characteristic of the 
plot which corresponds to the Stockmayer -Fixman plot 7 s. accounts for 
why there is a lincarity between [17]: f\f! and M1 ovcr a relativcly widc range 
of .i\1. Now. exccpt at !arge :::. the curvc in the ligurc may bc approximated 
by two straight lines. the equations of which are 74

· 
80 

:~. -' = 1 + 1.05::: for 0 < a:"J < 1.6. 
1/ 

~Y./' = 1.05 + 0.87::: for 0 < :~."-' < 2.5. ( 16) 

Since the Stockmayer- Fixman plot is bascd on the Kurata -Yamakawa 
equation. ~Y."J = 1 + 1.55:::. the basic equation for this plot must now be 
modified (sec the ncxt scction). Wc note that the first of equations 16 is 
approximatcly valid over a wider range than is thc lirst-ordcr pcrturbation 
theorv. and therefore that the valuc of 1.05 for thc cocllicient of ::: is not 
neces~arily equaL though close. to thc Yamakawa Tanak<t valuc. 

BINARY CLUSTER INTEGRALS 

Having established thc equations for 'Y.s and 'Y-,
1
• wc can now cstimate 

values of thc parametcr .:. or the interaction paramctcr B dcfined by 

( 17) 

by the use of thesc cquations. As alrcady notcd and also as sccn from cq uation 
17, an analysis of the binary clustcr integral fi itself requires thc assumption 
of the size of a segmcnt. Throughout the remaindcr of this papcr. we considcr 
thc binary cluster integral per monomeric unit. for conveniencc. V\fc lirst 
summarize practical methods ofdetcrmining fi, and then attcmpt a theoretical 
interpretation of the values of /) for sevcral systems. 

Experimental determination 
Therc arc two methods. One is bascd on equation 12. Wehrst dctcrminc 

valucs of:: from observcd values of a:5 for various molccular wcights using 
cquation 12. and thcn plot the valucs of z against J\fl. as in Fioure 3. \Vc 
can dctcrmine fi from thc slopc of this plot by thc usc of cquations 3 and 17. 

Thc other is an indircct method applying the Stockmaycr Fixman plot. 
Sincc wc havc cstablished thc ncw empirical cquations 16 for rx,,. thc basic 
cquations for this plot must bc modified as follows. 

[ry].: .M 1 = K + 0.346 <P 0 B/\1 1 

[ry]iM1 = 1.05K + 0.287 <P 0 ßf\;f1 

fo r 0 < a "J < 1 . 6. 

for 0 < rx."J < 2.5. (IX) 

whcrc K = [ry] 0i/\1 1 with [ry] 0 thc intrinsic viscosity of unpcrturbcd chains, 
and we may assumc <P 0 = 2.5 x 1023 (cgs). Thus wc can dctcrminc fi from 
thc slopc of thc plot by thc usc of cquations 17 and 18. According to cquations 

18. valucs of [ry] IM} for our polystyrcncs arc plotted against /\1) in Fiyure 
X. The two thin horizontallincs in thc ligurc indicatc thc uppcr bounds bclow 

192 



EXCLUDED VOLUME EFFECTS AND BINARY CLUSTER INTEGRALS 

4 .----------.----------~----------~----------

3 

0 L---------~----------~----------~--------~ 
0 5 10 15 20 

1/2 -2 
Mw X 10 

Figure R Stockmayer- Fixman plots for polystyrene: e, in benzene at 30uC: C). in toluene at 
30"C: 8. in dichloroethane at 30nC: Q, in cyclohexane at the C9-temperature82

• The broken 
lines are the initial tangents. The two thin horizontal lines indicate the upper bounds given in 

equations 18. 

which equations 18 are applicable, corresponding to [1J]/KM)- = 1.6 and 
2.5, respectively. For good solvent systems, extrapolations to M w = 0 have 
been carried out to give the same intercept asthat in the B-solvent, neglecting 
the minor difference between K and 1.05K. The broken lines in the figure 
indicate the tangents to those parts of the curves which may be regarded as 
linear. Values of R and hence ß, can be obtained from the slopes of these 

Table 2. Values of ß per monomeric unit estimated from expansion factors and intrinsic viscosities 

ß x 1024 cm 3 

Polymer Solvent Temp. nc 
From a5 From [17] 

--- ~~-····---· 

Pol yst yrene8 2 Dich! oroetha ne 30 24.4 22.9 
Poly-p-methylstyrene80 Toluene 30 40.4 38.0 

Methyl ethyl ketone 30 12.4 10.3 
Poly-p-chlorostyrene87

• 
88 Monochlorobenzene 30 20.0 22.9 

Toluene 30 9.90 9.78 
Benzene 30 5.69 5.86 

Poly-p-bromostyrene81
• 
87 Monochlorobenzene 30 27.8 27.3 

Toluene 30 1.84 1.94 
Polychloroprene 78

· ?'l Carbon tetrachloride 25 21.0 23.5 
n-Butyl acetate 25 8.99 8.77 
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broken Iines using the second of equations 18. (lf a linear part of the plot 
lies below the lower horizontal line, the tirst of equations 18 is to be used.) 

Table 2 summarizes values of {J thus obtained for several polymers in 
various solvents 78

-
82

• 
87

· 
88

. It is seen .that there is good agreement between 
the values determined by the two methods. The second indirect method is 
useful when there are no available light-scattering data. 

Theoretical interpretation 
As seen from the definition of /), it is closely related to the second virial 

coeflicient for segments, or monomeric units. Consider now a hypothetical 
solutionsuch that the solute molecules are monomeric units which would be 
obtained by cutting the parent chain. The second virial cocfticient A 2 ° for 
this solution may be related to ß by the equation. 

( 19) 

where m is the molecular wcight of the monomeric unit. We note that A 2 ° 
isjust the single-contact term ofthe second virial coeflicient for the polymers. 
Thus ß can be computed by an cvaluation eithcr of the free energy of mixing 
or of the pair correlation function for solutes in very dilutc solutions com­
posed of small molecules. Yamaka wa et a/. 89 have cvaluatcd the excess 
binary cluster integral for polar polymers by thc seconJ approach, a com­
parison of theory with experiment having been made for poly-p-halostyrenes. 
Vcry recently, Yamakawa and Fujii 90 have attempted a simple analysis by 
the lirst approach, which wc brietly describe here. 

Yamakawa and Fujii have adoptcd thc smoothcd-potential cell model of 
Prigogine 9 1 to evaluate the frec cnergy of mixing. For this modcl, the con­
tigurational partition function Z for the solution (of small moleculcs) may be 
written in the form. 

(20) 

where Zc dcnotes the combinatorial factor. N is thc number of all molccules 
in the solution, z; is the average molecular volumc, v* is its hard core volume. 
and E0 is thc average intermolecular cnergy. lt is now known that real 
liquid mixtures may be weil rcpresented by van der Waals liquid models92

·
9

\ 

as delined by E0 = const. v- 1 and uscd by Flory and co-workcrs94 97
. 

However, we must assume Lennard-Joncs liquid models for our purpose, 
since we are considcring the hypothetical solution and equation of state 
data for the solute monomcric units arenot available. Although such models 
are less satisfactory, thc proccdure adopted has becn shown to bc good 
enough to draw an important conclusion as a lirst approximation 90

. 

Then, the thermodynamic properties. such as A 2 °, of thc solution may be 
finally expressed in tenns of the Lcnnard-Jones force constants, aii and l:ii 

(i,j = 1.2), for componcnts i andj. Values of a 11 and B11 for various solvcnts 
are now available98

, and a 12 and t: 12 may bc detcrmined by the use of the 
Lorentz- Berthelot rules. Thc constants a 22 and 1: 22 for monomcric units 
havc been detcrmined to give closc agreement between observcd and 
calculated values of fJ in EJ-solvent systems90

. In Tahles 3 and 4. arc given 
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Table 3. Observed and calculated values of ß for 
monomeric units of polystyrene 

Solvent 

Cyclohexane 

fi x 1024 cm3 

Temp. oc ---~-
Obs.a Calc. 

-----·----------

32 -1.08 -8.61 
35 0.28 0.591 
40 1.88 15.8 
50 4.10 45.7 

Tolucnc 30 31.2 275 
40 2lJO 
50 304 

Ben?ene 30 35.6 294 
40 335 
50 373 

• See the text and rcf. S2 

observed and calculated values of ß for polystyrene and polyisobutylene, 
respectively. The observed values of {J for polystyrene have been obtained 
from a5 

82
, and those for polyisobutylene have been obtained from [17] 99

• 
100 

except the value in cyclohexane at 25"C determined from a5
84. 

It is seen that the present model can interpret qualitatively the behaviour 
of ß. That is, there have been obtained values of fJ which are small and 
appreciably dependent 011 temperature in e-solvents, and values which are 
]arge and ..almost independent of temperature in good solvents. However, 
the calculated values of {J are an order of magnitude greater than the observed 
values. For comparison, the corresponding observed values for several 

Table 4. Observed and calculated values of fi for 
monomeric units of polyisobutylcnc 

jJ X 1024 cm 3 

Solvent Temp. ''C 
Obs. Calc. 

Benzene 22 -0.681° -7.54 
25 0.191a 1.62 
35 1.5oa 32.3 
50 3.51a 73.7 

Toluene 20 3.soa 166 
30 191 
40 5.l3a 221 

Cyclohexane 25 16.0h 677 
30 19.8( 629 
40 565 

• See the text and ref. 99. 
• See the text and ref. 84. 
' See the text and ref. 100. 
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systems composed of real small molecules 101
• 

102 are given in Table 5. 1t is 
important to observe that the calculated values of ß for polymer segments 
are the same order of magnitude as the observed values of ß for real small 
molecules. This is true, because we have calculated ß for the (hypothetical) 
solutions of small molecules. In this connection. we note that the theoretical 
/3 for polystyrene in !oluene is equal to the molecular volume of toluene, 

Table 5. Observed values of fi for binary mixtures of small molecules 

Solute Solvent Temp. C fix 1024 cm-' 
-~~~--·----- --------·---

Ben?ene 101 Carbon tetrachloride 25 100 
40 102 

Cyclohexane 25 ~ 70.2 
40 -39.8 

Carbon tetrachloride 101 Bcn?ene 25 140 
40 142 

Cydohexane 25 III 
40 114 

Cyclohexane 101 Ben?ene 25 19.4 
40 40.8 

Carbon tetrachloridc 25 158 
40 164 

Chloroform 102 Acetone 35.17 298 
Ethanol 102 Chloroform 35 -696 
Acetone 102 Chloroform 35.17 470 

e.g.. 178 x 10 ~ 24 cm 3 at 30' C. if the hypothetical so I ution is considered 
an isotope mixture in a first approximation 3

· 'i 
2

. Thus, obscrved values of 
fJ for polymer segments are definitely an order of magnitude smallcr than the 
values expected from second virial coefficients for small molecules. This 
diffcrence may be regarded as arising from thc fact that the degrees of 
freedom. translational and rotational. ot: polymer segmcnts bound in thc 
chain are lower than those of free small moleculcs. At present, it is difticult 
to interpret completely interactions betwcen polymer segments in dilute 
solutionon the molecular and atomic Ievels. that is, in tcrms ofintcrmolccular 
forccs. 

CONCLUSIONS 

Wc havc critically summarized recent advances in thc field of dilute 
polymer solutions. \Vc now tend to believe that the asymptotic solution to 
the excluded volume problern obeys the fifth-power law rather than the 
third-power law, though there have been many controversies. In the develop­
ment of the theory applicable over the range experimentally accessible, 
emphasis has been focused on its self-consistency. This has led to reliable 
estimates of the binary cluster integral. lt has been pointed out that a ditl'i­
culty arises in the interpretation of the interaction between segments on 
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the molecular Ievel. The asymptotic solution for the expansion factor and 
the many-body problern in the nonequilibrium theory require further 
investigations. 
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